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Problem Set 1 Solutions 

 

Problem 1 

The vertical slotted guide shown in Fig. 1.1 moves horizontally at a speed 20 [mm s⁄ ]. 

This causes the pin 𝑃 to move in the fixed parabolic slot whose shape in given by 

𝑦 =
𝑥2

𝑏
   ,   𝑏 = 160 [mm]   . 

1. Find the velocity and acceleration of 𝑃. 

2. Find the velocity and acceleration of the 𝑃 for the position 𝑥 = 60 [mm]. 

 

             Figure 1.1 

 

Solution: 

The position of the particle is given by 

𝒙 = 𝑥𝒆1 +
𝑥2

𝑏
𝒆2   . 

Thus, the velocity of the particle becomes 

 

 

 

 

 

𝒆2 

𝒆1 

𝑃 

𝑥 
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𝒗 = 𝒙̇ = 𝑥̇ (𝒆1 +
2𝑥

𝑏
𝒆2) = 20𝒆1 +

𝑥

4
𝒆2 [mm s⁄ ]   . 

Moreover, the acceleration of the particle takes the form 

𝒂 = 𝒗̇ =
2𝑥̇2

𝑏
𝒆2 = 5𝒆2 [mm s2⁄ ]   . 

Next, at the instant when 𝑥 = 60 [mm], the velocity and acceleration of the particle are 

given, respectively, by 

𝒗 = 20𝒆1 + 15𝒆2 [mm s⁄ ]   ,   𝒂 = 5𝒆2 [mm s2⁄ ]   . 
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Problem 2 

The absolute acceleration vector of a particle, expressed in Cartesian coordinates with basis 

vectors 𝒆𝑖, is given by 

𝒂(𝑡) = (4𝑡 − 3)𝒆1 + 𝑡
2𝒆2 [m s2⁄ ]   . 

The particle is initially (𝑡 = 0) at rest at the origin. 

1. Find the velocity of the particle as a function of time. 

2. Find the position of the particle as a function of time. 

Solution: 

The velocity of the particle is given by 

𝒗(𝑡) = ∫ 𝑎(𝜏)𝑑𝜏
𝑡

0

= [(2𝜏2 − 3𝜏)𝒆1 +
𝜏3

3
𝒆2]

0

𝑡

= (2𝑡2 − 3𝑡)𝒆1 +
𝑡3

3
𝒆2   [m s⁄ ]. 

Furthermore, the position of the particle takes the form 

𝒙(𝑡) = ∫ 𝑣(𝜏)𝑑𝜏
𝑡

0

= [(
2𝜏3

3
−
3𝜏2

2
)𝒆1 +

𝜏3

3
𝒆2]

0

𝑡

= (
2𝑡3

3
−
3𝑡2

2
)𝒆1 +

𝑡3

3
𝒆2   [m]. 
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Problem 3 

A particle passes through the points 𝐴: (1,1,1) [m] and 𝐵: (−1,4,7) [m] during its motion 

along a straight line. Let 𝒆𝐵 𝐴⁄  denote the unit vector pointing from 𝐴 to 𝐵, and 𝑠(𝑡) the 

distance traveled by the particle from the point 𝐴. The position vector of the particle is 

given by 

𝒙(𝑠) = 𝒙𝐴 + 𝑠𝒆𝐵 𝐴⁄ = 𝑥𝑖(𝑠)𝒆𝑖 [m]   ,   𝑖 = {1, 2, 3}   , 

where the repeated index 𝑖 implies a summation over 𝑖 (Einstein summation convention). 

1. Find the components 𝑥𝑖(𝑠) of 𝒙(𝑠). 

2. Let 𝐶 denote the closest point to the origin along the straight line. Find the coordinates 

of this point. 

3. Find the distance between the point 𝐶 and the origin. 

4. Find the distance between the points 𝐶 and 𝐵. 

Solution: 

The unit vector 𝒆𝐵 𝐴⁄  can be expressed as 

𝒆𝐵 𝐴⁄ =
𝒙𝐵 𝐴⁄

|𝒙𝐵 𝐴⁄ |
=
−2𝒆1 + 3𝒆2 + 6𝒆3

√49
=
1

7
(−2𝒆1 + 3𝒆2 + 6𝒆3)   . 

Thus, the position vector 𝒙(𝑠) is given by 

𝒙(𝑠) = (1 −
2𝑠

7
) 𝒆1 + (1 +

3𝑠

7
)𝒆2 + (1 +

6𝑠

7
) 𝒆3 [m]   . 

Now, the direction 𝒆𝐶 𝑂⁄  of 𝒙𝐶 𝑂⁄  is perpendicular to the direction 𝒆𝐵 𝐴⁄  of 𝒙(𝑠) provided 

that 𝐶 is the closest point to the origin 𝑂 along 𝒙(𝑠). Denoting the coordinates of 𝐶 by 

(𝑥1, 𝑥2, 𝑥3), it follows that 

𝒆𝐵 𝐴⁄ ⋅ 𝒆𝐶 𝑂⁄ =
1

7
(−2𝒆1 + 3𝒆2 + 6𝒆3) ∙

1

√𝑥1
2 + 𝑥2

2 + 𝑥3
2
(𝑥1𝒆1 + 𝑥2𝒆2 + 𝑥3𝒆3) = 0  ⇒ 
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−2𝑥1 + 3𝑥2 + 6𝑥3 = 0   . 

However, since 𝐶 lies on 𝒙(𝑠) 

𝑥1 = 1 −
2𝑠

7
   ,   𝑥2 = 1 +

3𝑠

7
   ,   𝑥3 = 1 +

6𝑠

7
   . 

Consequently, 

−2(1 −
2𝑠

7
) + 3 (1 +

3𝑠

7
) + 6 (1 +

6𝑠

7
) = 7 +

49𝑠

7
= 0  ⇒    𝑠 = −1 [m]   . 

Moreover, the coordinates of 𝐶 are given by 

𝒙𝐶 =
1

7
(9𝒆1 + 4𝒆2 + 𝒆3) [m]   . 

Next, the distances |𝒙𝐶 𝑂⁄ | and |𝒙𝐶 𝐵⁄ | are given, respectively, by 

|𝒙𝐶 𝑂⁄ | = |𝒙𝐶| = √2 [m]   ,   |𝒙𝐶 𝐵⁄ | = |𝒙𝐶 − 𝒙𝐵| = 8 [m]   . 

 



Dynamics (ME 34010) Homework Solutions       December 2017 

 

 

Mahmoud M. Safadi 6 M.B. Rubin 

Problem 4 

A moving object is influenced by the aerodynamic drag, which is proportional to the square 

of the object’s speed, such that the acceleration of this object is given by 

𝑎 = −𝑐1 − 𝑐2𝑣
2 [m s2⁄ ]   , 

where 𝑐1 [m s2⁄ ] and 𝑐2 [1 m⁄ ] are constant parameters. 

The object starts its motion from the origin with speed 80 [km h⁄ ]. Furthermore, the speeds 

of the object after traveling the distances of {200, 400} [m] are given, respectively, by 

{60, 36} [km h⁄ ]. 

Find the total distance traveled until the object stops. 

Solution: 

Denoting the distance traveled by the object by 𝑥 and using the chain rule of differentiation 

it follows that 

𝑑𝑣

𝑑𝑡
=
𝑑𝑣

𝑑𝑥
𝑥̇ =

𝑑𝑣

𝑑𝑥
𝑣 = 𝑎(𝑣)   ⇒   

𝑣

𝑎(𝑣)
𝑑𝑣 = 𝑑𝑥  ⇒    𝑥 = 𝑥0 +∫

𝑣

𝑎(𝑣)
𝑑𝑣

𝑉

𝑣0

   . 

Now, 

∫
𝑣

𝑎(𝑣)
𝑑𝑣

𝑉

𝑣0

= −∫
𝑣

𝑐1 + 𝑐2𝑣2
𝑑𝑣

𝑉

𝑣0

= −[
1

2𝑐2
ln(𝑐1 + 𝑐2𝑣

2)]
𝑣0

𝑉

= −
1

2𝑐2
ln (

𝑐1 + 𝑐2𝑉
2

𝑐1 + 𝑐2𝑣0
2)   , 

such that 

𝑥 = 𝑥0 −
1

2𝑐2
ln (

𝑐1 + 𝑐2𝑉
2

𝑐1 + 𝑐2𝑣0
2)   . 

Next, with 𝑥0 = 0, 𝑣0 = 80 [km h⁄ ], and 

@𝑥 = 0.2 [km]:  𝑉 = 60 [km h⁄ ]   ,   @𝑥 = 0.4 [km]:  𝑉 = 36 [km h⁄ ]   ,  

it follows that 
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0.2 =
1

2𝑐2
ln (

𝑐1 + 3600𝑐2
𝑐1 + 6400𝑐2

)    ,   0.4 =
1

2𝑐2
ln (

𝑐1 + 1296𝑐2
𝑐1 + 6400𝑐2

)   . 

Solving these two equation for {𝑐1, 𝑐2} yields 

𝑐1 = 4585 [km h⁄
2
]   ,   𝑐2 = 0.4874 [1 km⁄ ]   . 

Hence, the total distance traveled until the object stops is given by substituting the values 

of {𝑐1, 𝑐2} together with {@𝑥 = 0.4 [km]:  𝑉 = 0} into 𝑥, such that 

𝑥 = 0.5324 [km] = 532.4 [m]   . 

  



Dynamics (ME 34010) Homework Solutions       December 2017 

 

 

Mahmoud M. Safadi 8 M.B. Rubin 

Problem Set 2 Solutions 

 

Problem 1 

Figure 2.1 shows a block being hauled to the surface over a curved track by a cable wound 

around a 750 [mm] drum, which turns at the constant clockwise speed of 120 [rpm]. The 

shape of the track is designed so that 𝑦 = 𝑥2 16⁄ , where 𝑥 and 𝑦 are in meters. 

1. Determine the acceleration of the block as a function of 𝑥. 

2. Find the magnitude of the acceleration of the block as it reaches a level of 1 [m] below 

the top. 

 

 

 

 

 

 

 

Figure 2.1 

 

Solution: 

The velocity of this block takes the form 

𝒗 = 𝑠̇𝒆𝑡   , 

where the speed 𝑠̇ of the block is given by 

𝑠̇ =
𝜔𝐷

2
   ,   𝜔 = 120 [rpm] = 120 (

2𝜋

60
) = 4𝜋 [rad s⁄ ]   ⇒ 

𝑠̇ = 2𝜋𝐷 [m s⁄ ]   . 

Moreover, the unit tangent vector can be expressed as 

                                                                                                                                    

  

 

 

                        

𝑥 

𝑦 

𝒆2 

𝒆1 

750 [mm] 
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𝒆𝑡 =
𝑑𝒙

𝑑𝑠
=
𝑑𝒙

𝑑𝑥

𝑑𝑥

𝑑𝑠
   ,   𝒙 = 𝑥𝒆1 + 𝑦𝒆2    ,     

𝑑𝑥

𝑑𝑠
= −

1

√1 + (𝑑𝑦 𝑑𝑥⁄ )2
   ,   𝑦 =

𝑥2

16
   ⇒ 

𝒆𝑡 = −
1

√𝑥2 + 64
(8𝒆1 + 𝑥𝒆2)   . 

Notice that the minus sign in 𝑑𝑥 𝑑𝑠⁄  must be included since each time 𝑠 increases, 𝑥 

decreases (cf. Fig. 1.1). Therefore, 

𝒗 = 𝑠̇𝒆𝑡 = −
2𝜋𝐷

√𝑥2 + 64
(8𝒆1 + 𝑥𝒆2)   . 

Next, the acceleration of the block is given by 

𝒂 = 𝒗̇ =
𝑑𝒗

𝑑𝑥
𝑥̇ =

16𝜋𝐷𝑥̇

(𝑥2 + 64)3 2⁄
(𝑥𝒆1 − 8𝒆2)   ,   𝑥̇ = −

𝑠̇

√1 + (
𝑑𝑦
𝑑𝑥
)
2

= −
2𝜋𝐷

√1 +
𝑥2

64

   ⇒ 

𝒂 =
256𝜋2𝐷2

(𝑥2 + 64)2
(−𝑥𝒆1 + 8𝒆2)   . 

Hence, as the block reaches a level of 1 [m] below the top it follows that the magnitude of 

the acceleration of the block reduces to 

𝑦 = 1 [m]  ⇒   𝑥 = 4 [m]   ;    𝐷 = 0.75 [𝑚]   ⇒  

|𝒂| =
256𝜋2(0.75)2

80√80
≈ 1.986 [m s2⁄ ]   . 
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Problem 2 

The pin 𝑃 shown in Fig. 2.2 is constrained to move in the slotted guides 𝐴 and 𝐵 which 

move at right angles to one another. At the instant represented, 𝐴 has a velocity to the right 

of 0.2 [m s⁄ ] which is decreasing at the rate of 0.75 [m s⁄ ] each second. At the same time, 

𝐵 is moving down with a velocity of 0.15 [m s⁄ ] which is decreasing at the rate of 

0.5 [m s⁄ ] each second. 

1. For this instant, find the radius of curvature 𝜌 of the path followed by 𝑃. 

2.  Is it possible to also determine the time rate of change of 𝜌. 

 

 

 

 

 

 

 

Figure 2.2 

 

Solution: 

The velocity and acceleration of the pin 𝑃 are given, respectively, by 

𝒗 = 0.2𝒆1 − 0.15𝒆2 [m s⁄ ]   ,   𝒂 = 0.75𝒆1 − 0.5𝒆2 [m s2⁄ ]   . 

Moreover, the unit tangent vector to the path followed by 𝑃 takes the form 

𝒆𝑡 =
𝒗

|𝒗|
= 0.8𝒆1 − 0.6𝒆2   . 

Therefore, the normal component of the acceleration of 𝑃 becomes 

 

 

  

 

 

 

 

P 

A 

B 

𝒆1 

𝒆2 
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𝑎𝑛 = |𝒂 − (𝒂 ⋅ 𝒆𝑡)𝒆𝑡| = 0.05 [m s2⁄ ]   . 

Now, using the relation 

𝑎𝑛 =
𝑠̇2

𝜌
=
|𝒗|2

𝜌
   , 

it follows that 

𝜌 =
|𝒗|2

𝑎𝑛
 = 1.25 [m]   . 

Next, recall that the radius of curvature can be expressed in terms of the speed 𝑠̇ of 𝑃 and 

the angular rate 𝛽̇ of the radial line from 𝑃 to the center of curvature in the form 

𝑠̇ = 𝜌𝛽̇   . 

Hence, 

𝑠̈ =  𝜌̇𝛽̇ + 𝜌𝛽̈   ⇒ 

𝜌̇ =
𝑠̈ − 𝜌𝛽̈

𝛽̇
   ;    𝑠̈ = |𝒂 ⋅ 𝒆𝑡|   ,   𝛽̇ =

𝑠̇

𝜌
   . 

This shows that  𝜌̇ cannot be determined until the angular acceleration 𝛽̈ of the radial line 

from 𝑃 to the center of curvature is known. 
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Problem 3 

A particle is constrained to move along a track characterized by the function 𝑦 = 2𝑥3 2⁄ , 

where 𝑥 and 𝑦 are in meters. The distance 𝑠(𝑡) actually traveled by the particle as it moves 

along the track is given by 𝑠(𝑡) = 2𝑡3, where 𝑡 denotes the time in seconds. 

Initially, at the time 𝑡 = 0, 𝑥 = 0. 

At the instant when 𝑡 = 1 [s]: 

1. Find the radius of curvature of the particle path. 

2. Find the magnitude of the acceleration of the particle. 

Solution: 

First, recall that 

𝑠̇ = 𝑥̇√1 + (
𝑑𝑦

𝑑𝑥
)
2

   . 

Hence, 

6𝑡2 =
𝑑𝑥

𝑑𝑡
√1 + 9𝑥   ⇒    ∫ √1 + 9𝑥 𝑑𝑥

𝑥(1)

0

= ∫ 6𝑡2𝑑𝑡
1

0

  ⇒    
2

27
[1 + 9𝑥(1)]3 2⁄ = 2  ⇒ 

𝑥(1) =
8

9
 [𝑚]   . 

Next, the position, velocity, and acceleration of the particle at 𝑡 = 1[s] are given, 

respectively, by 

𝒙 = 𝑥𝒆1 + 2𝑥
3 2⁄ 𝒆2   ,   𝒗 =  𝑥̇(𝒆1 + 3√𝑥𝒆2)   ,   𝒂 = 𝑥̈𝒆1 + 3(𝑥̈√𝑥 +

𝑥̇2

2√𝑥
)𝒆2   , 

where, 

𝑥̇ =
𝑠̇

√1 + 9𝑥  
=

6𝑡2

√1 + 9𝑥  
   ,   𝑥̈ =

12𝑡

(1 + 9𝑥)1 2⁄   
−

27𝑥̇

(1 + 9𝑥)2
  ⇒ 
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𝑥̇(1) = 2 [m s⁄ ]   ,   𝑥̈(1) = 2 [m s⁄
2
]   . 

Therefore, the values of 𝒗 and 𝒂 at 𝑡 = 1 [s] reduce, respectively, to 

𝒗(1) = 2𝒆1 + 4√2 𝒆2 [m s⁄ ]   ,   𝒂(1) = 2𝒆1 +
17

√2
𝒆2 [m s⁄

2
]   . 

Next, the normal component of the acceleration of the particle at 𝑡 = 1 [s] takes the form 

𝑎𝑛(1) = |𝒂 − (𝒂 ⋅ 𝒆𝑡)𝒆𝑡|𝑡=1 [s]   ,   𝒆𝑡(1) =
𝒗(1)

|𝒗(1)|
=
1

3
𝒆1 +

2√2

3
𝒆2   ⇒ 

𝑎𝑛(1) =
3√2

2
 [m s⁄

2
]   ,  

Consequently, the radius of curvature of the particle path is given by 

𝜌(1) =
|𝒗(1)|2

𝑎𝑛(1)
 = 12√2 [m] ≈ 17 [m]   . 
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Problem 4 

A particle moves in the 𝑥-𝑦 plane at constant speed 𝑏 along a track characterized by the 

function 𝑦 = 𝑦(𝑥), where 𝑥 and 𝑦 are in meters. Also, let 𝑠 denote the actual distance 

traveled by the particle along the track. 

1. Assuming that 𝑑𝑥 𝑑𝑠⁄ > 0, show that 

𝑑𝑠

𝑑𝑥
= √1 + (

𝑑𝑦

𝑑𝑥
)
2

   . 

2. Use the chain rule of differentiation to determine the velocity of the particle as a 

function of 𝑥. 

3. Use the chain rule of differentiation to determine the acceleration of the particle as a 

function of 𝑥. 

4. Show that the radius of curvature at any point along the particle path is given by 

𝜌 =

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

3 2⁄

𝑑2𝑦
𝑑𝑥2

   . 

5. Determine the unit normal vector 𝒆𝑛 at any point along the particle path as a function 

of 𝑥. 

Solution: 

Recall that the unit tangent vector 𝒆𝑡 is defined by 

𝒆𝑡 =
𝑑𝒙

𝑑𝑠
   ;    𝒆𝑡 ⋅ 𝒆𝑡 = 1   ,   𝒙 = 𝑥𝒆1 + 𝑦𝒆2   , 

so that 

𝑑𝒙

𝑑𝑠
⋅
𝑑𝒙

𝑑𝑠
= (

𝑑𝑥

𝑑𝑠
)
2

+ (
𝑑𝑦

𝑑𝑠
)
2

= 1  ⇒    (𝑑𝑥)2 [1 + (
𝑑𝑦

𝑑𝑥
)
2

] = (𝑑𝑠)2   ⇒ 
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𝑑𝑠

𝑑𝑥
= [1 + (

𝑑𝑦

𝑑𝑥
)
2

]

1 2⁄

   . 

Thus, the velocity of the particle is given by 

𝒗 = 𝑠̇𝒆𝑡   ,   𝒆𝑡 =
𝑑𝒙

𝑑𝑠
=
𝑑𝒙

𝑑𝑥
 
𝑑𝑥

𝑑𝑠
= [1 + (

𝑑𝑦

𝑑𝑥
)
2

]

−1 2⁄

(𝒆1 +
𝑑𝑦

𝑑𝑥
𝒆2)   ⇒ 

𝒗 = 𝑏 [1 + (
𝑑𝑦

𝑑𝑥
)
2

]

−1 2⁄

(𝒆1 +
𝑑𝑦

𝑑𝑥
𝒆2) 

Next, recall that the derivative of 𝒆𝑡 with respect to 𝑠 is given by 

𝑑𝒆𝑡
𝑑𝑠

=
1

𝜌
𝒆𝑛   ⇒    𝜌 =

1

|
𝑑𝒆𝑡
𝑑𝑠
|
=

1

|
𝑑𝒆𝑡
𝑑𝑥

 
𝑑𝑥
𝑑𝑠
|
=

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

1 2⁄

|
𝑑𝒆𝑡
𝑑𝑥
|

   , 

where, 

𝑑𝒆𝑡
𝑑𝑥

= − [1 + (
𝑑𝑦

𝑑𝑥
)
2

]

−3 2⁄
𝑑𝑦

𝑑𝑥
 
𝑑2𝑦

𝑑𝑥2
(𝒆1 +

𝑑𝑦

𝑑𝑥
𝒆2) + [1 + (

𝑑𝑦

𝑑𝑥
)
2

]

−1 2⁄
𝑑2𝑦

𝑑𝑥2
𝒆2

= [1 + (
𝑑𝑦

𝑑𝑥
)
2

]

−3 2⁄
𝑑2𝑦

𝑑𝑥2
(−

𝑑𝑦

𝑑𝑥
 𝒆1 + 𝒆2)   , 

Consequently, 

𝜌 =

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

1 2⁄

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

−3 2⁄
𝑑2𝑦
𝑑𝑥2

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

1 2⁄
=

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

3 2⁄

𝑑2𝑦
𝑑𝑥2

   . 

Now, the acceleration of the particle takes the form 

𝒂 = 𝑠̈𝒆𝑡 +
𝑠̇2

𝜌
𝒆𝑛 =

𝑏2
𝑑2𝑦
𝑑𝑥2

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

3 2⁄
 𝒆𝑛   , 
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where, 

𝒆𝑛 = 𝜌
𝑑𝒆𝑡
𝑑𝑠

= 𝜌
𝑑𝒆𝑡
𝑑𝑥

𝑑𝑥

𝑑𝑠
=

1

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

1 2⁄
(−

𝑑𝑦

𝑑𝑥
 𝒆1 + 𝒆2)   , 

such that 

𝒂 =
𝑏2
𝑑2𝑦
𝑑𝑥2

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

2 (−
𝑑𝑦

𝑑𝑥
 𝒆1 + 𝒆2)   . 
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Problem Set 3 Solutions 

 

Problem 1 

A particle moving along a curve in space has coordinates in millimeters which vary with 

time 𝑡 in seconds according to 

𝑥 = 60 cos(𝜔𝑡)    ,   𝑦 = 40 sin(𝜔𝑡)    ,   𝑧 = 30𝑡2   , 

where 𝜔 = 2 [rad s⁄ ]. 

1. Plot the path of the particle over the time interval 0 ≤ 𝑡 ≤ 20 [s]. 

At the instant when 𝑡 = 4 [s]: 

2. Determine the unit normal and unit tangent vectors of the particle path. 

3. Find the velocity of the particle. 

4. Find the acceleration of the particle. 

5. Find the radius of curvature of the particle path. 

Solution: 

The path of the particle is shown in Fig. 3.1. Now, the position of the particle is given by 

𝒙 = 60 cos(𝜔𝑡) 𝒆1 + 40 sin(𝜔𝑡) 𝒆2 + 30𝑡
2𝒆3   . 

Hence, the unit tangent vector to the particle path can be expressed as 

𝒆𝑡 =
𝑑𝒙 𝑑𝑡⁄

|𝑑𝒙 𝑑𝑡⁄ |
=
−3𝜔 sin(𝜔𝑡) 𝒆1 + 2𝜔 cos(𝜔𝑡) 𝒆2 + 3𝑡𝒆3

√9𝑡2 + 𝜔2[9 − 5 cos(𝜔𝑡)] 
   , 

such that 

𝒆𝑡(4) = −0.443𝒆1 − 0.0434𝒆2 + 0.955𝒆3   . 
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                        Fig. 3.1  

Also, the unit normal to the particle path is given by 

𝒆𝑛 =
𝑑𝒆𝑡 𝑑𝑡⁄

|𝑑𝒆𝑡 𝑑𝑡⁄ |
   . 

However, it is more convenient to calculate 𝒆𝑛 using the acceleration of the particle as will 

be shown next. 

The velocity of the particle takes the form 

𝒗 = −60𝜔 sin(𝜔𝑡) 𝒆1 + 40𝜔 cos(𝜔𝑡) 𝒆2 + 60𝑡𝒆3   , 

such that 

𝒗(4) = −118.7𝒆1 − 11.64𝒆2 + 240𝒆3 [mm s⁄ ]   . 

Furthermore, the acceleration of the particle becomes 

𝒂 = −60𝜔2 cos(𝜔𝑡) 𝒆1 − 40𝜔
2 sin(𝜔𝑡) 𝒆2 + 60𝒆3   , 

such that 

𝒂(4) = 34.92𝒆1 − 158.3𝒆2 + 60𝒆3 [mm s⁄
2
]   . 
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Next, the normal component of the total acceleration at the time 𝑡 = 4 [s] is given by 

𝒂𝑛(4) = [𝒂 − (𝒂 ⋅ 𝒆𝑡)𝒆𝑡]𝑡=4 [s] = 95.91𝒆1 − 156.3𝒆2 + 19.58𝒆3 [mm s⁄
2
]   . 

Thus, the unit normal vector to the particle path at the time 𝑡 = 4 [s] reduces to 

𝒆𝑛 =
𝒂𝑛(4)

|𝒂𝑛(4)|
= 0.329𝒆1 − 0.937𝒆2 + 0.117𝒆3   . 

Also, the radius of curvature of the particle path at the time 𝑡 = 4 [s] takes the form 

𝜌 =
|𝒗(4)|2

𝑎𝑛(4)
= 430.5 [mm] . 
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Problem 2 

Figure 3.2 shows a particle moving along a track inside a vertical cylinder of radius 2 [m]. 

At the instant represented, the particle passes through the point 𝐴 with an acceleration of 

10 [m s2⁄ ] at an angle of 30o with respect to the horizontal plane, and it increases its speed 

along the track at the rate of 8 [m s⁄ ] each second. 

For this instant: 

1. Determine the velocity of the particle in terms of cylindrical-polar coordinates. 

2. Find the angular speed 𝜃̇ of the particle. 

3. Find the angular acceleration 𝜃̈ of the particle. 

4. Find the vertical component of the acceleration of the particle. 

 

 

                                                              Figure 3.2 

 

  

𝐴 30o 
 𝒆𝜃 

𝒆3 

𝒆𝑟 

𝒆𝑡 
𝑥3 

𝑠 

𝑟𝜃 𝒆𝜃 

𝒆3 
𝒆𝑡 

30o 
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Solution: 

The total |𝒂|, tangential |𝒂𝑡| and normal |𝒂𝑛| accelerations of the particle at the instant 

represented in Fig. 3.2 are given, respectively, by 

|𝒂| = 10 [m s⁄
2
]   ,   |𝒂𝑡| = 𝑠̈ = 8 [m s⁄

2
]   ,   |𝒂𝑛| =

𝑠̇2

𝜌
= √|𝒂|2 − |𝒂𝑡|2 = 6 [m s⁄

2
]   . 

Moreover, the unit tangent vector to the particle path takes the form 

𝒆𝑡 = cos(30𝑜) 𝒆𝜃 + sin(30
𝑜) 𝒆3 =

√3

2
𝒆𝜃 +

1

2
𝒆3   , 

so that the corresponding unit normal vector reduces to 

𝒆𝑛 ⋅ 𝒆𝑡 = 𝒆𝑛 ⋅ 𝒆3 = 0  ⇒    𝒆𝑛 = −𝒆𝑟   . 

Notice that the minus sign is taken since 𝒆𝑛 points toward the center of curvature. 

Thus, 

𝒂 = |𝒂𝑡|𝒆𝑡 + |𝒂𝑛|𝒆𝑛 = −6𝒆𝑟 + 4√3 𝒆𝜃 + 4𝒆3   . 

Now, recall that the acceleration can be expressed in terms of cylindrical-polar coordinates 

in the form 

𝒂 = (𝑟̈ − 𝑟𝜃̇2)𝒆𝑟 + (𝑟𝜃̈ + 2𝑟̇𝜃̇)𝒆𝜃 + 𝑥̈3𝒆3   ,   𝑟 = 2 [𝑚]   ,   𝑟̇ = 0   ,   𝑟̈ = 0   , 

such that 

−2𝜃̇2 = −6  ⇒    𝜃̇ = √3 [rad s⁄ ]   ,   2𝜃̈ = 4√3   ⇒    𝜃̈ = 2√3 [rad s2⁄ ]   , 

𝑥̈3 = 4 [m s2⁄ ]   . 

Next, using Fig. 1.1 it follows that 

𝑠 =
𝑟𝜃

cos(30o)
  ⇒    𝑠̇ =

𝑟𝜃̇

cos(30o)
=
2√3

√3 2⁄
= 4 [m s⁄ ]   . 

Consequently, 

𝒗 = 𝑠̇𝒆𝑡 = 2√3 𝒆𝜃 + 2𝒆3 [m s⁄ ]   . 
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Problem 3 

The cam shown in Fig. 3.3 is designed so that the center of the roller 𝐴 which follows the 

contour moves on a limaçon defined by 𝑟 = 𝑏 − 𝑐 cos(𝛽), where 𝑏 > 𝑐 and 𝛽 is the angle 

between the line 𝑂𝐵 fixed to the limaçon and the slotted arm. The base vectors {𝒆𝑟 , 𝒆𝜃} of 

the polar coordinate system are fixed to the slotted bar. Moreover, take 𝑏 = 100 [mm] and 

𝑐 = 75 [mm]. 

At the instant when 𝛽 = 30o: 

1. Determine the total acceleration of the roller 𝐴 if the slotted arm revolves with a 

constant counterclockwise angular speed of 40 [rpm] while the limaçon stays fixed. 

2. Determine the total acceleration of the roller 𝐴 if the slotted arm stays fixed while the 

limaçon revolves with a constant clockwise angular speed of 30 [rpm]. 

3. Determine the total acceleration of the roller 𝐴 if the slotted arm revolves with a 

constant counterclockwise angular speed of 40 [rpm] while the limaçon revolves with 

a constant clockwise angular speed of 30 [rpm]. 

 

     Figure 3.3 

𝒆𝑟 

𝒆1 

𝒆2 

𝒆𝜃 

30 [rpm] 𝛽 

𝐴 

𝑂 

40 [rpm] 

𝜃 

𝐵 𝒆1
′  

𝒆2
′  

𝜙 

𝜙 
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Solution: 

Using the geometry in Fig. 3.3, the angle 𝜙 is related to the angles {𝜃, 𝛽} by 

𝜙 = 𝛽 − 𝜃   , 

such that 

𝛽̇ = 𝜃̇ + 𝜙̇   . 

Next, using this expression, the position, velocity and acceleration of the roller 𝐴 expressed 

in terms of polar coordinates are given, respectively, by 

𝒙 = [𝑏 − 𝑐 cos(𝛽)]𝒆𝑟   , 

𝒗 = 𝑐(𝜙̇ + 𝜃̇) sin(𝛽) 𝒆𝑟 + [𝑏 − 𝑐 cos(𝛽)]𝜃̇𝒆𝜃   , 

𝒂 = [𝑐 {(𝜙̇ + 𝜃̇)
2
+ 𝜃̇2} cos(𝛽) − 𝑏𝜃̇2] 𝒆𝑟 + 2𝑐(𝜙̇ + 𝜃̇)𝜃̇ sin(𝛽) 𝒆𝜃   . 

Case 1: 

𝜃̇ = 40 [rpm] =
4𝜋

3
 [rad 𝑠⁄ ]   ,   𝜙̇ = 0   ,   𝛽 = 30o   ⇒ 

𝒂 = 0.525 𝒆𝑟 + 1.316 𝒆𝜃 [m s⁄
2
]   . 

Case 2: 

𝜃̇ = 0   ,   𝜙̇ = −30 [rpm] = −𝜋 [rad 𝑠⁄ ]   ,   𝛽 = 30o   ⇒ 

𝒂 = 0.641 𝒆𝑟 [m s⁄
2
]   . 

Case 3: 

𝜃̇ =
4𝜋

3
 [rad 𝑠⁄ ]   ,   𝜙̇ = −𝜋 [rad 𝑠⁄ ]   ,   𝛽 = 30o   ⇒ 

𝒂 = −0.544 𝒆𝑟 + 0.329 𝒆𝜃 [m s⁄
2
]   . 
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Problem 4 

The hollow tube shown in Fig. 3.4 is inclined at an angle 𝛼 to the vertical axis and it rotates 

along a circular path of radius 𝑅 with a constant angular speed about the vertical axis. A 

particle 𝑃 moves inside the tube under the control of an inextensible string which is held 

fixed at the point 𝐷. Moreover, the coordinate system 𝒆𝑖
′ is fixed to the tube, the distance 

traveled by the particle as it moves along the tube from the fixed point 𝐵 is denoted by 𝑠, 

and the angle between the radial lines 𝑂𝐶 and 𝑂𝐷 is denoted by 𝜙. 

Initially, at the time 𝑡 = 0, 𝜙 = 0 and 𝑠 = 0. 

 

   Figure 3.4 

 

1. Determine the velocity of the particle 𝑃. 

2. Determine the acceleration of the particle 𝑃. 

3. Determine the velocity of the particle 𝑃 along the tube. 

4. Determine the acceleration of the particle 𝑃 along the tube. 

  

𝒆3 𝒆1
′  

𝒆3
′  

𝛼 

𝜙 

𝑂 
𝐷 

𝐶 

𝑃 

𝑠 

𝐴 

𝐵 

𝑅 
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Solution: 

The system 𝒆𝑖
′ is defined by 

𝒆̇𝑖
′ = 𝝎 × 𝒆̇𝑖    ,   𝝎 = −𝜃̇𝒆3   ,   𝒆3 = cos(𝛼) 𝒆1

′ + sin(𝛼) 𝒆3
′    . 

The angular speeds 𝜃̇ and 𝜙̇ can be related using the velocity 𝒗𝐶 of the upper end of the 

hollow tube, such that 

𝒙𝐶 𝐵⁄ = 𝐿𝒆1
′   ⇒   𝒗𝐶 = −𝜃̇[cos(𝛼) 𝒆1

′ + sin(𝛼) 𝒆3
′ ] × 𝐿𝒆1

′ = −𝜃̇𝐿 sin(𝛼) 𝒆2
′    , 

𝒙𝐶 𝑂⁄ = 𝑅[sin(𝜙) 𝒆1 + cos(𝜙) 𝒆2]   ⇒   𝒗𝐶 = 𝑅𝜙̇[cos(𝜙) 𝒆1 − sin(𝜙) 𝒆2]   , 

where 𝐿 denotes the length of the tube, the unit vector 𝒆2 points rightward and the unit 

vector 𝒆1 is defined by 𝒆1 = 𝒆2 × 𝒆3. Therefore, 

𝜃̇𝐿 sin(𝛼) = 𝑅𝜙̇   ⇒    𝜃̇ =
𝑅

𝐿 sin(𝛼)
𝜙̇   . 

Now, using the geometry in Fig. 3.4 at the time 𝑡 = 0, i.e. when the upper end 𝐶 of the 

hollow tube coincides with the fixed point 𝐷, it follows that 

sin(𝛼) =
𝑅

𝐿
   . 

Hence, 

𝜃̇ = 𝜙̇   . 

Next, the velocity of the particle 𝑃 is given by 

𝒙𝑃 𝐵⁄ = 𝒙𝑃 = 𝑠𝒆1
′   ⇒    𝒗𝑝 =

𝛿𝒙𝑃
𝛿𝑡

+ 𝝎 × 𝒙𝑃 = 𝑠̇𝒆1
′ − 𝜙̇𝑠 sin(𝛼) 𝒆2

′    . 

However, 

𝑠 = |𝒙𝐶 𝐷⁄ | = 2𝑅 sin (
𝜙

2
)   ⇒    𝑠̇ = 𝑅𝜙̇ cos (

𝜙

2
)   , 

so that 
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𝒗𝑝 = 𝑅𝜙̇ cos (
𝜙

2
) 𝒆1

′ − 2𝑅𝜙̇ sin(𝛼) sin (
𝜙

2
) 𝒆2

′    . 

Furthermore, using the Table 3.1, 

 𝒆1
′  𝒆2

′  𝒆3
′  

𝝎 −𝜙̇ cos(𝛼) 0 −𝜙̇ sin(𝛼) 

𝒗𝑃 𝑅𝜙̇ cos (
𝜙

2
) −2𝑅𝜙̇ sin(𝛼) sin (

𝜙

2
) 0 

𝛿𝒗𝑃 𝛿𝑡⁄  −
𝑅𝜙̇2

2
sin (

𝜙

2
) −𝑅𝜙̇2 sin(𝛼) cos (

𝜙

2
) 0 

𝝎× 𝒗𝑃 −2𝑅𝜙̇2 sin2(𝛼) sin (
𝜙

2
) −𝑅𝜙̇2 sin(𝛼) cos (

𝜙

2
) 𝑅𝜙̇2 sin(2𝛼) sin (

𝜙

2
) 

 

Table 3.1 

the acceleration of the particle 𝑃, 

𝒂𝑃 =
𝛿𝒗𝑃
𝛿𝑡

+ 𝝎 × 𝒗𝑃   , 

takes the form 

𝒂𝑃 = −𝑅𝜙̇2 sin (
𝜙

2
) [
1

2
+ 2 sin2(𝛼)] 𝒆1

′ − 2𝑅𝜙̇2 sin(𝛼) cos (
𝜙

2
) 𝒆2

′

+ 𝑅𝜙̇2 sin(2𝛼) sin (
𝜙

2
) 𝒆3

′    .  

Next, the velocity of the particle 𝑃 along the tube is given by 

𝛿

𝛿𝑡
[(𝒙𝑃 ⋅ 𝒆𝑖

′)𝒆𝑖
′] =

𝛿

𝛿𝑡
(𝑠𝒆1

′ ) = 𝑠̇𝒆1
′ = 𝑅𝜙̇ cos (

𝜙

2
) 𝒆1

′    . 

Moreover, the acceleration of the particle 𝑃 along the tube takes the form 

𝛿2

𝛿𝑡2
[(𝒙𝑃 ⋅ 𝒆𝑖

′)𝒆𝑖
′] =

𝛿

𝛿𝑡
[𝑅𝜙̇ cos (

𝜙

2
) 𝒆1

′ ] = −
𝑅𝜙̇2

2
sin (

𝜙

2
) 𝒆1

′    . 
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Problem Set 4 Solutions 

 

Problem 1 

The two ends 𝐶 and 𝐷 of the bar 𝐶𝐷 shown in Fig. 4.1 are confined to move in the rotating 

slots of the right-angled frame 𝐴𝐵𝐹, which is hinged at 𝐵 to a car that moves to the right 

with a constant speed 𝑣1. The angular speed of the frame about 𝐵 is 𝜃̇ and is constant for 

the interval of motion concerned. Moreover, the whole system is accelerated upward with 

a constant acceleration 𝑎0. 

Initially, at the time 𝑡 = 0, 𝛾 = 𝜃 = 0o and the acceleration of the system is zero. 

1. Determine the velocity of the midpoint 𝐸 of the bar 𝐶𝐷. 

2. Determine the velocity of 𝐸 relative 𝐶. 

3. Determine the acceleration of 𝐸. 

 

Figure 4.1 
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′  
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′  
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𝛾 

𝜃 

𝐿 𝐴 
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Solution: 

The system 𝒆𝑖
′ rotates with the angular velocity 𝝎, such that 

𝒆̇𝑖
′ = 𝝎× 𝒆𝑖

′   ,   𝝎 = 𝜃̇𝒆3   . 

Now, the position of 𝐸 relative to 𝐵 is given by 

𝒙𝐸 𝐵⁄ = 𝒙𝐶 𝐵⁄ + 𝒙𝐸 𝐶⁄ = 𝐿 cos(𝛾) 𝒆1
′ +

𝐿

2
[− cos(𝛾) 𝒆1

′ + sin(𝛾) 𝒆2
′ ]

=
𝐿

2
[cos(𝛾) 𝒆1

′ + sin(𝛾) 𝒆2
′ ]   , 

so that the velocity of 𝐸 relative to 𝐵 becomes 

𝒗𝐸 𝐵⁄ =
𝛿𝒙𝐸 𝐵⁄

𝛿𝑡
+ 𝝎 × 𝒙𝐸 𝐵⁄ =

(𝛾̇ + 𝜃̇)𝐿

2
[− sin(𝛾) 𝒆1

′ + cos(𝛾) 𝒆2
′ ]   . 

Moreover, the acceleration and velocity of 𝐵 take the forms 

𝒂𝐵 = 𝑎0𝒆2   ⇒    𝒗𝐵 = 𝒗𝐵(0) + 𝑎0𝑡𝒆2 = 𝑣1𝒆1 + 𝑎0𝑡𝒆2  . 

Thus, the velocity of 𝐸 reduces to 

𝒗𝐸 = 𝒗𝐵 + 𝒗𝐸 𝐵⁄ = 𝑣1𝒆1 + 𝑎0𝑡𝒆2 +
(𝛾̇ + 𝜃̇)𝐿

2
[− sin(𝛾) 𝒆1

′ + cos(𝛾) 𝒆2
′ ]   . 

However, 

𝒆1
′ = cos(𝜃) 𝒆1 + sin(𝜃) 𝒆2   ,   𝒆2

′ = −sin(𝜃) 𝒆1 + cos(𝜃) 𝒆2   , 

such that 

𝒗𝐸 = [𝑣1 −
(𝛾̇ + 𝜃̇)𝐿

2
{sin(𝛾) cos(𝜃) + cos(𝛾) sin(𝜃)}] 𝒆1

+ [𝑎0𝑡 +
(𝛾̇ + 𝜃̇)𝐿

2
{cos(𝛾) cos(𝜃) − sin(𝛾) sin(𝜃)}] 𝒆2   . 

Equivalently, 

𝒗𝐸 = [𝑣1 −
(𝛾̇ + 𝜃̇)𝐿

2
sin(𝛾 + 𝜃)] 𝒆1 + [𝑎0𝑡 +

(𝛾̇ + 𝜃̇)𝐿

2
cos(𝛾 + 𝜃)] 𝒆2   . 
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Furthermore, the acceleration 𝐸 takes the form 

𝒂𝐸 = 𝒗̇𝐸 = [−
(𝛾̇ + 𝜃̇)

2
𝐿

2
cos(𝛾 + 𝜃)] 𝒆1 + [𝑎0 −

(𝛾̇ + 𝜃̇)
2
𝐿

2
sin(𝛾 + 𝜃)] 𝒆2 

Next, the position and velocity of  𝐶 relative to 𝐵 are given by 

𝒙𝐶/𝐵 = 𝐿 cos(𝛾) 𝒆1
′   ⇒    𝒗𝐶/𝐵 =

𝛿𝒙𝐶/𝐵

𝛿𝑡
+ 𝝎 × 𝒙𝐶/𝐵 = −𝛾̇𝐿 sin(𝛾) 𝒆1

′ + 𝜃̇𝐿 cos(𝛾) 𝒆2
′    . 

Hence, the velocity of 𝐶 reduces to 

𝒗𝐶 = 𝒗𝐵 + 𝒗𝐶/𝐵 = 𝑣1𝒆1 + 𝑎0𝑡𝒆2  − 𝛾̇𝐿 sin(𝛾) 𝒆1
′ + 𝜃̇𝐿 cos(𝛾) 𝒆2

′    . 

Using the transformation relations given previously, it follows that 

𝒗𝐶 = [𝑣1 − 𝛾̇𝐿 sin(𝛾) cos(𝜃) − 𝜃̇𝐿 cos(𝛾) sin(𝜃)]𝒆1

+ [𝑎0𝑡 − 𝛾̇𝐿 sin(𝛾) sin(𝜃) + 𝜃̇𝐿 cos(𝛾) cos(𝜃)]𝒆2   . 

Consequently, the velocity of 𝐸 relative to 𝐶 becomes 

𝒗𝐸 𝐶⁄ = 𝐿 [−
(𝛾̇ + 𝜃̇)

2
sin(𝛾 + 𝜃) + 𝛾̇ sin(𝛾) cos(𝜃) + 𝜃̇ cos(𝛾) sin(𝜃)] 𝒆1

+ 𝐿 [
(𝛾̇ + 𝜃̇)

2
cos(𝛾 + 𝜃) + 𝛾̇ sin(𝛾) sin(𝜃) − 𝜃̇ cos(𝛾) cos(𝜃)] 𝒆2   . 
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Problem 2 

A car at latitude 𝜆 on the rotating earth drives straight north with a constant speed 𝑣, as 

shown in Fig. 4.2. The coordinate system 𝒆𝑖
′′ is fixed to the earth which rotates about its 

axis 𝒆2
′′ once every 24 hours, and the coordinate system 𝒆𝑖

′ traces the motion of the car on 

the surface of the earth. 

Determine the acceleration of the car. 

 

     Figure 4.2 

 

Solution: 

The system {𝒆𝑖
′′, 𝒆𝑖

′} rotate with the angular velocities {𝛀,𝝎}, respectively, such that 

𝒆̇𝑖
′′ = 𝛀 × 𝒆𝑖

′′   ,   𝛀 = Ω𝒆2
′′   ;    𝒆̇𝑖

′ = 𝝎× 𝒆𝑖
′   ,   𝝎 = 𝛀 + λ̇𝒆2

′ = Ω𝒆2
′′ + λ̇𝒆2

′    . 

Also, these coordinate systems are related by 

𝒆1
′ = cos(𝜆) 𝒆1

′′ + sin(𝜆) 𝒆2
′′   ,   𝒆2

′ = −sin(𝜆) 𝒆1
′′ + cos(𝜆) 𝒆2

′′   ,   𝒆3
′ = 𝒆3

′′   . 

Next, the position 𝒙 of the car relative to the fixed origin 𝑂 should be expressed in terms 

of the coordinate system 𝒆𝑖
′′ since the velocity of the car relative to the earth is known and 

given by 

𝒆1
′  𝒆2

′  

𝒆1
′′ 

𝒆2
′′ 

𝜆 

𝒆3
′  

𝑣 

Ω 

𝑂 



Dynamics (ME 34010) Homework Solutions       December 2017 

 

 

Mahmoud M. Safadi 31 M.B. Rubin 

𝛿[(𝒙 ⋅ 𝒆𝑖
′′)𝒆𝑖

′′]

𝛿𝑡
= 𝑣𝒆2

′ = 𝑣[− sin(𝜆) 𝒆1
′′ + cos(𝜆) 𝒆2

′′]   . 

To this end, denoting the radius of the earth by 𝑅⊕ it follows that 

𝒙 = 𝑅⊕𝒆1
′ = 𝑅⊕[cos(𝜆) 𝒆1

′′ + sin(𝜆) 𝒆2
′′]   ⇒ 

𝛿[(𝒙 ⋅ 𝒆𝑖
′′)𝒆𝑖

′′]

𝛿𝑡
= 𝜆̇𝑅⊕[− sin(𝜆) 𝒆1

′′ + cos(𝜆) 𝒆2
′′]   . 

Therefore, 

𝜆̇ =
𝑣

𝑅⊕

   . 

Now, using Table 4.1, 

 𝒆1
′′ 𝒆2

′′ 𝒆3
′′ 

𝛀 0 Ω 0 

𝒙 𝑅⊕ cos(𝜆) 𝑅⊕ sin(𝜆) 0 

𝛿𝒙 𝛿𝑡⁄  −𝑣 sin(𝜆) 𝑣 cos(𝜆) 0 

𝛀 × 𝒙 0 0 −Ω𝑅⊕ cos(𝜆) 

𝒗 −𝑣 sin(𝜆) 𝑣 cos(𝜆) −Ω𝑅⊕ cos(𝜆) 

𝛿𝒗 𝛿𝑡⁄  −
𝑣2

𝑅⊕

cos(𝜆) −
𝑣2

𝑅⊕

sin(𝜆) Ω𝑣 sin(𝜆) 

𝛀 × 𝒗 −Ω2𝑅⊕ cos(𝜆) 0 Ω𝑣 sin(𝜆) 

𝒂 −(
𝑣2

𝑅⊕

+ Ω2) cos(𝜆) −
𝑣2

𝑅⊕

sin(𝜆) 2Ω𝑣 sin(𝜆) 

 

Table 4.1 

the velocity and acceleration of the car are given, respectively, by 

𝒗 = 𝑣[− sin(𝜆) 𝒆1
′′ + cos(𝜆) 𝒆2

′′] − Ω𝑅⊕ cos(𝜆) 𝒆3
′′   , 

𝒂 = −(
𝑣2

𝑅⊕

+Ω2) cos(𝜆) 𝒆1
′′ −

𝑣2

𝑅⊕

sin(𝜆) 𝒆2
′′ + 2Ω𝑣 sin(𝜆) 𝒆3

′′   . 
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Problem 3 

Consider the assembly shown in Fig. 4.3. The motor turns the disk at the constant speed 𝜙̇. 

The motor is also swiveling about the horizontal axis that passes through the point 𝐵 at the 

constant speed 𝜃̇. Simultaneously, the assembly is rotating about the vertical axis 𝒆2
′′ at the 

constant rate 𝜓̇. The system 𝒆𝑖
′ is fixed to the shaft 𝐵𝐶, such that {𝒆1

′ , 𝒆2
′ , 𝒆2

′′} are always in 

the same plane. 

1. Determine the angular acceleration of the disk. 

2. Determine the velocity and acceleration of the center 𝐶 of the disk. 

Next, consider the point 𝑃 which is located at a distance 𝑅 from the center 𝐶 of the disk. 

3. Determine the velocity and acceleration of 𝑃 relative to 𝐶. 

4. Detertmine the velocity and acceleration of 𝑃. 

 

 

   Figure 4.3 

 

 

 

𝒆1
′  

𝒆2
′  

𝒆2
′  

𝒆3
′  

𝜙 𝑃 

𝐴 

𝑏 

𝐵 
𝜃 

𝑑 

𝐶 

𝑃 

𝜙̇ 
𝜓̇ 

𝒆2
′′ 

𝑅 
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Solution: 

The system {𝒆𝑖
′′, 𝒆𝑖

′} rotate with the angular velocities {𝛀, 𝚲}, respectively, such that 

𝒆̇𝑖
′′ = 𝛀× 𝒆𝑖

′′   ,   𝛀 = 𝜓̇𝒆2
′′   ;    𝒆̇𝑖

′ = 𝚲 × 𝒆𝑖
′    ,   𝚲 = 𝛀 + 𝜃̇𝒆3

′ = 𝜓̇𝒆2
′′ + 𝜃̇𝒆3

′    . 

Also, these coordinate systems are related by (see Fig. 4.4) 

𝒆1
′ = cos(𝜃) 𝒆1

′′ + sin(𝜃) 𝒆2
′′   ,   𝒆2

′ = −sin(𝜃) 𝒆1
′′ + cos(𝜃) 𝒆2

′′   ,   𝒆3
′ = 𝒆3

′′   . 

 

Therefore, the angular velocity 𝝎 of the disk is given by 

𝝎 = 𝜙̇𝒆1
′ + 𝚲 = 𝜙̇𝒆1

′ + 𝜓̇𝒆2
′′ + 𝜃̇𝒆3

′ = 𝜙̇ cos(𝜃) 𝒆1
′′ + [𝜙̇ sin(𝜃) + 𝜓̇]𝒆2

′′ + 𝜃̇𝒆3
′′   . 

Moreover, using Table 4.2, 

 𝒆1
′′ 𝒆2

′′ 𝒆3
′′ 

𝛀 0 𝜓̇ 0 

𝝎 𝜙̇ cos(𝜃) 𝜙̇ sin(𝜃) + 𝜓̇ 𝜃̇ 

𝛿𝝎 𝛿𝑡⁄  −𝜙̇𝜃̇ sin(𝜃) 𝜙̇𝜃̇ cos(𝜃) 0 

𝛀 ×𝝎 𝜓̇𝜃̇ 0 −𝜓̇𝜃̇ cos(𝜃) 

𝝎̇ 𝜃̇[𝜓̇ − 𝜙̇ sin(𝜃)] 𝜙̇𝜃̇ cos(𝜃) −𝜓̇𝜃̇ cos(𝜃) 

 

Table 4.2 

the angular acceleration 𝝎̇ of the disk takes the form 

𝝎̇ = 𝜃̇[𝜓̇ − 𝜙̇ sin(𝜃)]𝒆1
′′ + 𝜙̇𝜃̇ cos(𝜃) 𝒆2

′′ − 𝜓̇𝜃̇ cos(𝜃) 𝒆3
′′   . 

Next, the position of the center 𝐶 of the disk is given by 

𝒙𝐶 = 𝒙𝐵 + 𝒙𝐶 𝐵⁄ = 𝑏𝒆1
′′ + 𝑑𝒆1

′ = [𝑏 + 𝑑 cos(𝜃)]𝒆1
′′ + 𝑑 sin(𝜃) 𝒆2

′′ 

𝜃 

𝜃 

𝒆1
′′ 

𝒆2
′′ 

𝒆1
′  

𝒆2
′  

Figure 4.4 
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Thus, using Table 4.3, 

 𝒆1
′′ 𝒆2

′′ 𝒆3
′′ 

𝛀 0 𝜓̇ 0 

𝒙𝐶 𝑏 + 𝑑 cos(𝜃) 𝑑 sin(𝜃) 0 

𝛿𝒙𝐶 𝛿𝑡⁄  −𝜃̇𝑑 sin(𝜃) 𝜃̇𝑑 cos(𝜃) 0 

𝛀 × 𝒙𝐶 0 0 −𝜓̇[𝑏 + 𝑑 cos(𝜃)] 

𝒗𝐶 −𝜃̇𝑑 sin(𝜃) 𝜃̇𝑑 cos(𝜃) −𝜓̇[𝑏 + 𝑑 cos(𝜃)] 

𝛿𝒗𝐶 𝛿𝑡⁄  −𝜃̇2𝑑 cos(𝜃) −𝜃̇2𝑑 sin(𝜃) 𝜓̇𝜃̇𝑑 sin(𝜃) 

𝛀× 𝒗𝐶  −𝜓̇2[𝑏 + 𝑑 cos(𝜃)] 0 𝜓̇𝜃̇𝑑 sin(𝜃) 

𝒂𝐶 
−𝜓̇2[𝑏 + 𝑑 cos(𝜃)] 

−𝜃̇2𝑑 cos(𝜃) 
−𝜃̇2𝑑 sin(𝜃) 2𝜓̇𝜃̇𝑑 sin(𝜃) 

 

Table 4.3 

the velocity and acceleration of 𝐶 are given, respectively, by 

𝒗𝐶 = −𝜃̇𝑑 sin(𝜃) 𝒆1
′′ + 𝜃̇𝑑 cos(𝜃) 𝒆2

′′ − 𝜓̇[𝑏 + 𝑑 cos(𝜃)]𝒆3
′′   , 

𝒂𝐶 = −[𝜓̇
2{𝑏 + 𝑑 cos(𝜃)} + 𝜃̇2𝑑 cos(𝜃)]𝒆1

′′ − 𝜃̇2𝑑 sin(𝜃) 𝒆2
′′ + 2𝜓̇𝜃̇𝑑 sin(𝜃) 𝒆3

′′   . 

Next, the position of the point 𝑃 relative to 𝐶 takes the form 

𝒙𝑃 𝐶⁄ = 𝑅[cos(𝜙) 𝒆2
′ + sin(𝜙) 𝒆3

′ ] 

= 𝑅[− sin(𝜃) cos(𝜙) 𝒆1
′′ + cos(𝜙) cos(𝜃) 𝒆2

′′ + sin(𝜙) 𝒆3
′′]   . 

Equivalently, 

𝒙𝑃 𝐶⁄ = 𝑅 [−
1

2
{sin(𝜃 + 𝜙) + sin(𝜃 − 𝜙)}𝒆1

′′ +
1

2
{cos(𝜃 + 𝜙) + cos(𝜃 − 𝜙)}𝒆2

′′

+ sin(𝜙) 𝒆3
′′] 

For convenience, denote 

𝛼 = 𝜃 + 𝜙   ,   𝛽 = 𝜃 − 𝜙   , 

such that 

𝒙𝑃 𝐶⁄ = 𝑅 [−
1

2
{sin(𝛼) + sin(𝛽)}𝒆1

′′ +
1

2
{cos(𝛼) + cos(𝛽)}𝒆2

′′ + sin(𝜙) 𝒆3
′′]   . 
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Consequently, using Table 4.4, the velocity and acceleration of 𝑃 relative to 𝐶 are given, 

respectively, by 

𝒗𝑃 𝐶⁄ = 𝑅 [𝜓̇ sin(𝜙) −
𝛼̇

2
cos(𝛼) −

𝛽̇

2
cos(𝛽)] 𝒆1

′′ −
𝑅

2
[𝛼̇ sin(𝛼) + 𝛽̇ sin(𝛽)]𝒆2

′′

+ 𝑅 [𝜙̇ cos(𝜙) +
𝜓̇

2
{sin(𝛼) + sin(𝛽)}] 𝒆3

′′   , 

𝒂𝑃 𝐶⁄ = 𝑅 [
𝜓̇2

2
{sin(𝛼) + cos(𝛼)} +

𝛼̇2

2
sin(𝛼) +

𝛽̇2

2
sin(𝛽) + 2𝜓̇𝜙̇ cos(𝜙)] 𝒆1

′′

−
𝑅

2
[𝛼̇2 cos(𝛼) + 𝛽̇2 cos(𝛽)]𝒆2

′′

+ 𝑅[(𝜓̇2 − 𝜙̇2) sin(𝜙) + 𝜓̇𝛼̇ cos(𝛼) + 𝜓̇𝛽̇ cos(𝛽)]𝒆3
′′   , 

with, 

𝛼 = 𝜃 + 𝜙   ,   𝛽 = 𝜃 − 𝜙   ;    𝛼̇ = 𝜃̇ + 𝜙̇   ,   𝛽̇ = 𝜃̇ − 𝜙̇   . 

Next, using the expressions for {𝒗𝐶 , 𝒗𝑃 𝐶⁄ , 𝒂𝐶 , 𝒂𝑃 𝐶⁄ } obtained previously, the velocity and 

acceleration of 𝑃 become 

𝒗𝑃 = 𝒗𝑃 𝐶⁄ + 𝒗𝐶    ;    𝒂𝑃 = 𝒂𝑃 𝐶⁄ + 𝒂𝐶    . 
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 𝒆1
′′ 𝒆2

′′ 𝒆3
′′ 

𝛀 0 𝜓̇ 0 

𝒙𝑃 𝐶⁄  −
𝑅

2
sin(𝛼) −

𝑅

2
sin(𝛽) 

𝑅

2
cos(𝛼) +

𝑅

2
cos(𝛽) 𝑅 sin(𝜙) 

𝛿𝒙𝑃 𝐶⁄ 𝛿𝑡⁄  

−
𝛼̇𝑅

2
cos(𝛼)

−
𝛽̇𝑅

2
cos(𝛽) 

−
𝛼̇𝑅

2
sin(𝛼)

−
𝛽̇𝑅

2
sin(𝛽) 

𝜙̇𝑅 cos(𝜙) 

𝛀 × 𝒙𝑃 𝐶⁄  𝜓̇𝑅 sin(𝜙) 0 

𝜓̇𝑅

2
sin(𝛼)

+
𝜓̇𝑅

2
sin(𝛽) 

𝒗𝑃 𝐶⁄  

−
𝛼̇𝑅

2
cos(𝛼)

−
𝛽̇𝑅

2
cos(𝛽)

+ 𝜓̇𝑅 sin(𝜙) 

−
𝛼̇𝑅

2
sin(𝛼)

−
𝛽̇𝑅

2
sin(𝛽) 

𝜙̇𝑅 cos(𝜙)

+
𝜓̇𝑅

2
sin(𝛼)

+
𝜓̇𝑅

2
sin(𝛽) 

𝛿𝒗𝑃 𝐶⁄ 𝛿𝑡⁄  

𝛼̇2𝑅

2
sin(𝛼)

+
𝛽̇2𝑅

2
sin(𝛽)

+ 𝜓̇𝜙̇𝑅 cos(𝜙) 

−
𝛼̇2𝑅

2
cos(𝛼)

−
𝛽̇2𝑅

2
cos(𝛽) 

−𝜙̇2𝑅 sin(𝜙) 

+
𝜓̇𝛼̇𝑅

2
cos(𝛼)

+
𝜓̇𝛽̇𝑅

2
cos(𝛽) 

𝛀 × 𝒗𝑃 𝐶⁄  

𝜓̇𝜙̇𝑅 cos(𝜙) 

+
𝜓̇2𝑅

2
[sin(𝛼)

+ sin(𝛽)] 

0 

𝜓̇𝛼̇𝑅

2
cos(𝛼)

+
𝜓̇𝛽̇𝑅

2
cos(𝛽)

+ 𝜓̇2𝑅 sin(𝜙) 

𝒂𝑃 𝐶⁄  

𝛼̇2𝑅

2
sin(𝛼)

+
𝛽̇2𝑅

2
sin(𝛽)

+ 2𝜓̇𝜙̇𝑅 cos(𝜙)

+
𝜓̇2𝑅

2
[sin(𝛼)

+ cos(𝛼)] 

−
𝛼̇2𝑅

2
cos(𝛼)

−
𝛽̇2𝑅

2
cos(𝛽) 

−𝜙̇2𝑅 sin(𝜙)

+ 𝜓̇𝛼̇𝑅 cos(𝛼)

+ 𝜓̇𝛽̇𝑅 cos(𝛽)

+ 𝜓̇2𝑅 sin(𝜙) 

 

Table 4.4 
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Problem Set 5 Solutions 

 

Problem 1 

End 𝐴 of the rigid link 𝐴𝐵 is confined to move in the negative 𝒆1 direction while end 𝐵 is 

confined to move along the vertical axis. Determine the component 𝝎𝑛 normal to 𝐴𝐵 of 

the angular velocity of the link as it passes the position shown in Fig. 5.1 with the speed 

𝑣𝐴 = 0.3 [m s⁄ ].  

 

 

Figure 5.1 

 

Solution: 

The position and velocity of 𝐵 relative to 𝐴 are given, respectively, by 

𝒙𝐵 𝐴⁄ = 0.6𝒆3 − (0.2𝒆1 + 0.3𝒆2) = −0.2𝒆1 − 0.3𝒆2 + 0.6𝒆3 [m]   , 

𝒗𝐵 𝐴⁄ = 𝑣𝐵𝒆3 − (−0.3𝒆1) = 𝒗𝐵 𝐴⁄ = 0.3𝒆1 + 𝑣𝐵𝒆3 [m s⁄ ]   . 

Now, recall that 𝒗𝐵 𝐴⁄  is perpendicular to 𝒙𝐵 𝐴⁄ , i.e., 

 
𝒆3 

𝒆2 

𝒆1 300 [mm] 

600 [mm] 
700 [mm] 

0.3 [m s⁄ ] 

200 [mm] 

𝐴 

𝐵 

𝑂 
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𝒗𝐵 𝐴⁄ ⋅ 𝒙𝐵 𝐴⁄ = 0   . 

Therefore, 

(0.3𝒆1 + 𝑣𝐵𝒆3) ⋅ (−0.2𝒆1 − 0.3𝒆2 + 0.6𝒆3) = 0  ⇒    𝑣𝐵 = 0.1 [m s⁄ ]   . 

Furthermore, 

𝒗𝐵 𝐴⁄ = 0.3𝒆1 + 0.1𝒆3 [m s⁄ ]   . 

Consequently, 𝝎𝑛 takes the form 

𝝎𝑛 =
𝒆𝐵 𝐴⁄ × 𝒗𝐵 𝐴⁄

|𝒙𝐵 𝐴⁄ |
=
𝒙𝐵 𝐴⁄ × 𝒗𝐵 𝐴⁄

|𝒙𝐵 𝐴⁄ |
2 =

1

49
(−3𝒆1 + 20𝒆2 + 9𝒆3) [rad s⁄ ]   . 
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Problem 2 

Determine the angular velocity of the telescoping link 𝐵𝐶 for the position shown in Fig. 

5.2, where the driving links 𝐴𝐵 and 𝐶𝐷 have the angular velocities indicate. 

 

 

     Figure 5.2 

 

Solution: 

The velocities of 𝐵 and 𝐶 are given, respectively, by 

𝒗𝐵 = 𝒗𝐵 𝐴⁄ = 𝝎𝐴𝐵 × 𝒙𝐵 𝐴⁄ = −0.5𝒆3 × 0.075𝒆1 = −0.0375𝒆2 [rad s⁄ ]   , 

𝒗𝐶 = 𝒗𝐶 𝐷⁄ = 𝝎𝐶𝐷 × 𝒙𝐶 𝐷⁄ = −0.5𝒆3 × 0.1𝒆2 = 0.05𝒆1 [rad s⁄ ]   . 

Thus, the angular velocity 𝝎𝐵𝐶 of the telescoping link 𝐵𝐶 takes the form 

𝝎𝐵𝐶 =
𝒙𝐵 𝐶⁄ × 𝒗𝐵 𝐶⁄

|𝒙𝐵 𝐶⁄ |
2    ,   𝒙𝐵 𝐶⁄ = −0.225𝒆1 + 0.15𝒆2 [m]   , 

𝒗𝐵 𝐶⁄ = −(0.05𝒆1 + 0.0375𝒆2) [rad s⁄ ]   ⇒ 

𝝎𝐵𝐶 = 0.218𝒆3 [rad s⁄ ]   . 

 

𝒆1 

𝒆2 

300 [mm] 

250 [mm] 
100 [mm] 

75 [mm] 

0.5 [rad s⁄ ] 

0.5 [rad s⁄ ] 

𝐴 𝐵 

𝐶 

𝐷 
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Problem 3 

The slotted wheel of radius 𝑅 = 60 [cm] shown in Fig. 5.3 rolls on the horizontal plane in 

a circle of radius 𝐿 = 60 [cm]. The wheel shaft 𝐵𝐶 is pivoted about an axis through the 

point 𝐵 at one end, and is driven by the vertical shaft at the constant rate 𝜙̇ = 4 [rad s⁄ ] 

about the vertical axis. The slider 𝑃 moves in the slot and its radial distance relative to the 

center of the disk is denoted by 𝑠(𝑡). The system {𝒆𝑖
′′, 𝒆𝑖

′} are fixed to 𝐵𝐶 and the wheel, 

respectively, and they are always in the same plane with 𝜃 denoting the angle between the 

axes 𝒆1
′  and 𝒆1

′′. 

1. Determine the angular velocity of the disk. 

2. Determine the angular velocity of the disk for the position 𝜃 = 30o. 

3. Determine the velocity and acceleration of the slider 𝑃. 

 

   Figure 5.3 

  

 

𝐿 = 60 [cm] 

𝑅 = 60 [cm] 

𝐵 

𝐴 

𝐶 
𝑃 

𝑠(𝑡) 

𝒆1
′′ 

𝜙̇ = 4 [rad s⁄ ] 

𝒆2
′′, 𝒆2

′  

𝒆1
′′ 

𝒆1
′  

𝒆3
′  

𝜃 

𝒆3
′′ 

𝐸 

𝐷 𝐸 
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Solution: 

Let {𝝎,𝛀} denote the angular velocities of the wheel and its shaft, respectively, such that 

𝒆̇𝑖
′′ = 𝛀 × 𝒆𝑖

′′   ,   𝛀 = 𝜙̇𝒆1
′′   , 

𝒆̇𝑖
′ = 𝝎× 𝒆𝑖

′   ,   𝛚 = 𝛀 + 𝜓̇𝒆2
′′ = 𝜙̇𝒆1

′′ + 𝜓̇𝒆2
′′   , 

where 𝜓̇ is angular speed of the wheel relative to 𝐵𝐶. 

Next, since the wheel rolls without slipping on the horizontal plane, it follows that the 

velocity 𝒗𝐸 𝐸′⁄  of the point 𝐸 fixed to the disk relative to the point 𝐸′ fixed to the horizontal 

plane vanishes, such that 

𝒗𝐸 𝐸′⁄ = 𝟎   ,   𝒗𝐸′ = 𝟎  ⇒    𝒗𝐸 = 𝟎   . 

Moreover, 𝒗𝐸 can be expressed as 

𝒗𝐸 = 𝒗𝐶 +𝝎× 𝒙𝐸 𝐶⁄    , 

where, 

𝒗𝐶 = 𝒗𝐶 𝐵⁄ = 𝛀 × 𝒙𝐶 𝐵⁄ = 𝜙̇𝑒1
′′ × 𝐿𝒆2

′′ = 𝜙̇𝐿𝒆3
′′   . 

Therefore, 

𝒗𝐸 = 𝜙̇𝐿𝒆3
′′ + (𝜙̇𝒆1

′′ + 𝜓̇𝒆2
′′) × (−𝑅𝒆1

′′) = (𝜙̇𝐿 + 𝜓̇𝑅)𝒆3
′′ = 𝟎  ⇒ 

𝜓̇ = −
𝜙̇𝐿

𝑅
= −4 [rad s⁄ ]   . 

Substituting this value into 𝝎 yields 

𝝎 = 4(𝒆1
′′ − 𝒆2

′′) [rad s⁄ ]   . 

Furthermore, expressing 𝝎 in terms of the coordinate system 𝒆𝑖
′, it follows that 

𝝎 = 4[cos(𝜃) 𝒆1
′ − 𝒆2

′ − sin(𝜃) 𝒆3
′ ] [rad s⁄ ]   . 

Hence, the value 𝝎(30o) of 𝝎 at the position 𝜃 = 30o is given by 
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𝝎(30o) = 4(
√3

2
𝒆1
′ − 𝒆2

′ −
1

2
𝒆3
′ ) [rad s⁄ ]   . 

Next, the velocity 𝒗𝑃 and acceleration 𝒂𝑃 of the slider 𝑃 take the forms 

𝒗𝑃 = 𝒗𝐶 + 𝒗𝑃 𝐶⁄    ,   𝒗𝐶 = 𝜙̇𝐿𝒆3
′′   ; 

𝒂𝑃 = 𝒂𝐶 + 𝒂𝑃 𝐶⁄    ,   𝒂𝐶 = 𝜙̇𝐿(𝜙̇𝒆1
′′ × 𝒆3

′′) = −𝜙̇2𝐿𝒆2
′′   . 

where the velocity 𝒗𝑃 𝐶⁄  and acceleration 𝒂𝑃 𝐶⁄  of 𝑃 relative to 𝐶 are given in Table 5.1. 

 𝒆1
′′ 𝒆2

′′ 𝒆3
′′ 

𝛀 𝜙̇ 0 0 

𝒙𝑃 𝐶⁄  𝑠 cos(𝜃) 𝑠 sin(𝜃) 0 

𝛿𝒙𝑃 𝐶⁄ 𝛿𝑡⁄  𝑠̇ cos(𝜃) − 𝜃̇𝑠 sin(𝜃) 𝑠̇ sin(𝜃) + 𝜃̇𝑠 cos(𝜃) 0 

𝛀 × 𝒙𝑃 𝐶⁄  0 0 𝜙̇𝑠 sin(𝜃) 

𝒗𝑃 𝐶⁄  𝑠̇ cos(𝜃) − 𝜃̇𝑠 sin(𝜃) 𝑠̇ sin(𝜃) + 𝜃̇𝑠 cos(𝜃) 𝜙̇𝑠 sin(𝜃) 

𝛿𝒗𝑃 𝐶⁄ 𝛿𝑡⁄  
(𝑠̈ − 𝜃̇2𝑠) cos(𝜃)

− (𝜃̈𝑠 + 2𝜃̇𝑠̇) sin(𝜃) 

(𝑠̈ − 𝜃̇2𝑠) sin(𝜃)

+ (𝜃̈𝑠 + 2𝜃̇𝑠̇) cos(𝜃) 

𝜙̇[𝑠̇ sin(𝜃)

+ 𝜃̇𝑠 cos(𝜃)] 

𝛀 × 𝒗𝑃 𝐶⁄  0 −𝜙̇2𝑠 sin(𝜃) 
𝜙̇[𝑠̇ sin(𝜃)

+ 𝜃̇𝑠 cos(𝜃)] 

𝒂𝑃 𝐶⁄  
(𝑠̈ − 𝜃̇2𝑠) cos(𝜃)

− (𝜃̈𝑠 + 2𝜃̇𝑠̇) sin(𝜃) 

[𝑠̈ − (𝜃̇2 + 𝜙̇2)𝑠] sin(𝜃)

+ (𝜃̈𝑠 + 2𝜃̇𝑠̇) cos(𝜃) 

2𝜙̇[𝑠̇ sin(𝜃)

+ 𝜃̇𝑠 cos(𝜃)] 

 

Table 5.1 
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Problem 4 

The hollow curved member 𝑂𝐸 shown in Fig. 5.4 rotates counterclockwise at a constant 

rate 𝜙̇ = 2 [rad s⁄ ], and the pin 𝐴 causes the link 𝐵𝐶 to rotate as well. For the instant when 

𝜃 = 30o   ,   𝛽 = 45o   ,   𝐻 = 280 [mm]   ,   𝐿 = 120 [mm]   , 

where 𝛽 is the angle between the vertical axis and the tangent to 𝑂𝐸 at 𝐴, determine the 

velocity of end 𝐵 of the link 𝐵𝐶. 

 

 

 

 

 

 

 

 

 

 

Solution: 

The velocity of the pin 𝐴 fixed to the link 𝐵𝐶 is given by 

𝒙𝐴/𝐶 = 𝐿[sin(𝜃) 𝒆1 − cos(𝜃) 𝒆2]   ⇒    𝒗𝐴 = 𝜃̇𝐿[cos(𝜃) 𝒆1 + sin(𝜃) 𝒆2]   . 

On the other hand, the velocity 𝒗𝐴′ of the point 𝐴′ fixed to the curved member 𝑂𝐸 which 

is instantaneously in contact with 𝐴 takes the form 

𝒙𝐴′/𝑂 = 𝒙𝐶 𝑂⁄ + 𝒙𝐴′ 𝐶⁄ = 𝐿 sin(𝜃) 𝒆1 + [𝐻 − 𝐿 cos(𝜃)]𝒆2   ⇒ 

𝒗𝐴′ = 𝜙̇𝒆3 × 𝒙𝐴/𝑂 = 𝜙̇[−{𝐻 − 𝐿 cos(𝜃)}𝒆1 + 𝐿 sin(𝜃) 𝒆2]   . 

Next, since the pin 𝐴 is confined to move along 𝑂𝐸, it follows that 

𝜃 

𝛽 

𝐻 

𝒆1 

𝒆2 

𝐶 

𝑂 

𝐵 

𝐴 

𝐿 

𝐿 

𝐸 

Figure 5.4 
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𝒗𝐴/𝐴′ ⋅ 𝒏 = 0   , 

where 𝒏 is the unit normal to 𝑂𝐸 at 𝐴. Therefore, with the help of the unit tangent 𝒕 to 𝑂𝐸 

at 𝐴, i.e., 

𝒕 = cos(𝛽) 𝒆1 + sin(𝛽) 𝒆2   , 

it follows that 

𝒏 = 𝒆3 × 𝒕 = − sin(𝛽) 𝒆1 + cos(𝛽) 𝒆2   . 

Consequently, the angular speed 𝜃̇ of the link 𝐵𝐶 is given by 

−[𝜃̇𝐿 cos(𝜃) + 𝜙̇{𝐻 − 𝐿 cos(𝜃)}] sin(𝛽) + [𝜃̇𝐿 sin(𝜃) − 𝜙̇𝐿 sin(𝜃)] cos(𝛽) = 0  ⇒ 

𝜃̇ = −𝜙̇ [
sin(𝜃) + {

𝐻
𝐿 − cos

(𝜃)} tan(𝛽)

cos(𝜃) tan(𝛽) − sin(𝜃)
] = −10.75 [rad s⁄ ]   . 

Next, the velocity 𝒗𝐵 of end 𝐵 of the link 𝐵𝐶 takes the form 

𝒙𝐵/𝐶 = 2𝐿[sin(𝜃) 𝒆1 − cos(𝜃) 𝒆2]   ⇒ 

𝒗𝐵 = 2𝜃̇𝐿[cos(𝜃) 𝒆1 + sin(𝜃) 𝒆2] = −2.234𝒆1 − 1.290𝒆2 [m s⁄ ]   . 
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Problem Set 6 Solutions 

 

Problem 1 

Fig. 6.1 shows an astronaut training facility. The drum swivels about the horizontal axis 

𝒆1
′′ that passes through the hinge 𝐴 at the rate 𝛽̇. The training room is located inside the 

drum and it rotates about the axis 𝒆1
′  at the rate 𝜓̇. Simultaneously, the training facility 

rotates about the vertical axis 𝒆2
′′ at the rate Ω . At the instant when 

𝛽 = 0   ,   𝛽̇ = 0.9 [rad s⁄ ]   ,   Ω = 0.2 [rad s⁄ ]   ,   𝜓̇ = 0.9 [rad s⁄ ]   , 

determine the angular velocity and acceleration of the training room. 

 

 

Figure 6.1 

 

𝒆1
′′ 

𝒆2
′′ 

𝒆1
′  

𝒆2
′  

𝛽 

𝜓̇ 

Ω 

𝐴 

Drum 
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Solution: 

Let {𝛀,𝝎} denote the angular velocities of the coordinate systems {𝒆𝑖
′′, 𝒆𝑖

′}, such that 

𝒆̇𝑖
′′ = 𝛀 × 𝒆𝑖

′′   ,   𝛀 = Ω𝒆2
′′   ;    𝒆̇𝑖

′ = 𝝎× 𝒆𝑖
′   ,   𝝎 = 𝛀 + 𝛽̇𝒆3

′ = Ω𝒆2
′′ + 𝛽̇𝒆3

′    . 

Moreover, these coordinate systems are related by 

𝒆1
′ = cos(𝛽) 𝒆1

′′ + sin(𝛽) 𝒆2
′′   ,   𝒆2

′ = −sin(𝛽) 𝒆1
′′ + cos(𝛽) 𝒆2

′′   ,   𝒆3
′ = 𝒆3

′′   . 

Next, the angular velocity 𝚲 of the training room takes the form 

𝚲 = 𝝎 + 𝜓̇𝒆1
′ = 𝜓̇𝒆1

′ + Ω𝒆2
′′ + 𝛽̇𝒆3

′ = 𝜓̇ cos(𝛽) 𝒆1
′′ + [Ω + 𝜓̇ sin(𝛽)]𝒆2

′′ + 𝛽̇𝒆3
′′   . 

Substituting the values given previously, it follows that 

𝛀 = 0.9𝒆1
′′ + 0.2𝒆2

′′ + 0.9𝒆3
′′ [rad s⁄ ]   . 

Now, using Table 6.1, 

 𝒆1
′′ 𝒆2

′′ 𝒆3
′′ 

𝛀 0 Ω 0 

𝚲 𝜓̇ cos(𝛽) Ω + 𝜓̇ sin(𝛽) 𝛽̇ 

𝛿𝚲 𝛿𝑡⁄  
𝜓̈ cos(𝛽)

− 𝜓̇𝛽̇ sin(𝛽) 

Ω̇ + 𝜓̈ sin(𝛽)

+ 𝜓̇𝛽̇ cos(𝛽) 
𝛽̈ 

𝛀 × 𝚲 Ω𝛽̇ 0 −Ω𝜓̇ cos(𝛽) 

𝚲̇ 
𝜓̈ cos(𝛽)

− 𝜓̇𝛽̇ sin(𝛽) + Ω𝛽̇ 

Ω̇ + 𝜓̈ sin(𝛽)

+ 𝜓̇𝛽̇ cos(𝛽) 
𝛽̈ − Ω𝜓̇ cos(𝛽) 

 

Table 6.1 

the angular velocity 𝚲̇ of the training room becomes 

𝚲̇ = 0.18𝒆1
′′ + 0.81𝒆2

′′ − 0.18𝒆3
′′ [rad s2⁄ ]   . 

where use has been made of the values given previously. 
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Problem 2 

The 20 [kg] block 𝐴 is placed on top of the 100 [kg] block 𝐵, as shown in Fig. 6.2. Block 

𝐴 is being pulled horizontally by a rope with a pull magnitude of 𝑃. If the coefficient of 

static and kinetic friction between the two blocks are both essentially the same value of 

0.5, and the horizontal plane is frictionless: 

1. Plot the acceleration of each block as a function of 𝑃. 

2. Determine the acceleration of each block for 𝑃 = 60 [N] and 𝑃 = 40 [N]. 

 

     Figure 6.2 

 

Solution: 

 

 

 

 

 

 

 

     Figure 6.3 
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The two blocks move with the same acceleration before block 𝐴 starts slipping on top of 

block 𝐵, as shown in Fig. 6.3a. Denoting the acceleration of the system by 𝑎 it follows 

from the balance of linear momentum that 

2𝑃𝒆1 + (𝑅 − 120𝑔)𝒆2 = 120𝑎𝒆1   ⇒ 

𝑅 = 1200 [N]   ,   𝑎 = 𝑃 60⁄ ≈ 0.0167𝑃 [m s2⁄ ]   . 

Next, Fig. 6.3b shows the free body diagram of each block when 𝐴 is slipping on top of 𝐵. 

Denoting the accelerations of {𝐴, 𝐵} by {𝑎𝐴, 𝑎𝐵}, respectively, it follows from the balance 

of linear momentum that 

(2𝑃 − 𝑓)𝒆1 + (𝑁 − 20𝑔)𝒆2 = 20𝑎𝐴   ,   𝑓 = 𝜇𝑁  ⇒ 

𝑁 = 20𝑔 = 200 [N]   ,   𝑎𝐴 = 0.1𝑃 − 4.905 [m s2⁄ ]   , 

and, 

𝑓𝒆1 + (𝑃 − 𝑁 − 100𝑔)𝒆2 = 100𝑎𝐵   ,   𝑓 = 𝜇𝑁  ⇒ 

𝑃 = 1200 [N]   ,   𝑎𝐵 = 0.981 [m s2⁄ ]   . 

Now, the continuity of the accelerations yields 

𝑎𝐴 = 𝑎   and   𝑎𝐵 = 𝑎  ⇒    𝑃 = 58.86 [N]   . 

The plots of {𝑎𝐴, 𝑎𝐵} as functions of 𝑃 are shown in Fig. 6.4. 

 

     Fig. 6.4 
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Next, assuming that 𝐴 does not slip on top of 𝐵, it follows from the balance of linear for 

each block that 

(2𝑃 − 𝑓)𝒆1 + (𝑁 − 20𝑔)𝒆2 = 20𝑎  ⇒    𝑁 = 196.2 [N]   ,   2𝑃 − 𝑓 = 20𝑎   , 

and, 

𝑓𝒆1 + (𝑃 − 𝑁 − 100𝑔)𝒆2 = 100𝑎  ⇒    𝑃 = 1177.2 [N]   ,   𝑓 = 100𝑎   . 

Solving these equations for 𝑓 yields 

𝑓 = 5𝑃 3⁄ ≈ 1.667𝑃   . 

Moreover, since friction is static in this case, 

𝑓 ≤ 𝜇𝑠𝑁  ⇒    𝑃 ≤ 58.86 [N]   . 

Consequently, for 𝑃 = 60 [N], block 𝐴 slips on top of block 𝐵, so that 

𝑎𝐴 = 0.1(60) − 4.905 = 1.095 [m s2⁄ ]   ,   𝑎𝐵 = 0.01𝜇𝑁 = 0.981 [m s2⁄ ]   . 

Also, for 𝑃 = 40 [N], block 𝐴 does not slip on top of block 𝐵, so that 

𝑎𝐴 = 𝑎𝐵 = 𝑎 = 0.667 [m s2⁄ ]   . 
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Problem 3 

The sliders 𝐴 and 𝐵 are connected by a light rigid bar of length 𝑙 = 0.5 [m] and move in 

the slots shown in Fig. 6.5. The slider 𝐴 is being pulled horizontally by a constant force of 

magnitude 𝑃 = 40 [𝑁]. For the position where 𝑥𝐴 = 0.4 [m], the velocity of 𝐴 is given by 

𝑣𝐴 = 0.9 [m s⁄ ] to the right. At this instant: 

1. Determine the acceleration of each slider. 

2. Determine the force in the bar. 

 

 

   Figure 6.5 

 

Solution: 

The velocities of 𝐴 and 𝐵 are given, respectively, by 

𝒗𝐴 = 𝑥̇𝒆1   ,   𝒗𝐵 = −𝑦̇𝒆2   , 

Moreover, {𝑥̇, 𝑦̇} are related to {𝑥̇𝐴, 𝑦̇𝐵} by 

𝑥̇ = 𝑥̇𝐴   ,   𝑦̇ = −𝑦̇𝐵   ;    𝑥̈ = 𝑥̈𝐴   ,   𝑦̈ = −𝑦̈𝐵   . 

Moreover, using the geometry in Fig. 6.5, then 

𝐵 

𝐴 𝑃 = 40 [N] 

3 [kg] 

2 [kg] 

𝑙 = 0.5 [m] 

𝑥𝐴 

𝒆2 

𝒆1 

𝑦𝐵 

𝑦 

𝑥 
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𝑥𝐴
2 + 𝑦𝐵

2 = 𝑙2   ⇒    𝑦̇𝐵 = −
𝑥𝐴𝑥̇𝐴
𝑦𝐵

= −
𝑥𝐴𝑥̇𝐴

√𝑙2 − 𝑥𝐴
2
   ,   𝑦̈𝐵 = −

𝑥̇𝐴
2 + 𝑦̇𝐵

2 + 𝑥𝐴𝑥̈𝐴
𝑦𝐵

   , 

where, 

𝑥𝐴 = 0.4 [m]   ,   𝑥̇𝐴 = 𝑥̇ = 0.9 [m s⁄ ]   ;    𝑦̇𝐵 = −1.2 [m s⁄ ]   ⇒    𝑦̇ = 1.2 [m s⁄ ]   , 

𝑦̈𝐵 = −
𝑥̇𝐴
2 + 𝑦̇𝐵

2 + 𝑥𝐴𝑥̈𝐴
𝑦𝐵

= −7.5 −
4

3
𝑥̈𝐴   ⇒    𝑦̈ = 7.5 +

4

3
𝑥̈𝐴   . 

Next, using the free body diagrams shown in Fig. 6.6 for each block, 

 

Figure 6.6 

it follows that 

𝑃 − 𝑇 cos(𝜃) = 𝑚𝐴𝑥̈   , −𝑇 sin(𝜃) = −𝑚𝐵𝑦̈   , 

where, 

cos(𝜃) =
𝑥𝐴
𝑙
= 0.8   ,    sin(𝜃) =

𝑦𝐵
𝑙
= 0.6   . 

Solving the three equations 

𝑦̈ = 7.5 +
4

3
𝑥̈𝐴   ,   40 − 0.8 𝑇 = 2𝑥̈   ,    0.6 𝑇 = 3𝑦̈   , 

for {𝑥̈, 𝑦̈, 𝑇} yields 

𝑇 = 46.6 [N]   ,   𝑥̈ = 1.36 [m s2⁄ ]   ,   𝑦̈ = 9.32 [m s2⁄ ]   . 

𝜃 

𝑥𝐴 

𝑦𝐵 

𝑁𝐵 

𝑁𝐴 

𝑇 

𝐵 

𝐴 

𝑇 

𝑙 

𝑃 
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Problem 4 

The small ball of mass 𝑚, shown in Fig. 6.7, is attached to a light bar of length 𝐿 which 

swivels about the horizontal axis through 𝐵 at the constant rate 𝛽̇. Simultaneously, the 

vertical bar rotates about the vertical axis with a constant angular speed 𝜙̇. 

1. Determine the acceleration of the ball. 

2. Determine the tension 𝑇 in the bar. 

3. Determine the shear force exerted on the bar by the ball. 

Express your answers in terms of {𝐿, 𝛽, 𝛽̇, 𝜙̇, 𝑔}. 

     

       Figure 6.7 

 

Solution: 

The angular velocity of the coordinate system 𝒆𝑖
′ is denoted by 𝝎, such that 

𝒆̇𝑖
′ = 𝝎× 𝒆𝑖

′   ,   𝝎 = −𝜙̇𝒆1
′    . 

Now, the position of the ball is 

𝑚 

𝐿 

𝑒3
′  

𝑒1
′  

𝑔 

𝜙̇ 

ℎ 

𝐴 

𝐵 
𝛽 
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𝒙 = 𝐿[sin(𝛽) 𝒆1
′ + cos(𝛽) 𝒆3

′ ]   . 

Thus, using Table 6.2, the velocity and acceleration of the ball take, respectively, the forms 

𝒗 = 𝛽̇𝐿 cos(𝛽) 𝒆1
′ − 𝜙̇𝐿 cos(𝛽) 𝒆2

′ − 𝛽̇𝐿 sin(𝛽) 𝒆3
′    , 

𝒂 = −𝛽̇2𝐿 sin(𝛽) 𝒆1
′ + 2𝜙̇𝛽̇𝐿 sin(𝛽) 𝒆2

′ − (𝛽̇2 + 𝜙̇2)𝐿 cos(𝛽) 𝒆3
′    . 

 𝒆1
′  𝒆2

′  𝒆3
′  

𝝎 𝜙̇ 0 0 

𝒙 𝐿 sin(𝛽) 0 𝐿 cos(𝛽) 

𝛿𝒙 𝛿𝑡⁄  𝛽̇𝐿 cos(𝛽) 0 −𝛽̇𝐿 sin(𝛽) 

𝛀 × 𝒙 0 −𝜙̇𝐿 cos(𝛽) 0 

𝒗 𝛽̇𝐿 cos(𝛽) −𝜙̇𝐿 cos(𝛽) −𝛽̇𝐿 sin(𝛽) 

𝛿𝒗 𝛿𝑡⁄  −𝛽̇2𝐿 sin(𝛽) 𝜙̇𝛽̇𝐿 sin(𝛽) −𝛽̇2𝐿 cos(𝛽) 

𝛀 × 𝒗 0 𝜙̇𝛽̇𝐿 sin(𝛽) −𝜙̇2𝐿 cos(𝛽) 

𝒂 −𝛽̇2𝐿 sin(𝛽) 2𝜙̇𝛽̇𝐿 sin(𝛽) −(𝛽̇2 + 𝜙̇2)𝐿 cos(𝛽) 

 

Table 6.2 

 

Figure 6.8 

Next, using the free body diagram shown in Fig. 6.8 it follows that 

𝑻 +𝑚𝑔𝒆1
′ = 𝑇𝑖

′𝒆𝑖
′ = 𝑚[−𝛽̇2𝐿 sin(𝛽) 𝒆1

′ + 2𝜙̇𝛽̇𝐿 sin(𝛽) 𝒆2
′ − (𝛽̇2 + 𝜙̇2)𝐿 cos(𝛽) 𝒆3

′ ]   . 

Thus, 

𝑇1
′ = −𝑚[𝑔 + 𝛽̇2𝐿 sin(𝛽)]   ,   𝑇2

′ = 2𝑚𝜙̇𝛽̇𝐿 sin(𝛽)   ,   𝑇3
′ = −𝑚(𝛽̇2 + 𝜙̇2)𝐿 cos(𝛽)   . 

Furthermore, the force 𝑹 exerted on the bar by the ball is given by 

𝑻 

𝑚𝑔 
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𝑹 = −𝑻 = 𝑚[𝑔 + 𝛽̇2𝐿 sin(𝛽)]𝒆1
′ − 2𝑚𝜙̇𝛽̇𝐿 sin(𝛽) 𝒆2

′ +𝑚(𝛽̇2 + 𝜙̇2)𝐿 cos(𝛽) 𝒆3
′    . 

Therefore, the shear force 𝑺 exerted on the bar by the ball takes the form 

𝑺 = 𝑹 − (𝑹 ⋅ 𝒆𝑏)𝒆𝑏   ,   𝒆𝑏 = sin(𝛽) 𝒆1
′ + cos(𝛽) 𝒆3

′   , 

where 𝒆𝑏 in is the unit direction of 𝒙. 
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Problem Set 7 Solutions 

 

Problem 1 

The two springs of stiffness 800 [N m⁄ ] and unstretched length of 0.3 [m] are attached to 

the collar of mass 10 [kg], which slides with negligible friction on the fixed vertical shaft 

under the action of gravity, as shown in Fig. 7.1. The collar is released from rest at the top 

position. 

1. Determine the distance traveled by the collar along the vertical shaft. 

2. Determine the velocity of the collar as it covers half of that distance. 

 

 

        Figure 7.1 

  

𝑔 

10 [kg] 

0.4 [m] 0.4 [m] 
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Solution: 

The free body diagram of the collar is shown in Fig. 7.2. 

 

Figure 7.2 

The velocity of the collar is given by 

𝒗 = 𝑦̇𝒆2   . 

The resultant force acting on the collar takes the form 

𝑭 = 𝑭𝑔 + 𝑭𝑒 + 𝑭̅   ,   𝑭𝑔 = 𝑚𝑔𝒆2   ,   𝑭𝑒 = −2𝑇 (
𝑦

√0.42 + 𝑦2
)𝒆2   ,   𝑭̅ = 𝑁𝒆1   . 

Now, using the balance of energy, it follows that 

𝑈2 1⁄ = ∫ (𝑭̅ ⋅ 𝒗)
𝑡2

𝑡1

𝑑𝑡 = 0 = Δ𝑇 + Δ𝑉𝑔 + Δ𝑉𝑒   , 

where, 

Δ𝑇 =
1

2
𝑚𝑦̇2 = 5𝑦̇2   ,   Δ𝑉𝑔 = −(𝑚𝑔𝒆2) ⋅ 𝑦𝒆2 = −𝑚𝑔𝑦 = −98.1𝑦   , 

Δ𝑉𝑒 =
1

2
𝑘[(𝑙2 − 𝑙0)

2 − (𝑙1 − 𝑙0)
2] = 400 [(√0.42 + 𝑦2 − 0.3)

2

− (0.4 − 0.3)2]   . 

Thus, 

𝑚𝑔 

𝑁 

𝑇 𝑇 

𝑦 

𝒆1 

𝒆2 

0.4 [m] 0.4 [m] 
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5𝑦̇2 − 98.1𝑦 + 400 [(√0.16 + 𝑦2 − 0.3)
2

− 0.01] = 0   . 

Next, the maximum distance traveled by the collar before bouncing back up corresponds 

to the condition 𝑦̇ = 0, so that 

−98.1𝑦max  + 400 [(√0.16 + 𝑦max2 − 0.3)
2

− 0.01] = 0  ⇒    𝑦max = 0.551 [m]   . 

Using the same previous arguments with 

𝑦 =
𝑦max
2

= 0.2755 [m]   , 

it follows from the balance of energy that 

5𝑦̇2 − 98.1 (
1

2
𝑦max  ) + 400 [(√0.16 + (

1

2
𝑦max  )

2

− 0.3)

2

− 0.01] = 0  ⇒ 

𝑦̇ = 1.856  [m s⁄ ]   . 
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Problem 2 

The 10 [kg] bead 𝐴 is released from rest in the position shown in Fig. 7.3 and slides freely 

up the fixed circular rod 𝐴𝐵 of radius 𝑎 = 2.4 [m] under the action of gravity and a 

constant force 𝑃 = 250 [N]. Then, the bead slides on the rough horizontal rod 𝐵𝐶 with a 

kinetic friction of 0.5 under the action of gravity alone. Later, the bead sticks to a spring 

of stiffness 𝑘 at the left end 𝐶 of the rod 𝐵𝐶. 

1. Determine the work done by the force 𝑃 on the bead from 𝐴 to 𝐵. 

2. Determine the velocity of the bead as it passes through the point 𝐵. 

3. Determine the work done by friction on the bead from 𝐵 to 𝐶. 

4. Determine the value of the spring’s stiffness 𝑘 when it is maximally compressed by 

10 [cm]. 

 

 

     Figure 2.1 

 

 

 

Figure 7.3 
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𝑚𝑔 𝑃 

𝐴 

𝑂 

𝑦 

𝑚𝑔 

𝑅 

𝑓 

𝒆1 

𝒆2 

𝑥 𝑂 

𝑅 

𝑚𝑔 

𝑇 

Solution: 

The free body diagrams of the bead are shown in Fig. 7.4. 

 

 

 

 

 

Figure 7.4 

Using Fig. 7.4 (right), the work done by the force 𝑃 on the bead from 𝐴 to 𝐵 is given by 

𝑈̅𝐵 𝐴⁄
(𝑃) = ∫ (𝑭𝑃 ⋅ 𝒗𝐴)𝑑𝑡

𝑡𝐵

0

= ∫ (𝑃𝒆2 ⋅ 𝑦̇𝒆2)𝑑𝑡
𝑡𝐵

0

= 𝑃[𝑦(𝑡𝐵) − 𝑦(0)]   , 

where, 

𝑦(0) = 0   ,   𝑦(𝑡𝐵) = 𝐿 −
𝑎

4
= √(𝑎 −

𝑎

4
)
2

+ 𝑎2 −
𝑎

4
= 𝑎   . 

In the last expression, 𝐿 denotes the length of the inextensible rope. Thus, 

𝑈̅𝐵 𝐴⁄
(𝑃) = 𝑃𝑎 = (250)(2.4) = 600 [J]   . 

Next, the velocity 𝑥̇𝐵 of the bead at 𝐵 can be calculated using the balance of energy from 

𝐴 to 𝐵, so that 

𝑈̅𝐵 𝐴⁄
(𝑃)

= 𝑃𝑎 = Δ𝑇 + Δ𝑉𝑔 =
1

2
𝑚𝑥̇0

2 − (𝑚𝑔𝒆2) ⋅ (−𝑎𝒆2) =
1

2
𝑚𝑥̇𝐵

2 +𝑚𝑔𝑎  ⇒ 

𝑥̇𝐵 = √2𝑎 (
𝑃

𝑚
− 𝑔) = 8.54 [m s⁄ ]   . 

Now, using Fig. 7.4 (middle), the work done by the force 𝑓 on the bead from 𝐵 to 𝐶 is 

given by 
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𝑈̅𝐶 𝐵⁄
(𝑓)

= ∫ [−𝜇𝑚𝑔𝒆1 ⋅ 𝑥̇𝒆1]𝑑𝑡
𝑡𝐶

𝑡𝐵

= −𝜇𝑚𝑔(Δ𝑥) = −𝜇𝑚𝑔(3𝑎) = −353.16 [J]   . 

Moreover, the velocity 𝑥̇𝐶 of the bead at 𝐶 can be calculated using the balance of energy 

from 𝐵 to 𝐶, so that 

𝑈̅𝐶 𝐵⁄
(𝑓)

= −𝜇𝑚𝑔(3𝑎) = Δ𝑇 + Δ𝑉𝑔 =
1

2
𝑚(𝑥̇𝐶

2 − 𝑥̇𝐵
2)   ⇒ 

𝑥̇𝐶 = √𝑥̇𝐵
2 − 6𝜇𝑔𝑎 = 1.516 [m s⁄ ]   . 

Finally, using Fig. 7.4 (left), the balance of energy yields 

𝑈̅𝐶 𝐷⁄ = ∫ [𝑅𝒆2 ⋅ 𝑥̇𝒆1]𝑑𝑡
𝑡𝐷

𝑡𝐶

= 0 = Δ𝑇 + Δ𝑉𝑔 + Δ𝑉𝑒 =
1

2
𝑚(𝑥̇𝐷

2 − 𝑥̇𝐶
2) +

1

2
𝑘𝛿2   , 

where 𝛿 denotes the compression in the spring. Now, at maximum compression, 𝑥̇𝐷 = 0 

and 𝛿 = 𝛿max = 0.1 [m], so that 

𝑘 =
𝑚𝑥̇𝐶

2

𝛿max2
≈ 2.3 [kN m⁄ ]   . 
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Problem 3 

The small ball of mass 𝑚 is attached to an inextensible rope of length 𝐿, as shown in Fig. 

7.5. Initially, at the time 𝑡 = 0, 𝜃(0) = 𝜃0, 𝜃̇(0) = 0, and the particle is given a velocity 

of 𝒗(0) = −𝑣0𝒆3
′ . Just afterwards, the rope begins swiveling about the horizontal axis 

through 𝐵 at the rate 𝜃̇, and the vertical bar begins rotating about the vertical axis at the 

rate 𝜙̇. The system 𝒆𝑖
′′ is fixed to the vertical bar and it lies in the plane containing the 

system 𝒆𝑖
′. 

  

       Figure 7.5 

1. Is the linear momentum of the ball conserved in the 𝒆3
′  direction? 

2. Is the angular momentum of the ball about 𝐵 conserved in the 𝒆3
′′ direction? 

3. Is the angular momentum of the ball about 𝐵 conserved in the 𝒆1
′′ direction? 

4. Does the rope do work on the ball? 

5. Determine the kinetic energy of the ball. 

6. Determine the values of 𝜃̇ and 𝜙̇ in terms of {𝐿, 𝜃, 𝜃0, 𝑣0, 𝑔}. 

𝑚 

𝐿 

𝒆2
′′ 

𝒆1
′′ 

𝑔 

𝜙̇ 

𝐴 

𝐵 

𝜃 

𝒆1
′  

𝒆2
′  
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7. Determine the absolute acceleration of the ball. 

8. Determine the tension in the rope. 

 

Solution: 

The systems {𝒆𝑖
′, 𝒆𝑖

′′} rotate, respectively, with angular velocities {𝝎,𝛀}, such that 

𝒆̇𝑖
′′ = 𝛀 × 𝒆𝑖

′′   ,   𝛀 = −𝜙̇𝒆1
′′   ;    𝒆̇𝑖

′ = 𝛚 × 𝒆𝑖
′   ,   𝛚 = 𝛀 + 𝜃̇𝒆3

′′ = −𝜙̇𝒆1
′′ + 𝜃̇𝒆3

′′   . 

Next, the free body diagram of the ball is shown in Fig. 7.6. 

 

Figure 7.6 

The resultant force acting on the particle is given by 

𝑭 = [𝑚𝑔 cos(𝜃) − 𝑇]𝒆1
′ −𝑚𝑔 sin(𝜃) 𝒆2

′ = [𝑚𝑔 − 𝑇 cos(𝜃)]𝒆1
′′ − 𝑇 sin(𝜃) 𝒆2

′′   , 

so that 

𝑭 ⋅ 𝒆3
′ =  𝑭 ⋅ 𝒆3

′′ = 0   . 

Since the direction 𝒆3
′  (or 𝒆3

′′) is not fixed in space, the linear momentum 𝑮 ⋅ 𝒆3
′  of the 

particle in this direction is not necessarily conserved. 

Next, the resultant moment acting on the particle about 𝑂 takes the form 

𝑴𝑂 = 𝒙 × 𝑭 = −𝑚𝑔𝐿 sin(𝜃) 𝒆3
′ = −𝑚𝑔𝐿 sin(𝜃) 𝒆3

′′   , 

such that 

𝑴𝑂 ⋅ 𝒆1
′′ = 0   ,   𝑴𝑂 ⋅ 𝒆3

′′ = 0   . 

𝑚𝑔 

𝜃 

𝜃 

𝑇 

𝒆2
′′ 

𝒆1
′′ 

𝒆2
′  

𝒆1
′  
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Since the direction 𝒆3
′′ is not fixed in space, the angular momentum 𝑯𝑂 ⋅ 𝒆3

′′ of the particle 

about 𝑂 in this direction is not necessarily conserved. However, since the direction 𝒆1
′′ is 

fixed in space, the angular momentum 𝑯𝑂 ⋅ 𝒆1
′′ of the particle about 𝑂 in this direction is 

conserved.  

Now, the position and velocity of the particle are given, respectively, by 

𝒙 = 𝐿𝒆1
′ = 𝐿 cos(𝜃) 𝒆1

′′ + 𝐿 sin(𝜃) 𝒆2
′′   , 

𝒗 =
𝛿𝒙

𝛿𝑡
+ 𝛀 × 𝒙 = −𝜃̇𝐿 sin(𝜃) 𝒆1

′′ + 𝜃̇𝐿 cos(𝜃) 𝒆2
′′ − 𝜙̇𝐿 sin(𝜃) 𝒆3

′′   . 

Thus, the angular momentum 𝑯𝑂 of the particle about 𝑂 becomes 

𝑯𝑂 = 𝒙 ×𝑚𝒗 = −𝑚𝐿2𝜙̇ sin(𝜃) 𝒆1
′′ +

1

2
𝑚𝐿2𝜙̇ sin(2𝜃) 𝒆2

′′ +𝑚𝐿2𝜃̇𝒆3
′′  , 

such that 

𝑯𝑂 ⋅ 𝒆1
′′ = −𝑚𝐿2𝜙̇ sin(𝜃)   , 

𝑯𝑂(0) ⋅ 𝒆1
′′ = [𝒙(0) × (−𝑚𝑣0𝒆3

′′)] ⋅ 𝒆1
′′ = −𝑚𝑣0𝐿 sin(𝜃0)   ⇒ 

−𝑚𝐿2𝜙̇ sin(𝜃) = −𝑚𝑣0𝐿 sin(𝜃0)   ⇒    𝜙̇ =
𝑣0 sin(𝜃0)

𝐿 sin(𝜃)
   . 

Next, the work done by the rope on the particle takes the form 

𝑈̅2 1⁄ = ∫ 𝑭𝑇 ⋅ 𝒗
𝑡

0

𝑑𝑡   ,   𝑭𝑇 = −𝑇 cos(𝜃) 𝒆1
′′ − 𝑇 sin(𝜃) 𝒆2

′′   ⇒ 

𝑈̅2 1⁄ = ∫ [𝜃̇𝐿 sin(𝜃)𝑇 cos(𝜃) − 𝜃̇𝐿 cos(𝜃)𝑇 sin(𝜃)]
𝑡

0

𝑑𝑡 = 0   . 

Therefore, the mechanical energy of the particle is conserved.  

Next, using the balance of energy, it follows that 

(𝑇2 − 𝑇1) + (𝑉𝑔2 − 𝑉𝑔1) = 0   , 

where, 
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𝑇2 − 𝑇1 =
1

2
𝑚[𝒗 ⋅ 𝒗 − 𝒗(0) ⋅ 𝒗(0)] =

1

2
𝑚𝐿2 [𝜃̇2 + 𝜙̇2 sin2(𝜃) −

𝑣0
2

𝐿2
]   , 

𝑉𝑔2 − 𝑉𝑔1 = −𝑚𝑔𝒆1
′′ ⋅ [𝒙 − 𝒙(0)] = −𝑚𝑔𝐿[cos(𝜃) − cos(𝜃0)]   , 

such that 

𝜃̇2 =
𝑣0
2

𝐿2
+
2𝑔

𝐿
[cos(𝜃) − cos(𝜃0)] − 𝜙̇

2 sin2(𝜃)   . 

Substituting the value of 𝜙̇ into this equation yields 

𝜃̇ = [{
𝑣0
𝐿
cos(𝜃)}

2

+
2𝑔

𝐿
{cos(𝜃) − cos(𝜃0)}]

1 2⁄

   . 

The absolute acceleration of the particle takes the form 

𝒂 =
𝛿𝒗

𝛿𝑡
+ 𝛀 × 𝒗 

= −𝐿[𝜃̇2 cos(𝜃) + 𝜃̈ sin(𝜃)]𝒆1
′′ + 𝐿[−(𝜃̇2 + 𝜙̇2) sin(𝜃) + 𝜃̈ cos(𝜃)]𝒆2

′′

− 𝐿[2𝜃̇𝜙̇ cos(𝜃) + 𝜙̈ sin(𝜃)]𝒆3
′′   . 

Consequently, 

𝑭 ⋅ 𝒆2
′′ = 𝑚𝒂 ⋅ 𝒆2

′′   ⇒    𝑇 = 𝑚𝐿[𝜃̇2 + 𝜙̇2 − 𝜃̈ cot(𝜃)]   , 

where, 

𝜃̈ = −
sin(𝜃)

𝐿
[
𝑣0
2

𝐿
cos(𝜃) − 𝑔] 
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Problem 4 

An object of mass 𝑚 = 2 [kg] moves on the inside of a smooth conical dish of radius 

𝑅 = 3 [𝑚] and edge length of 𝑌 = 5 [m] while being attached to a vertical spring of 

stiffness 𝑘 = 300 [N m⁄ ], as shown in Fig. 7.7. At the time 𝑡 = 0, 𝑥(0) = 4 [m], the spring 

is unstretched and the object is given a velocity 𝑣0 = 3 [m s⁄ ] tangent to the horizontal rim 

of the surface of the dish. 

1. Write down the equation of motion of the object. 

2. Determine the minimal distance traveled by the particle relative to the bottom end of 

the dish. 

3. Determine the velocity of the particle at that distance. 

 

 

Figure 7.7 

  

 𝑅 

𝑌 
𝑥 

𝑚 

𝑘 

𝑔 

𝐿 
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Solution: 

 

Figure 7.8 

The angle 𝛼 defined in Fig. 7.8 is given by 

sin(𝛼) =
𝑅

𝑌
=
3

5
   ,   cos(𝛼) =

√𝑌2 − 𝑅2

𝑌
=
4

5
   . 

Also, the system 𝒆𝑖
′ traces the motion of the object, such that 

𝒆̇𝑖
′ = 𝝎× 𝒆𝑖

′   ,   𝝎 = 𝜃̇𝒆3   . 

Now, the position and velocity of the object are given, respectively, by 

𝒙 = 𝐿𝒆3 + 𝑥[sin(𝛼) 𝒆1
′ + cos(𝛼) 𝒆3] = 𝑥 sin(𝛼) 𝒆1

′ + [𝐿 + 𝑥 cos(𝛼)]𝒆3   , 

𝒗 = 𝒙̇ = 𝑥̇ sin(𝛼) 𝒆1
′ + 𝜃̇𝑥 sin(𝛼) 𝒆2

′ + 𝑥̇ cos(𝛼) 𝒆3   . 

Next, using the free body diagram of the object, shown in Fig.7.8 (right), the resultant force 

acting on the object takes the form 

𝑭 = 𝑭𝑔 + 𝑭𝑒 + 𝑭̅  ;    𝑭𝑔 = −𝑚𝑔𝒆3  ;    𝑭𝑒 = −𝑇[sin(𝛼) 𝒆1
′ + cos(𝛼) 𝒆3]  , 

 𝑅 

𝑌 
𝑥 

𝑚 

𝑘 

𝑔 

𝐿 

𝒆1
′  

𝒆3 

𝛼 𝛼 

𝑁 𝑚𝑔 

𝛼 
𝑇 
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𝑇 =
1

2
𝑘(𝑙 − 𝐿) =

1

2
𝑘𝑥   ;    𝑭̅ = 𝑁[− cos(𝛼) 𝒆1

′ + sin(𝛼) 𝒆3]   , 

Thus, the balance of energy equation yields 

𝑈̅2 1⁄ = ∫ 𝑭̅ ⋅ 𝒗 𝑑𝑡
𝑡

0

= 0 = (𝑇2 − 𝑇1) + (𝑉𝑔2 − 𝑉𝑔1) + (𝑉𝑒2 − 𝑉𝑒1)   , 

𝑇2 − 𝑇1 =
1

2
𝑚(𝒗 ⋅ 𝒗 − 𝑣0

2) =
1

2
𝑚[𝑥̇2 + 𝜃̇2𝑥2 sin2(𝛼)]   ; 

𝑉𝑔2 − 𝑉𝑔1 = −(−𝑚𝑔𝒆3) ⋅ (𝒙 − 𝒙0) = 𝑚𝑔(𝑥 − 𝑥0) cos(𝛼)   ; 

𝑉𝑒2 − 𝑉𝑒1 =
1

2
𝑘[(𝑙2 − 𝐿)

2 − (𝑙1 − 𝐿)
2] =

1

2
𝑘(𝑥2 − 𝑥0

2)   ⇒ 

𝑥̇2 + 𝜃̇2𝑥2 sin2(𝛼) + [2𝑔 cos(𝛼) +
𝑘

𝑚
(𝑥 + 𝑥0)] (𝑥 − 𝑥0) = 0 

Next, the resultant moment acting on the object about the origin takes the form 

𝑴𝑂 = 𝒙 × 𝑭 = |

𝒆1
′ 𝒆2

′ 𝒆3
𝑥 sin(𝛼) 0 𝐿 + 𝑥 cos(𝛼)

−𝑇 sin(𝛼) − 𝑁 cos(𝛼) 0 −𝑚𝑔 − 𝑇 cos(𝛼) + 𝑁 sin(𝛼)
|   ⇒ 

𝑴𝑂 ⋅ 𝒆1
′ = 0   ,   𝑴𝑂 ⋅ 𝒆3 = 0   . 

This shows that the angular momentum of the object about the origin in the fixed vertical 

𝒆3 direction is conserved. Therefore, 

𝑯𝑂 ⋅ 𝒆3 = 𝑯𝑂(0) ⋅ 𝒆3   , 

where, 

𝑯𝑂 ⋅ 𝒆3 = 𝒆3 ⋅ 𝒙 × 𝑚𝒗 = |

0 0 1
𝑥 sin(𝛼) 0 𝐿 + 𝑥 cos(𝛼)

𝑚𝑥̇ sin(𝛼) 𝑚𝜃̇𝑥 sin(𝛼) 𝑚𝑥̇ cos(𝛼)
| = 𝑚𝜃̇𝑥2 sin2(𝛼) , 

𝑯𝑂(0) ⋅ 𝒆3 = 𝑚𝜃̇0𝑥0
2 sin2(𝛼)   ⇒    𝜃̇𝑥2 = 𝜃̇0𝑥0

2   . 

Now, 

𝒗(0) = 𝑣0𝒆2
′ = 𝑥̇0 sin(𝛼) 𝒆1

′ + 𝜃̇0𝑥0 sin(𝛼) 𝒆2
′ + 𝑥̇0 cos(𝛼) 𝒆3   ⇒ 
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𝑥̇0 = 0   ,   𝜃̇0 =
𝑣0

𝑥0 sin(𝛼)
   . 

Hence, 

𝜃̇ =
𝜃̇0𝑥0

2

𝑥2
=

𝑥0𝑣0
𝑥2 sin(𝛼)

   . 

Substituting this expression and the given data in the resulting equation of the balance of 

energy, it follows that 

𝑥̇2 + 𝜃̇2𝑥2 sin2(𝛼) + [2𝑔 cos(𝛼) +
𝑘

𝑚
(𝑥 + 𝑥0)] (𝑥 − 𝑥0) = 0   . 

The minimum value of the position 𝑥 of the object on the surface of the dish is obtained by 

the requirement 𝑥̇ = 0, such that 

240

𝑥2
+ (616 + 150𝑥)(𝑥 − 4) = 0  ⇒    𝑥min ≈ 0.313 [m]   . 

Furthermore, the velocity of the object at 𝑥 = 𝑥min reduces to 

𝒗(𝑥min) = 𝜃̇𝑥min sin(𝛼) 𝒆2
′ =

𝑥0𝑣0
𝑥min

𝒆2
′ ≈ 38.3𝒆2

′  [m s⁄ ]   . 
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Problem Set 8 Solutions 

 

Problem 1 

Figure 8.1 shows a particle of mass 𝑚, which is attached to a spring of stiffness 𝑘 and free 

length 𝑟0, and placed on a frictionless table. At the time 𝑡 = 0, the spring’s length is 𝑟0 and 

the particle is given a velocity 𝑣0 in the direction perpendicular to the spring. 

1. Determine the equation of motion of the particle. 

2. Are the linear momentum, angular momentum about the fixed point 𝑂 and mechanical 

energy of the particle conserved? 

3. Describe the motion of the particle. 

 

 

        Figure 8.1 

  

𝑣0 

𝑘 

𝑂 

𝑟 
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Solution 

 

Figure 8.2 

Using Fig. 8.2 (left), it follows that the position 𝒙 and velocity 𝒗 of the particle expressed 

in terms of polar coordinates are given, respectively, by 

𝒙 = 𝑟𝒆𝑟   ,   𝒗 = 𝑟̇𝒆𝑟 + 𝑟𝜃̇𝒆𝜃   . 

Next, since the only force acting on the particle is due to the spring [see Fig. 8.2 (right)], 

the energy of the particle is conserved so that 

(𝑇2 − 𝑇1) + (𝑉𝑒2 − 𝑉𝑒1) = 0   , 

where, 

𝑇2 − 𝑇1 =
1

2
𝑚(𝒗 ⋅ 𝒗 − 𝑣0

2) =
1

2
𝑚(𝑟̇2 + 𝑟2𝜃̇2 − 𝑣0

2)   , 

𝑉𝑒2 − 𝑉𝑒1 = 𝑉𝑒2 =
1

2
𝑘(𝑟 − 𝑟0)

2   . 

Hence, 

𝑟̇2 + 𝑟2𝜃̇2 +
𝑘

𝑚
(𝑟 − 𝑟0)

2 = 𝑣0
2   . 

𝑭𝑒 

𝑣0 

𝑘 

𝑂 

𝑟 

𝒆𝑟 

𝒆𝜃 

𝒆1 

𝒆2 
𝜃 
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Now, the moment exerted on the particle about the origin 𝑂 vanishes. Therefore, the 

angular momentum of the particle about 𝑂 is conserved, such that 

𝑯𝑂(𝑡) = 𝑯𝑂(0)   , 

where, 

𝑯𝑂(𝑡) = 𝒙 × 𝑚𝒗 = 𝑟2𝜃̇𝒆3   ,   𝑯𝑂(0) = 𝑟0𝒆1 × 𝑣0𝒆2 = 𝑟0𝑣0𝒆3   . 

Thus, 

𝑟2𝜃̇ = 𝑟0𝑣0   ⇒    𝜃̇ =
𝑟0𝑣0
𝑟2

   . 

Substituting this expression into resulting equation of the conservation of energy, then 

𝑟̇2 + (
𝑟0𝑣0
𝑟
)
2

+
𝑘

𝑚
(𝑟 − 𝑟0)

2 = 𝑣0
2      . 

Thus, by taking the time derivative of this equation, it follows that the motion of the particle 

is governed by 

2𝑟̇𝑟̈ + 2 (
𝑟0𝑣0
𝑟
) (−

𝑟0𝑣0
𝑟2

𝑟̇) +
2𝑘

𝑚
𝑟̇ = 0  ⇒ 

𝑟̈ −
𝑟0
2𝑣0

2

𝑟3
+
𝑘

𝑚
(𝑟 − 𝑟0) = 0   ,   𝑟(0) = 𝑟0   ,   𝑟̇(0) = 0    . 

The particle performs a circular motion with radial oscillation with its angular momentum 

about the origin 𝑂 being conserved. However, with the help of Fig. 8.2 (right), then the 

resultant force acting on the particle is given by 

𝑭 = 𝑭𝑒 = −𝑇𝒆𝑟 = −𝑘(𝑟 − 𝑟0)𝒆𝑟  . 

This shows that the linear momentum of the particle is not conserved in the direction 𝒆𝑟. 

Moreover, 𝑭 ⋅ 𝒆𝜃 = 0 does not ensure that the linear momentum of the particle is conserved 

in this direction since 𝒆𝜃 is not fixed in space. 
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Problem 2 

Figure 8.3 shows a small ball of mass 𝑚 which is attached to a rigid bar 𝐴𝐵 with length 𝐿 

and negligible. The bar is attached at its end 𝐴 to a cart of mass 𝑀, which moves 

horizontally along a frictionless track. Moreover, the bar rotates freely about the vertical 

axis passing through 𝐴. At the time 𝑡 = 0, 𝜃(0) = 0, the velocity of the cart is 𝑣0 and the 

angular velocity of the bar is 𝜔0. 

1. Determine the velocity of the cart when 𝜃 = 𝜋. 

2. Determine the angular velocity of the bar when 𝜃 = 𝜋. 

3. Determine the maximum and minimum angular velocities of the bar. 

4. Determine the maximum and minimum velocities of the cart. 

Express your answers in terms of {𝑚,𝑀, 𝑅, 𝑣0, 𝜔0}. 

 

     Figure 8.3 
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𝐴 𝐵 
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𝑚 
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Solution: 

 

Figure 8.4 

The system 𝒆𝑖
′ rotates with angular velocity 𝝎, such that 

𝒆̇𝑖
′ = 𝝎× 𝒆𝑖

′   ,   𝝎 = 𝜃̇𝒆3
′    . 

Using Fig. 8.4 (right), then the resultant force acting on the system is given by 

𝑭 = 𝑁𝒆2   ⇒    𝑭 ⋅ 𝒆1 = 0   . 

This shows that the linear momentum of the system in the fixed horizontal direction 𝒆1 is 

conserved, such that 

𝑀𝒗𝐴 ⋅ 𝒆1 +𝑚𝒗𝐵 ⋅ 𝒆1 = 𝑀𝒗𝐴(0) ⋅ 𝒆1 +𝑚𝒗𝐵(0) ⋅ 𝒆1  , 

where, 

𝒗𝐴 = 𝑥̇𝒆1   ,   𝒗𝐴(0) = 𝑣0𝒆1   , 

𝒗𝐵 = 𝒗𝐴 +𝝎× 𝒙𝐵 𝐴⁄ = 𝑥̇𝒆1 + 𝜃̇𝒆3
′ × 𝐿𝒆1

′ = 𝑥̇𝒆1 + 𝜃̇𝐿𝒆2
′   ⇒ 

𝒗𝐵 = [𝑥̇ − 𝜃̇𝐿 sin(𝜃)]𝒆1 + 𝜃̇𝐿 cos(𝜃) 𝒆2   ,   𝒗𝐵(0) = 𝑣0𝒆1 + 𝜃̇0𝐿𝒆2   . 

Therefore, 

 

𝑚 
𝐴 

𝐵 

𝑀 

𝑀 

𝑚 

𝐴 
𝜃 

𝒆1
′  𝒆2

′  

𝒆1
′  

𝒆3, 𝒆3
′  

𝒆2 

𝒆1 

System 

𝑁 

𝑥 𝐿 
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(𝑀 +𝑚)𝑥̇ − 𝑚𝜃̇𝐿 sin(𝜃) = (𝑀 +𝑚)𝑣0   . 

So, the velocity of the cart when 𝜃 = 𝜋 reduces to 

𝑥̇(𝜋) = 𝑣0   . 

Next, since the only force acting on the system is the normal force, which is perpendicular 

to the velocity of the point where it acts, the energy of the system is conserved. Thus, 

𝑇2 − 𝑇1 = 0   , 

where, 

𝑇1 =
1

2
𝑀[𝒗𝐴(0) ⋅ 𝒗𝐴(0)] +

1

2
𝑚[𝒗𝐵(0) ⋅ 𝒗𝐵(0)] =

1

2
(𝑀 +𝑚)𝑣0

2 +
1

2
𝑚𝜔0

2𝐿2   , 

𝑇2 =
1

2
𝑀(𝒗𝐴 ⋅ 𝒗𝐴) +

1

2
𝑚(𝒗𝐵 ⋅ 𝒗𝐵) =

1

2
(𝑀 +𝑚)𝑥̇2 +

1

2
𝑚[𝜃̇2𝐿2 − 2𝑥̇𝜃̇𝐿 sin(𝜃)]   , 

such that 

(𝑀 +𝑚)𝑥̇2 +𝑚[𝜃̇2𝐿2 − 2𝑥̇𝜃̇𝐿 sin(𝜃)] = (𝑀 +𝑚)𝑣0
2 +𝑚𝜔0

2𝐿2   . 

So, the angular velocity of the bar when 𝜃 = 𝜋 reduces to 

𝜃̇(𝜋) = 𝜔0   . 

Now, solving the resulting equations of the conservation of energy and linear momentum 

in 𝒆1 for {𝑥̇, 𝜃̇}, it follows that 

𝜃̇2 = 𝑓(𝜃)   ,   𝑓(𝜃) = 𝜔0
2 [1 −

𝑚

𝑀 +𝑚
sin2(𝜃)]

−1

   . 

The critical values of 𝜃̇ are obtained by requiring that 𝑑𝑓(𝜃) 𝑑𝜃⁄ = 0. Thus, 

𝑑𝑓(𝜃)

𝑑𝜃
=

𝑚𝜔0
2 sin(2𝜃)

(𝑀 +𝑚) [1 −
𝑚

𝑀 +𝑚sin
2(𝜃)]

= 0  ⇒   sin(2𝜃) = 0  ⇒    𝜃 = {0, ±
𝜋

2
}   . 

This shows that 

𝜃̇min = 𝜃̇(0) = 𝜔0   ,   𝜃̇max = 𝜃̇ (±
𝜋

2
) = 𝜔0√1 +

𝑚

𝑀
   . 
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Furthermore, 

𝑥̇min = 𝑥̇ (−
𝜋

2
) = 𝑣0 −

𝑚𝐿𝜔0

√𝑀(𝑀 +𝑚)
   ,   𝑥̇max = 𝑥̇ (

𝜋

2
) = 𝑣0 +

𝑚𝐿𝜔0

√𝑀(𝑀 +𝑚)
   . 
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Problem 3 

A tennis ball of mass 𝑚 is released from rest at a height of 1600 [mm] above the ground, 

as shown in Fig. 8.5. 

1. Determine the minimum coefficient of restitution for which the ball rises to a height of 

1100 [mm] after the collision with the ground. 

2. Determine the maximum energy lost in this case. 

 

 

     Figure 8.5 

 

  

 

1600 [mm] 

1100 [mm] 

𝑚 

𝑔 
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Solution: 

 

Figure 8.6 

Just before impact, the energy of the particle is conserved since only the gravitational force 

acts on it (see Fig. 8.6). Hence, 

(𝑇1 − 𝑇0) + (𝑉𝑔1 − 𝑉𝑔0) = 0   , 

where, 

𝑇1 − 𝑇0 = 𝑇1 =
1

2
𝑚𝑣𝑚1

2    ,   𝑉𝑔1 − 𝑉𝑔0 = 𝑚𝑔𝒆2 ⋅ (0 − 1600)𝒆2 = −1.6𝑚𝑔   . 

Therefore, the velocity of the particle just before impact is given by 

𝑣𝑚1 = √3.2𝑔  [𝑚 𝑠⁄ ]   . 

Next, using the coefficient of restitution 𝑒, with the subscript ‘s’ denoting the fixed 

horizontal surface, it follows that 

𝑒 =
(𝒗𝑚2 − 𝒗𝑠2) ⋅ 𝒆2
(𝒗𝑠1 − 𝒗𝑚1) ⋅ 𝒆2

= −
𝑣𝑚2
𝑣𝑚1

= −
𝑣𝑚2

√3.2𝑔
  ⇒    𝑣𝑚2 = −𝑒√3.2𝑔   . 

After impact, the energy of the particle is conserved for similar arguments as before. Hence, 

(𝑇3 − 𝑇2) + (𝑉𝑔3 − 𝑉𝑔2) = 0   , 

where, 

𝑇3 − 𝑇2 = −𝑇2 = −1.6𝑚𝑔𝑒
2   ,   𝑉𝑔3 − 𝑉𝑔2 = 𝑚𝑔𝒆2 ⋅ (1.1 − 0)𝒆2 = 1.1𝑚𝑔   . 

Hence, 

𝑚𝑔 

𝒆2 
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1.6𝑚𝑔𝑒2 + 1.1𝑚𝑔 = 0  ⇒    𝑒 = √
1.1

1.6
≈ 0.829   . 

Furthermore, the energy lost during impact is given by 

Δ𝑇 = 𝑇2 − 𝑇1 =
1

2
𝑚(𝑣𝑚2

2 − 𝑣𝑚1
2 ) =

1

2
𝑚(3.2𝑔𝑒2 − 3.2𝑔) = −

1

2
𝑚𝑔   . 
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Problem 3 

Figure 8.7 shows a particle of mass 𝑚1 which is attached to the ceiling through an 

inextensible string of length 𝑙1. Moreover, a particle of mass 𝑚2 is attached to 𝑚1 through 

an inextensible string of length 𝑙2. At the time 𝑡 = 0, 𝑚2 is released from rest at a distance 

𝑙1 below the ceiling and the string 𝑙2 is unstretched. At the instant when cos(𝛼) = 0.8 and 

sin(𝛼) = 0.6, the string 𝑙2 becomes taut. 

Determine the velocities of the particles just after impact, when the string 𝑙2 becomes taut. 

 

 

Figure 8.7 

  

 

𝑙1 

𝑙2 

𝛼 

0.6𝑙2 

𝑚1 

𝑚2 

𝑔 
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Solution: 

Let 𝐴 and 𝐵 denote the particles of masses 𝑚1 and 𝑚2, respectively. 

 

Figure 8.8 

Fig. 8.8 shows that before impact, the energy of 𝐵 is conserved since only the gravitational 

force acts on it. Hence, 

(𝑇1 − 𝑇0) + (𝑉𝑔1 − 𝑉𝑔0) = 0   , 

where, 

𝑇1 − 𝑇0 = 𝑇1 =
1

2
𝑚2𝑣𝐵1

2    ,   𝑉𝑔2 − 𝑉𝑔1 = −𝑚2𝑔𝒆2 ⋅ 𝑙2 cos(𝛼) 𝒆2 = −𝑚2𝑔𝑙2 cos(𝛼)   , 

such that the velocity of the 𝐵 just before impact is given by 

𝑣𝐵1 = √2𝑔𝑙2 cos(𝛼) = √1.6𝑔𝑙2   . 

Next, Fig. 8.9 shows the free body diagrams of 𝐴 and 𝐵 just after impact. 

 

Figure 8.9  

 

𝑚2𝑔 
𝒆2 

𝒆1 𝐵 

𝒆2 

𝒆1 𝑇1 

𝐴 

𝐵 

𝑇2 𝛼 𝛼 

𝑚1𝑔 

𝑚2𝑔 
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Now, the velocities of the particles just after impact are given by 

𝒗𝐴2 = (𝒗𝐴2 ⋅ 𝒆1)𝒆1   ,   𝒗𝐵2 = (𝒗𝐵2 ⋅ 𝒆1)𝒆1 + (𝒗𝐵2 ⋅ 𝒆2)𝒆2   . 

Since the gravitational forces are not impulsive (see Fig. 8.9), it follows from the balance 

of linear impulse-momentum of each particle that 

𝑇̂2 sin(𝛼) 𝒆1 + [𝑇̂2 cos(𝛼) − 𝑇̂1]𝒆2 = 𝑚1(𝒗𝐴2 ⋅ 𝒆1)𝒆1   ⇒ 

𝒗𝐴2 ⋅ 𝒆1 =
1

𝑚1
𝑇̂2 sin(𝛼)   ,   𝑇̂1 = 𝑇̂2 cos(𝛼)   , 

−𝑇̂2 sin(𝛼) 𝒆1 − 𝑇̂2 cos(𝛼) 𝒆2 = 𝑚2[(𝒗𝐵2 ⋅ 𝒆1)𝒆1 + {(𝒗𝐵2 ⋅ 𝒆2) − √1.6𝑔𝑙2}𝒆2]   ⇒ 

𝒗𝐵2 ⋅ 𝒆1 = −
1

𝑚2
𝑇̂2 sin(𝛼)   ,   𝒗𝐵2 ⋅ 𝒆2 = √1.6𝑔𝑙2 −

1

𝑚2
𝑇̂2 cos(𝛼)   . 

Next, assuming that the strings remain taut just after impact, then 

𝒗𝐵2 𝐴2⁄ ⋅ 𝒙𝐵2 𝐴2⁄ = 0   , 

such that 

−(
1

𝑚2
+
1

𝑚1
) 𝑇̂2𝑙2 sin

2(𝛼) + [√1.6𝑔𝑙2 −
1

𝑚2
𝑇̂2 cos(𝛼)] 𝑙2 cos(𝛼) = 0  ⇒ 

𝑇̂2 =
𝑚1𝑚2 cos(𝛼)

𝑚1 +𝑚2 sin2(𝛼)
√1.6𝑔𝑙2   . 

Consequently,  

𝑇̂1 =
𝑚1𝑚2 cos

2(𝛼)

𝑚1 +𝑚2 sin2(𝛼)
√1.6𝑔𝑙2 =

16𝑚1𝑚2

25𝑚1 + 9𝑚2
   , 

𝒗𝐴2 ⋅ 𝒆1 = [
𝑚2 cos(𝛼) sin(𝛼)

𝑚1 +𝑚2 sin2(𝛼)
]√1.6𝑔𝑙2 = (

12𝑚2

25𝑚1 + 9𝑚2
)√1.6𝑔𝑙2   , 

𝒗𝐵2 ⋅ 𝒆1 = −
𝑚1 cos(𝛼) sin(𝛼)

𝑚1 +𝑚2 sin2(𝛼)
√1.6𝑔𝑙2 = −(

12𝑚1

25𝑚1 + 9𝑚2
)√1.6𝑔𝑙2  , 

𝒗𝐵2 ⋅ 𝒆2 = [
𝑚1 +𝑚2

𝑚1 +𝑚2 sin2(𝛼)
] sin2(𝛼)√1.6𝑔𝑙2 = 9(

𝑚1 +𝑚2

25𝑚1 + 9𝑚2
)√1.6𝑔𝑙2   . 
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Problem Set 9 Solutions 

 

Problem 1 

Fig. 9.1 shows two particles of masses 𝑚1 = 𝑚 and 𝑚2 = 2𝑚 connected by a spring of 

stiffness 𝑘 and free length 𝐿. The particles are initially at rest. At the time 𝑡 = 0, a third 

particle of mass 𝑚3 = 3𝑚, traveling with speed 𝑣 in a direction perpendicular to the spring, 

strikes 𝑚1. The coefficient of restitution at impact is given by 𝑒. 

1. Determine the velocity of each mass just after impact. 

2. Determine the angular velocity of the line connecting 𝑚1 and 𝑚2 as a function of the 

distance 𝑥(𝑡) between these particles. 

3. Determine the differential equation associated with 𝑥(𝑡). 

 

 

Figure 9.1 

  

 𝐿 

𝑚2 𝑚1 

𝑚3 

𝑣 𝑘 
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Solution: 

Fig. 9.2 shows the free body diagram of the whole system at impact. 

 
Figure 9.2 

Using the definition of the coefficient of restitution, it follows that 

𝑒 =
(𝒗𝐵2 − 𝒗𝐷2) ⋅ 𝒆2
(𝒗𝐷1 − 𝒗𝐵1) ⋅ 𝒆2

=
(𝒗𝐵2 ⋅ 𝒆2) − (𝒗𝐷2 ⋅ 𝒆2)

𝑣
  ⇒    (𝒗𝐵2 ⋅ 𝒆2) − (𝒗𝐷2 ⋅ 𝒆2) = 𝑒𝑣   . 

Fig. 9.3 shows the free body diagrams of each particle at impact. 

 

 

Figure 9.3 

Since no forces act on 𝐴 during impact, 

𝒗𝐴2 = 𝟎   . 

Now, assuming that 𝐵 and 𝐷 are smooth, then the impulsive force 𝑭̂ has no component in 

the 𝒆1 direction 

𝑭̂ ⋅ 𝒆1 = 0  ⇒    𝑮2 ⋅ 𝒆1 = 𝑮1 ⋅ 𝒆1   . 

such that 

𝒗𝐷2 ⋅ 𝒆1 = 0   ,   𝒗𝐵2 ⋅ 𝒆1 = 0   . 

L 

k   
    𝐵 𝐴 

𝐷 

𝒆1 

𝒆2 

2𝑚 

𝑚 

3𝑚 

𝐵 𝐴 

𝐷 

𝑭̂ 

−𝑭̂ 

𝒆1 

𝒆2 
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This shows that the velocities of 𝐵 and 𝐷 just after impact are given, respectively, by 

𝒗𝐵2 = 𝑣𝐵2𝒆2   ,   𝒗𝐷2 = 𝑣𝐷2𝒆2   . 

Moreover, using these results, the coefficient of restitution equation reduces to 

𝑣𝐵2 − 𝑣𝐷2 = 𝑒𝑣   . 

Next, Fig. 9.2 also shows that the linear momentum of the system is conserved during 

impact since no external forces act on it. Hence, 

𝑚𝑣𝐵2 + 3𝑚𝑣𝐷2 = 3𝑚𝑣  ⇒    𝑣𝐵2 + 3𝑣𝐷2 = 3𝑣   . 

Solving the last two equations for {𝑣𝐵2, 𝑣𝐷2} yields 

𝑣𝐵2 =
3

4
(1 + 𝑒)𝑣  ,   𝑣𝐷2 =

1

4
(3 − 𝑒)𝑣   . 

 

Figure 9.4 

The location of the center of mass 𝐶 of the system consisting of the particles 𝐴 and 𝐵 

relative to 𝐴 is shown in Fig. 9.4 and given by 

𝒙𝐶 𝐴⁄ =
∑ 𝑚𝑖𝒙𝑖 𝐴⁄
𝐵
𝑖=𝐴

∑ 𝑚𝑖
𝐵
𝑖=𝐴

=
2𝑚(𝟎) + 𝑚𝑥(𝑡)𝒆𝑟

3𝑚
=
1

3
𝑥(𝑡)𝒆𝑟   . 

Moreover, since no external forces act on this system, its linear momentum is conserved 

so that the velocity 𝒗𝐶 of the center of mass 𝐶 is conserved as well. Hence, 

𝒗𝐶 = 𝒗𝐶(𝑡2) =
2𝑚𝒗𝐴2 +𝑚𝒗𝐵2

3𝑚
=
1

4
(1 + 𝑒)𝑣𝒆2   . 

𝑥(𝑡) 
𝐵 

𝐴 2𝑚 

𝑚 

𝒆𝜃 

𝐶 

𝑥(𝑡) 3⁄  

2𝑥(𝑡) 3⁄  

𝜃 

𝒆𝑟 
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Furthermore, for the same reason, the angular momentum about the center of mass 𝐶 is 

conserved. Thus, 

𝑯𝐶(𝑡3) = 𝑯𝐶(𝑡2)  ,   𝑯𝐶(𝑡) =∑𝒙𝑖 𝐶⁄ (𝑡) ×

𝐵

𝑖=𝐴

𝑚𝑖𝒗𝑖 𝐶⁄ (𝑡)   , 

where,  

𝒙𝐴 𝐶⁄ = −
𝑥

3
𝒆𝑟  ,   𝒗𝐴 𝐶⁄ = −

𝑥̇

3
𝒆𝑟 −

𝑥𝜃̇

3
𝒆𝜃   , 

𝒙𝐵 𝐶⁄ =
2𝑥

3
𝒆𝑟  ,   𝒗𝐵 𝐶⁄ =

2𝑥̇

3
𝒆𝑟 +

2𝑥𝜃̇

3
𝒆𝜃   , 

such that, 

𝑯𝐶(𝑡2) =∑𝒙𝑖 𝐶⁄ (𝑡2) ×

𝐵

𝑖=𝐴

𝑚𝑖𝒗𝑖 𝐶⁄ (𝑡2) = 𝒙𝐵 𝐶⁄ (𝑡2) × 𝑚𝒗𝐵 𝐶⁄ (𝑡2) 

=
2𝐿

3
𝒆1 ×𝑚 [

3

4
(1 + 𝑒)𝑣𝒆2] =

1

2
(1 + 𝑒)𝑚𝑣𝐿𝒆3   , 

𝑯𝐶(𝑡3) =∑𝒙𝑖 𝐶⁄ (𝑡3) ×

𝐵

𝑖=𝐴

𝑚𝑖𝒗𝑖 𝐶⁄ (𝑡3) 

= −
𝑥

3
𝒆𝑟 × 2𝑚(−

𝑥̇

3
𝒆𝑟 −

𝑥𝜃̇

3
𝒆𝜃) +

2𝑥

3
𝒆𝑟 ×𝑚(

2𝑥̇

3
𝒆𝑟 +

2𝑥𝜃̇

3
𝒆𝜃) 

=
2𝑚𝑥2𝜃̇

3
𝒆3   . 

Equating both of these expressions yields 

𝜃̇ =
3(1 + 𝑒)𝑣𝐿

4𝑥2
  . 

Again, for the same reason, the energy of the system is conserved, so that 

𝑇3 = 𝑇2   . 

Moreover, the velocities of 𝐴 and 𝐵 take the forms 
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𝒗𝐴 = 𝒗𝐶 + 𝒗𝐴 𝐶⁄    ,   𝒗𝐵 = 𝒗𝐶 + 𝒗𝐵 𝐶⁄    , 

where, 

𝑇2 =
1

2
𝑚𝑣𝐵2

2 =
9

32
(1 + 𝑒)2𝑚𝑣2   ,   𝑇3 =

1

2
(2𝑚)(𝒗𝐴 ⋅ 𝒗𝐴) +

1

2
𝑚(𝒗𝐵 ⋅ 𝒗𝐵)   . 

With the help of the transformation relation 

𝒆2 = sin(𝜃) 𝒆𝑟 + cos(𝜃) 𝒆𝜃   , 

it follows that 

𝒗𝐴 = [
1

4
(1 + 𝑒)𝑣 sin(𝜃) −

𝑥̇

3
] 𝒆𝑟 + [

1

4
(1 + 𝑒)𝑣 cos(𝜃) −

𝑥𝜃̇

3
] 𝒆𝜃   , 

𝒗𝐵 = [
1

4
(1 + 𝑒)𝑣 sin(𝜃) +

2𝑥̇

3
] 𝒆𝑟 + [

1

4
(1 + 𝑒)𝑣 cos(𝜃) +

2𝑥𝜃̇

3
] 𝒆𝜃   . 

Thus, 

𝑇3 =
3𝑚

32
(1 + 𝑒)2𝑣2 sin2(𝜃) +

𝑚𝑥̇2

3
+
3𝑚

32
(1 + 𝑒)2𝑣2 cos2(𝜃) +

𝑚𝑥2𝜃̇2

3
   . 

Now, equating the expressions of 𝑇2 and 𝑇3 yields 

𝑥̇2 + 𝑥2𝜃̇2 =
9

16
(1 + 𝑒)2𝑣2   . 

Substituting the expression of 𝜃̇ obtained previously into this equation gives 

𝑥̇2 +
9

16
(1 + 𝑒)2𝑣2 (

𝐿2

𝑥2
− 1) = 0   . 

Solving this equation for 𝑥(𝑡), it follows that 

𝑥

√𝑥2 − 𝐿2
𝑑𝑥 =

3

4
(1 + 𝑒)𝑣 𝑑𝑡 ⇒    √𝑥2 − 𝐿2 =

3

4
(1 + 𝑒)𝑣𝑡  ⇒ 

𝑥(𝑡) = √𝐿2 + [
3

4
(1 + 𝑒)𝑣𝑡]

2
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Problem 2 

The upper end 𝐵 of the bar 𝐴𝐵, having a length of 𝐿 and mass of 𝑚, is connected to the 

fixed point 𝐶 by an inextensible rope, as shown in Fig. 9.5. At the time 𝑡 = 0, the rope is 

cut, with 𝜃(0) = 𝜃0 and 𝜃̇(0) = 0. 

1. Determine the angular speed 𝜃̇ of the bar as a function of 𝜃. 

2. Determine the reaction forces at 𝐴. 

  

 

     Figure 9.5 

 

Solution:  

Fig. 9.6 shows the free body diagram of the bar just after the rope is cut. 

 

Figure 9.6 

𝑚𝑔 

𝐴2 

𝐴1 

𝐶 

𝜃 

𝐴 

𝐵 

𝒆1 

𝒆2 
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Since the reaction force {𝐴1, 𝐴2} at the fixed point 𝐴 don’t do work on the bar, its energy 

is conserved. Therefore, 

(𝑇2 − 𝑇1) + (𝑉𝑔2 − 𝑉𝑔1) = 0   , 

where, 

𝑉𝑔2 − 𝑉𝑔1 = −(−𝑚𝑔𝒆2) ⋅ [
𝐿

2
cos(𝜃) −

𝐿

2
cos(𝜃0)] 𝒆2 = −

𝑚𝑔𝐿

2
[cos(𝜃0) − cos(𝜃)]   , 

𝑇2 − 𝑇1 = 𝑇2 =
1

2
𝑚(𝒗̅ ⋅ 𝒗̅) +

1

2
𝐼𝜃̇̅2   , 

𝒗̅ = 𝜃̇𝒆3 ×
𝐿

2
[sin(𝜃) 𝒆1 + cos(𝜃) 𝒆2] =

𝜃̇𝐿

2
[− cos(𝜃) 𝒆1 + sin(𝜃) 𝒆2]   ⇒ 

𝑇2 =
1

2
𝑚(

𝜃̇𝐿

2
)

2

+
1

2
(
𝑚𝐿2

12
) 𝜃̇2 =

𝑚𝐿2

6
𝜃̇2   , 

such that 

𝑚𝐿2

6
𝜃̇2 −

𝑚𝑔𝐿

2
[cos(𝜃0) − cos(𝜃)] = 0  ⇒ 

𝜃̇2 =
3𝑔

𝐿
[cos(𝜃0) − cos(𝜃)] 

Also, since the bar rotates clockwise, the angular velocity is given by 𝜃̇ = −√𝜃̇2. 

Next, the balance of linear momentum of the bar yields 

𝐴1𝒆1 + (𝐴2 −𝑚𝑔)𝒆2 = 𝑚𝒗̇̅   , 

𝒗̇̅ =
𝐿

2
[{𝜃̇2 sin(𝜃) − 𝜃̈ cos(𝜃)}𝒆1 + {𝜃̈ sin(𝜃) + 𝜃̇

2 cos(𝜃)}𝒆2]   . 

Therefore, 

𝐴1 =
𝑚𝐿

2
[𝜃̇2 sin(𝜃) − 𝜃̈ cos(𝜃)]   ,   𝐴2 = 𝑚 [𝑔 +

𝐿

2
{𝜃̈ sin(𝜃) + 𝜃̇2 cos(𝜃)}]   . 

Furthermore, using the balance of angular momentum about the fixed point 𝐴 gives 
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𝑴𝐴 =
𝐿

2
[sin(𝜃) 𝒆1 + cos(𝜃) 𝒆2] × (−𝑚𝑔𝒆2) = −

𝑚𝑔𝐿

2
sin(𝜃) 𝒆3 = 𝑯̇𝐴   , 

where, 

𝑯𝐴 = 𝑯𝐶 + 𝒙𝐶 𝐴⁄ ×𝑚𝒗̅ =
𝑚𝐿2𝜃̇

12
𝒆3 +

𝑚𝐿2𝜃̇

4
|

𝒆1 𝒆2 𝒆3
sin(𝜃) cos(𝜃) 0
− cos(𝜃) sin(𝜃) 0

| =
𝑚𝐿2𝜃̇

3
𝒆3   ⇒ 

𝑯̇𝐴 =
𝑚𝐿2𝜃̈

3
𝒆3   . 

Thus, 

𝜃̈ = −
3𝑔

2𝐿
sin(𝜃)   . 

Substituting the expressions of {𝜃̇2, 𝜃̈} into the expressions of the reaction forces {𝐴1, 𝐴2}, 

it follows that 

𝐴1 =
3𝑚𝑔

2
sin(𝜃) [cos(𝜃0) −

1

2
cos(𝜃)]   , 

𝐴2 =
𝑚𝑔

2
[3 cos(𝜃0) cos(𝜃) +

3

2
sin2(𝜃) − 1]   . 
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Problem 3 

Fig. 9.7 shows a cylinder of mass 𝑚 and radius 𝑅 which is being pulled to the right by a 

constant horizontal force 𝑃 at its center 𝐶. Initially, at the time 𝑡 = 0, 𝑥(0) = 0, 

 𝑥̇(0) = −𝜔0𝑅, 𝜃(0) = 0 and 𝜃̇(0) = 𝜔0 > 0. 

Determine 𝑥(𝑡) and 𝜃(𝑡) and the magnitude of the friction force between the cylinder and 

the ground for the following cases: 

1. 𝑃 = 0. 

2. 𝑃 = 2𝜇𝑚𝑔. 

3. 𝑃 = 4𝜇𝑚𝑔. 

 

     Figure 9.7 

  

 

𝑔 

𝒆1 

𝒆2 

𝐶 

𝑃 

𝜃̇, 𝜃̈ 

𝑅 

𝑥 
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Solution: 

The free body diagram of the cylinder is shown in Fig. 9.8. 

 

 

Figure 9.8 

Assuming that the cylinder rolls without slipping along the ground, then 

𝒗𝐶 𝐵⁄ = 𝒗𝐶 = 𝑥̇𝒆1 = 𝝎× 𝒙𝐶 𝐵⁄ = 𝜔𝒆3 × 𝑅𝒆2 = −𝜔𝑅𝒆1   ⇒    𝑥̇ = −𝜔𝑅   ,   𝑥̈ = −𝜔̇𝑅   . 

Moreover, the balance equations of linear momentum and angular momentum about the 

center 𝐶 yield 

𝑁 = 𝑚𝑔   ,   𝑃 − 𝑓 = 𝑚𝑥̈   , 

−𝑅𝑓 = 𝐼𝐶𝜔̇ =
1

2
𝑚𝑅2𝜔̇   ⇒    𝑓 = −

1

2
𝑚𝑅𝜔̇ =

1

2
𝑚𝑥̈   . 

Therefore, 

𝑓 =
1

3
𝑃   ,   𝑥̈ =

2

3

𝑃

𝑚
   ,   𝜔̇ = −

2

3

𝑃

𝑚𝑅
   . 

Now, in rolling without slipping, the friction force is static. Thus, 

|𝑓| ≤ 𝜇|𝑁|   ⇒    𝑃 ≤ 3𝜇𝑚𝑔   . 

Case 1: 𝑃 = 0 

Since 𝑃 < 3𝜇𝑚𝑔, the cylinder rolls without slipping along the ground. Thus, 

𝑥̈ = 0  ⇒    𝑥(𝑡) = 𝑥(0) + 𝑥̇(0)𝑡 = −𝜔0𝑅𝑡   , 

𝐵 

𝐶 

𝑚𝑔 

𝑓 

𝑁 

𝑅 
𝒆1 

𝒆2 

𝑃 
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𝜔̇ = 0  ⇒    𝜃(𝑡) = 𝜃(0) + 𝜃̇(0)𝑡 = 𝜔0𝑡   . 

Case 2: 𝑃 = 2𝜇𝑚𝑔 

Since 𝑃 < 3𝜇𝑚𝑔, the cylinder rolls without slipping along the ground. Thus, 

𝑥̈ =
2

3

𝑃

𝑚
=
4𝜇𝑔

3
  ⇒    𝑥(𝑡) = 𝑥(0) + 𝑥̇(0)𝑡 +

1

2
(
4𝜇𝑔

3
) 𝑡2 = (

2𝜇𝑔𝑡

3
− 𝜔0𝑅) 𝑡   , 

𝜔̇ = −
2

3

𝑃

𝑚𝑅
= −

4𝜇𝑔

3𝑅
  ⇒    𝜃(𝑡) = 𝜃(0) + 𝜃̇(0)𝑡 +

1

2
(−

4𝜇𝑔

3𝑅
) 𝑡2 = (𝜔0 −

2𝜇𝑔

3𝑅
) 𝑡   . 

Case 3: 𝑃 = 4𝜇𝑚𝑔 

Since 𝑃 > 3𝜇𝑚𝑔, the cylinder slips on the ground. Thus, 

𝑓 = 𝜇𝑁 = 𝜇𝑚𝑔   . 

Furthermore, the equations of motion are given by 

𝑃 − 𝜇𝑚𝑔 = 𝑚𝑥̈   ⇒    𝑥̈ = 3𝜇𝑔   ,   − 𝑅𝜇𝑚𝑔 =
1

2
𝑚𝑅2𝜔̇   ⇒    𝜔̇ = −

2𝜇𝑔

𝑅
   . 

Thus, 

𝑥(𝑡) = 𝑥(0) + 𝑥̇(0)𝑡 +
1

2
(3𝜇𝑔)𝑡2 = (

3𝜇𝑔𝑡

2
− 𝜔0𝑅) 𝑡   , 

𝜃(𝑡) = 𝜃(0) + 𝜃̇(0)𝑡 +
1

2
(−

2𝜇𝑔

𝑅
) 𝑡2 = (𝜔0 −

𝜇𝑔𝑡

𝑅
) 𝑡   . 
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Problem 4 

A bowling ball of mass 𝑚 and radius 𝑅 is thrown onto the ground with a velocity 𝑣0 that 

is essentially horizontal. The friction coefficient between the ball and the ground is 𝜇. 

Initially, at the time 𝑡 = 0, 𝜃(0) = 0 and 𝜃̇(0) = 0. 

Determine the distance traveled by the ball before it starts rolling without slipping on the 

ground. 

 

Solution: 

The free body diagram of the ball is shown in Fig. 9.9. 

 

 

Figure 9.9 

Since the ball slips on the ground, the friction force 𝑓 acting on it at the contact point 𝐵 

with the ground is given by 

𝑓 = 𝜇𝑁   . 

Now, using the balance of linear momentum and angular momentum about the center 𝐶 of 

the ball, it follows that 

𝑁 = 𝑚𝑔   ,    − 𝑓 = −𝜇𝑚𝑔 = 𝑚𝑣̇   ⇒    𝑣̇ = −𝜇𝑔  ⇒    𝑣 = 𝑣(0) − 𝜇𝑔𝑡 = 𝑣0 − 𝜇𝑔𝑡   ; 

−𝑅𝑓 = −𝜇𝑚𝑔𝑅 = 𝐼𝜃̈̅ =
2

5
𝑚𝑅2𝜃̇   ⇒    𝜃̈ = −

5𝜇𝑔

2𝑅
  ⇒    𝜃̇ = 𝜃̇(0) −

5𝜇𝑔𝑡

2𝑅
= −

5𝜇𝑔𝑡

2𝑅
   . 

𝐵 

𝐶 

𝑚𝑔 

𝑓 

𝑁 

𝑣 

𝜔 

𝑅 
𝒆1 

𝒆2 
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Next, when the ball starts rolling without slipping, the velocity of the contact point 𝐵 with 

the ground vanishes, 𝒗𝐵 = 0. Thus, the time spent up to this point is calculated using the 

kinematic condition for rolling without slipping, namely 

𝒗𝐶 = 𝒗𝐶 𝐵⁄ = 𝝎× 𝒙𝐶 𝐵⁄ = −𝑅𝜔𝒆1   ⇒    𝑣0 − 𝜇𝑔𝑡 = −𝑅 (−
5𝜇𝑔𝑡

2𝑅
) 𝑡  ⇒    𝑡 =

2𝑣0
7𝜇𝑔

   . 

Moreover, the distance traveled up to this point is given by 

𝑥 = 𝑥(0) + 𝑣0𝑡 −
1

2
𝜇𝑔𝑡2 = 𝑣0 (

2𝑣0
7𝜇𝑔

) −
1

2
𝜇𝑔 (

2𝑣0
7𝜇𝑔

)
2

=
12𝑣0

2

49𝜇𝑔
   . 
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Problem Set 10 Solutions 

Problem 1 

Consider the assembly shown in Fig. 10.1. The hanging block of mass 𝑚1 is attached to 

the cylinder of center 𝐵, mass 𝑚2 and radius 𝑟2 by an inextensible cord, wrapped at a radius 

𝑟1 and passes over a drum of center 𝐴, mass 𝑚3 and radius 𝑅. 

It is assumed that the cord does not slip on the drum and the cylinder. Moreover, the 

coefficient of friction between the cylinder and the ground is 𝜇. 

1. Assuming that the cylinder rolls without slipping along the ground, determine the 

acceleration of the block. 

2. Assuming that 

{𝜇 = 0.3,𝑚1 = 𝑚,𝑚2 = 𝑚 2⁄ , 𝑟1 = 𝑟, 𝑟2 = 2𝑟, 𝐼2̅ = 6𝑚𝑟2, 𝐼3̅ = 3𝑚𝑟2, 𝑅 = 𝑟1 + 𝑟2}, 

show that the cylinder slips along the ground. Also, determine the acceleration of the 

block. 

 

Figure 10.1 

  

𝑅 

𝑚3 𝑚2 
𝑟1 𝑟2 

𝑚1 

𝐴 

𝐵 

𝜇 

𝑔 
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Solution: 

The free body diagrams of each part is shown in Fig. 10.2. 

 

Figure 10.2 

The balance of linear momentum equations of the block and cylinder are given by 

𝑇𝐴 −𝑚1𝑔 = −𝑚1𝑦̈   ;    𝑁 = 𝑚2𝑔   ,   𝑓 − 𝑇𝐵 = 𝑚2𝑥̈   . 

Moreover, the balance of angular momentum equations of the drum and cylinder about 

their center of mass yield 

(𝑇𝐴 − 𝑇𝐵)𝑅 = 𝐼𝐴𝜔̇𝐴   ,   𝑓𝑟2 + 𝑇𝐵𝑟1 = 𝐼𝐵𝜔̇𝐵   . 

Next, since the cylinder rolls without slipping on the ground 

𝒗𝐷 = 𝑥̇𝒆1 + 𝜔𝐵𝒆3 × (−𝑟2𝒆2) = (𝑥̇ + 𝜔𝐵𝑟2)𝒆1 = 𝟎  ⇒    𝑥̈ = −𝜔̇𝐵𝑟2   . 

Now, since the cord does not slip on the drum and the cylinder 

𝒗𝐶′ = 𝒗𝐶 = 𝜔𝐴𝒆3 × (−𝑅𝒆1) = −𝜔𝐴𝑅𝒆2   ,   𝒗𝐹′ = 𝒗𝐹 = 𝜔𝐴𝒆3 × 𝑅𝒆2 = −𝜔𝐴𝑅𝒆1   , 

𝒗𝐸′ = 𝒗𝐸 = 𝑥̇𝒆1 + 𝜔𝐵𝒆3 × 𝑟1𝒆2 = (𝑥̇ − 𝜔𝐵𝑟1)𝒆1   . 

Also, the inextensibility of the cord yields 
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𝒗𝐶′ = −𝑦̇𝒆2   ,    𝒗𝐹′ = 𝒗𝐸′    . 

Thus, 

𝑦̈ = 𝜔̇𝐴𝑅   ,   𝑥̈ = 𝜔̇𝐵𝑟1 − 𝜔̇𝐴𝑅   . 

In summary, the equations of motion to be solved are given by 

𝑇𝐴 −𝑚1𝑔 = −𝑚1𝑦̈   ,   𝑓 − 𝑇𝐵 = 𝑚2𝑥̈   ,   (𝑇𝐴 − 𝑇𝐵)𝑅 = 𝐼𝐴𝜔̇𝐴   ,   𝑓𝑟2 + 𝑇𝐵𝑟1 = 𝐼𝐵𝜔̇𝐵   , 

𝑥̈ = −𝜔̇𝐵𝑟2   ,   𝑦̈ = 𝜔̇𝐴𝑅   ,   𝑥̈ = 𝜔̇𝐵𝑟1 − 𝜔̇𝐴𝑅   . 

Consequently, 

𝑦̈ = [
𝑚1𝑅

2(𝑟1 + 𝑟2)
2

{𝐼𝐴 + (𝑚1 +𝑚2)𝑅2}𝑟2
2 + 2(𝐼𝐴 +𝑚1𝑅2)𝑟1𝑟2 + (𝐼𝐵 +𝑚1𝑟1

2)𝑅2 + 𝐼𝐴𝑟1
2] 𝑔   . 

Next, since the cylinder rolls without slipping on the ground, the frictional force satisfies 

|𝑓| ≤ |𝜇𝑁|   . 

where 𝑁 = 𝑚2𝑔 and 𝑓 is obtained by solving the equations of motion, such that 

𝑓 = [
(𝐼𝐵 −𝑚2𝑟1𝑟2)𝑅

2

{𝐼𝐴 + (𝑚1 +𝑚2)𝑅2}𝑟2
2 + 2(𝐼𝐴 +𝑚1𝑅2)𝑟1𝑟2 + (𝐼𝐵 +𝑚1𝑟1

2)𝑅2 + 𝐼𝐴𝑟1
2]𝑚1𝑔   . 

Therefore, 

𝜇 ≥ [
(𝐼𝐵 −𝑚2𝑟1𝑟2)𝑅

2

{𝐼𝐴 + (𝑚1 +𝑚2)𝑅2}𝑟2
2 + 2(𝐼𝐴 +𝑚1𝑅2)𝑟1𝑟2 + (𝐼𝐵 +𝑚1𝑟1

2)𝑅2 + 𝐼𝐴𝑟1
2]
𝑚1

𝑚2
   . 

Substituting the given data into this inequality yields 

𝜇 ≥
1

2
   , 

which shows that if 𝜇 = 1 3⁄ , the cylinder slips along the ground. Also, in this case, the 

frictional force is given by 𝑓 = 𝜇𝑁 = 𝑚2𝑔 3⁄  and the equations of motion reduce to 

𝑇𝐴 −𝑚1𝑔 = −𝑚1𝑦̈    ,    
1

3
𝑚2𝑔 − 𝑇𝐵 = 𝑚2𝑥̈   ,   (𝑇𝐴 − 𝑇𝐵)𝑅 = 𝐼𝐴𝜔̇𝐴   , 

1

3
𝑚2𝑔𝑟2 + 𝑇𝐵𝑟1 = 𝐼𝐵𝜔̇𝐵   ,   𝑦̈ = 𝜔̇𝐴𝑅   ,   𝑥̈ = 𝜔̇𝐵𝑟1 − 𝜔̇𝐴𝑅   . 
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Solving this system of equations for 𝑦̈, it follows that 

𝑦̈ = [
{3𝑚1𝑚2𝑟1

2 +𝑚2
2𝑟1𝑟2 + (3𝑚1 −𝑚2)𝐼𝐵}𝑅

2

{𝐼𝐴 + (𝑚1 +𝑚2)𝑅2}𝐼𝐵 +𝑚2𝑟1
2(𝐼𝐴 +𝑚1𝑅2)

]
𝑔

3
   . 

Substituting the given data into this expression gives 

 𝑦̈ =
17

35
𝑔 ≈ 0.486𝑔   . 
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𝑅 

𝐶 

𝑚1 

𝑚2 𝑚3 
𝑣 

𝜇 

𝑔 

Problem 2 

Figure 10.3 shows a cylinder of center 𝐶, mass 𝑚1 and radius 𝑅 which is placed on a 

stationary box of mass 𝑚2. The coefficient of friction between the cylinder and the box is 

𝜇. At the time 𝑡 = 0, a block of mass 𝑚1, moving freely with a leftward velocity of 𝑣, 

strikes the box and sticks to it.  

1. Assuming that 𝜇 = 0, determine the velocities of the box and the center 𝐶 of the 

cylinder just after impact. 

2. Assuming that 𝜇 > 0 and the cylinder slips on the box during impact, determine the 

velocities of the box and the center 𝐶 of the cylinder just after impact. 

3. Using your answers in part 2, determine the time it takes for the cylinder to begin rolling 

without slipping on the box. 

4. Assuming that 𝜇 → ∞, determine the velocities of the box and the center 𝐶 of the 

cylinder just after impact.  

  

 

      

    

  

 

Figure 10.3 
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Solution: 

The free body diagrams of the cylinder and the system consisting of the box and the block 

at impact are shown in Fig. 10.4. 

 

Figure 10.4 

Since the block sticks to the box, their velocities {𝒗𝐴2, 𝒗𝐵2} just after impact are equal 

𝒗𝐴2 = 𝒗𝐵2 = 𝑢𝒆1   . 

Next, for a finite value of 𝜇, the impulsive force 𝑭̂ = ∫ 𝑭𝑑𝑡
𝑡2

𝑡1
 at impact (𝑡2 → 𝑡1) vanishes. 

Thus, the balance equations of linear impulse-momentum and angular-impulse momentum 

about the center of mass 𝐶 of the cylinder give 

𝑭̂ = 𝑚1(𝒗𝐶2 − 𝒗𝐶1) = 𝟎  ⇒    𝒗𝐶2 = 𝒗𝐶1 = 𝟎   , 

𝑴̂𝐶 = 𝐼𝐶(𝜔2 − 𝜔1)𝒆3 = 𝟎  ⇒    𝜔2 = 𝜔1 = 0   . 

Moreover, the balance of linear impulse-momentum equation of the system consisting of 

the box and the block yields 

−𝑭̂ = 𝑚2(𝒗𝐵2 − 𝒗𝐵1) + 𝑚3(𝒗𝐴2 − 𝒗𝐴1) = 𝟎  ⇒  
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𝑚2𝑢𝒆1 +𝑚3[𝑢𝒆1 − (−𝑣𝒆1)] = 𝟎  ⇒    𝑢 = −(
𝑚3

𝑚2 +𝑚3
) 𝑣   , 

such that 

𝒗𝐴2 = 𝒗𝐵2 = −(
𝑚3

𝑚2 +𝑚3
) 𝑣𝒆1   . 

Now, if the cylinder slips along the box, then 

𝑭 = −sgn(𝒗𝑠𝑙𝑖𝑝)𝑓𝒆1 + 𝑁𝒆2   ,   𝑓 = 𝜇𝑁   , 

sgn(𝒗𝑠𝑙𝑖𝑝) = sgn(𝒗𝐷 𝐷′⁄ ) = sgn(−𝒗𝐷′) = sgn(−𝒗𝐵) = +1   . 

Therefore, the balance of linear momentum of the cylinder yields 

𝑁 = 𝑚1𝑔   ,    − 𝜇𝑚1𝑔 = 𝑚1𝑥̈   ⇒    𝑥̈ = −𝜇𝑔   ,   𝑥̇(0) = 0  ⇒    𝑥̇ = −𝜇𝑔𝑡   . 

Furthermore, using the balance of angular momentum of the cylinder about its center of 

mass 𝐶, it follows that 

−𝜇𝑚1𝑔𝑅 = 𝐼𝐶𝜔̇   ,   𝜔(0) = 0  ⇒    𝜔 = −
𝜇𝑚1𝑔𝑅

𝐼𝐶
𝑡 = −

𝜇𝑚1𝑔𝑅

1
2𝑚1𝑅

2
𝑡 = −

2𝜇𝑔

𝑅
𝑡  . 

Next, at the instant when the cylinder starts rolling without slipping on the box, then 

𝒗𝐶 = −𝜇𝑔𝑡𝒆1 = 𝒗𝐷 +𝝎× 𝒙𝐶 𝐷⁄ = 𝒗𝐷
′ −

2𝜇𝑔

𝑅
𝑡𝒆3 × 𝑅𝒆2   ⇒    𝒗𝐷

′ = −3𝜇𝑔𝑡𝒆1   . 

where the velocity 𝒗𝐷′ of the box is calculated using the balance of linear momentum, such 

that 

−𝑭 + (𝑁2 −𝑚2𝑔)𝒆2 = 𝜇𝑚1𝑔𝒆1 + (𝑁2 −𝑚1𝑔 −𝑚2𝑔)𝒆2 = 𝑚2𝑦̈𝒆1   ⇒ 

𝑁2 = (𝑚1 +𝑚2)𝑔   ,   𝑦̈ =
𝜇𝑚1𝑔

𝑚2
   ,   𝑦̇(0) = 𝑢 = −(

𝑚3

𝑚2 +𝑚3
) 𝑣  ⇒ 

𝑦̇ = −(
𝑚3

𝑚2 +𝑚3
) 𝑣 +

𝜇𝑚1𝑔

𝑚2
𝑡  ⇒    𝒗𝐷

′ = [−(
𝑚3

𝑚2 +𝑚3
) 𝑣 +

𝜇𝑚1𝑔

𝑚2
𝑡] 𝒆1   . 

Hence, the time it takes for the cylinder to begin rolling without slipping is given by 
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−(
𝑚3

𝑚2 +𝑚3
) 𝑣 +

𝜇𝑚1𝑔

𝑚2
𝑡 = −3𝜇𝑔𝑡  ⇒    𝑡 = [

𝑚2𝑚3

(𝑚2 +𝑚3)(3𝑚2 +𝑚1)
]
𝑣

𝜇𝑔
   . 

On the other hand, if 𝜇 → ∞, then the cylinder rolls without slipping along the box and the 

frictional force satisfies |𝑓| ≤ 𝜇|𝑁|. Therefore, the balance equations of linear impulse-

momentum and angular-impulse momentum about the center of mass 𝐶 of the cylinder 

give 

𝑭̂ = 𝑓𝒆1 + 𝑁̂𝒆2 = 𝑚1(𝑣𝐶2 − 𝑣𝐶1)𝒆1 = 𝑚1𝑣𝐶2𝒆1   ⇒    𝑁̂ = 0   ,   𝑓 = 𝑚1𝑣𝐶2   , 

𝑅𝑓 =
1

2
𝑚1𝑅

2(𝜔 − 𝜔0) =
1

2
𝑚1𝑅

2𝜔  ⇒   𝑓 =
1

2
𝑚1𝑅𝜔   . 

Moreover, the balance of linear impulse-momentum equation of the system consisting the 

box and the block yields 

−𝑭̂ = 𝑚2(𝒗𝐵2 − 𝒗𝐵1) + 𝑚3(𝒗𝐴2 − 𝒗𝐴1) = [(𝑚2 +𝑚3)𝑢 + 𝑚3𝑣]𝒆1   ⇒ 

−𝑓 = (𝑚2 +𝑚3)𝑢 + 𝑚3𝑣   . 

Also, since the cylinder rolls without slipping along the box 

𝒗𝐷2 = 𝒗𝐷′2   ⇒    𝒗𝐶2 +𝝎× 𝒙𝐷 𝐶⁄ = (𝑣𝐶2 + 𝜔𝑅)𝒆1 = 𝑢𝒆1   ⇒    𝑢 = 𝑣𝐶2 + 𝜔𝑅   . 

Next, solving the system of equations 

𝑓 = 𝑚1𝑣𝐶2   ,   𝑓 =
1

2
𝑚1𝑅𝜔   ,   − 𝑓 = (𝑚2 +𝑚3)𝑢 + 𝑚3𝑣   ,   𝑢 = 𝑣𝐶2 + 𝜔𝑅   , 

for {𝑣𝐶2, 𝑢, 𝜔, 𝑓} it follows that 

𝑣𝐶2 = −[
𝑚3

𝑚1 + 3(𝑚2 +𝑚3)
] 𝑣   ,   𝑢 = − [

3𝑚3

𝑚1 + 3(𝑚2 +𝑚3)
] 𝑣   , 

𝜔 = −[
2𝑚3

𝑚1 + 3(𝑚2 +𝑚3)
]
𝑣

𝑅
   ,   𝑓 = − [

𝑚3

𝑚1 + 3(𝑚2 +𝑚3)
]𝑚1𝑣   . 
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Problem 3 

Figure 10.5 shows a disk of mass 𝑚 and radius 𝑏, which is attached to a frame by an 

inextensible cord of length 3𝑏 passing through its center 𝐶. The frame rotates with a 

constant angular acceleration 𝜃̈ = 𝑝. The coefficient of friction between the disk and the 

frame at the point of contact 𝐵 is 𝜇. Initially, at the time 𝑡 = 0, 𝜃(0) = 0 and both the disk 

and the frame are at rest. The maximum tension in the cord is given by 𝑇𝑐𝑟. Also, gravity 

is neglected. 

 

 

 

 

 

 

Figure 10.5 

 

1. Assuming that 𝜇 = 0, determine: 

1.1. the angular velocity of the disk. 

1.2. the tension in the cord. 

1.3. the angular velocity of the frame when the disk is on the verge of bouncing off. 

2. Determine the critical value of 𝜇, denoted by 𝜇𝑐𝑟, for which the disk slips on the frame 

at the onset of motion. 

3. If 𝜇 > 𝜇𝑐𝑟, determine the angular velocity of the frame when the disk is on the verge 

of slipping. 

 

 

 

 

  
 



𝑂 

𝐴 

𝐶 

𝑏 3𝑏 

𝜃 

𝑚 

𝜇 

𝐵 
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4. Assuming that the disk does not slip on the frame, determine: 

4.1. the kinetic energy of the disk. 

4.2. the angular momentum of the disk about the fixed point 𝑂. 

4.3. the minimum value of the angular acceleration of the disk for which the cord tears at 

the onset of motion.  

 

Solution: 

The free body diagram of the disk is shown in Fig. 10.6. 

 
Figure 10.6 

In the absence of friction (𝑓 = 0), the balance of linear momentum and angular momentum 

about the center of mass of the disk yield 

𝑴𝐶 = 𝟎 = 𝐼𝐶𝜔̇𝒆3   ⇒    𝜔 = 𝜔(0) = 0   ,   − 𝑇𝒆𝑟 + 𝑁𝒆𝜃 = 𝑚𝒂̅   , 

𝒗̅ = 𝒗𝐶 𝐴⁄ =
𝑑(3𝑏𝒆𝑟 + 𝑏𝒆𝜃)

𝑑𝑡
= 𝑏(−𝜃̇𝒆𝑟 + 3𝜃̇𝒆𝜃)   ⇒ 

𝒂̅ = 𝒗̇̅ = 𝑏[−(3𝜃̇2 − 𝜃̈)𝒆𝑟 + (3𝜃̈ − 𝜃̇
2)𝒆𝜃]   , 

Thus, 

𝑇 = 𝑚𝑏(3𝜃̇2 − 𝜃̈)   ,   𝑁 = 𝑚𝑏(3𝜃̈ − 𝜃̇2)   . 

Now, using 

𝜃̈ = 𝑝   ,   𝜃̇(0) = 0  ⇒    𝜃̇ = 𝑝𝑡   , 
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it follows that 

𝑇 = 𝑚𝑏(3𝑝2𝑡2 − 𝑝)   ,   𝑁 = 𝑚𝑏(3𝑝 − 𝑝2𝑡2). 

Also, the angular velocity of the frame when the disk is on the verge of bouncing off is 

given by 

𝑁(𝜃̇𝑐) = 0  ⇒    𝑚𝑏(3𝑝 − 𝜃̇𝑐
2) = 0  ⇒    𝜃̇𝑐 = √3𝑝   . 

Next, assuming that the disk rolls without slipping along the frame at the onset of motion, 

then the equations of motion become 

𝑓 − 𝑇 = 𝑚𝑏(3𝜃̇2 − 𝜃̈)   ,   𝑁 = 𝑚𝑏(3𝜃̈ − 𝜃̇2)   ,   𝑏𝑓 =
1

2
𝑚𝑏2𝜔̇   . 

Moreover, this no-slip condition yields 

𝒗𝐵 = 𝒗𝐵′ = 3𝑏𝜃̇𝒆𝜃   , 

such that 

𝒗̅ = 𝑏(−𝜃̇𝒆𝑟 + 3𝜃̇𝒆𝜃) 

= 𝒗𝐵 +𝝎× 𝒙𝐶 𝐵⁄ = 3𝑏𝜃̇𝒆𝜃 + 𝜔𝒆3 × 𝑏𝒆𝜃 = 𝑏(−𝜔𝒆𝑟 + 3𝜃̇𝒆𝜃) 

which gives 

𝜔 = 𝜃̇   ⇒    𝜔̇ = 𝜃̈ = 𝑝   . 

Therefore, the static frictional force takes the form 

𝑓 =
1

2
𝑚𝑏𝜔̇ =

1

2
𝑚𝑏𝑝   , 

and it must satisfy 

|𝑓| ≤ 𝜇|𝑁|  ⇒    𝜇 ≥ 𝜇𝑐𝑟    ,   𝜇𝑐𝑟 =
|𝑓|

|𝑁|
   . 

Now, at the onset of motion 

𝑁(0) = 3𝑚𝑏𝑝   . 
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Thus, 

𝜇𝑐𝑟 =

1
2𝑚𝑏𝑝

3𝑚𝑏𝑝
=
1

6
   . 

Also, when the disk is on the verge of slipping, it follows that 

|𝑓| = 𝜇|𝑁|   ⇒    𝜃̇ = √(3 −
1

2𝜇
) 𝑝   . 

Next, if the disk does not slip along the frame for all times, then its kinetic becomes 

𝑇 =
1

2
𝑚(𝒗̅ ⋅ 𝒗̅) +

1

2
(
1

2
𝑚𝑏2)𝜔2   , 

where (see the previous results), 

𝒗̅ = 𝑏(−𝜔𝒆𝑟 + 3𝜃̇𝒆𝜃) = 𝑏𝜃̇(−𝒆𝑟 + 3𝒆𝜃) = 𝑏𝑝𝑡(−𝒆𝑟 + 3𝒆𝜃)  , 

such that 

𝑇 =
1

2
𝑚(10𝑏2𝑝2𝑡2) +

1

4
𝑚𝑏2𝑝2𝑡2 =

21

4
𝑚𝑏2𝑝2𝑡2   . 

Moreover, the angular momentum of the disk about the fixed point O is given by 

𝑯𝑂 = 𝑯̅ + 𝒙𝐶 𝑂⁄ ×𝑚𝒗̅ =
1

2
𝑚𝑏2𝑝𝑡𝒆3 + |

𝒆𝑟 𝒆𝜃 𝒆3
3𝑏 𝑏 0

−𝑚𝑏𝑝𝑡 3𝑚𝑏𝑝𝑡 0
| =

21

4
𝑚𝑏2𝑝𝑡𝒆3   . 

Now, recall that the equations of motion in this case (no-slip) take the forms 

𝑓 − 𝑇 = 𝑚𝑏(3𝜃̇2 − 𝑝)   ,   𝑁 = 𝑚𝑏(3𝑝 − 𝜃̇2)   ,   𝑏𝑓 =
1

2
𝑚𝑏2𝜔̇ =

1

2
𝑚𝑏2𝑝   . 

Hence, if the cord tears at the onset of motion, then 𝑇 = 𝑇𝑐𝑟 and 𝜃̇ = 0 so that 

𝑓 − 𝑇𝑐𝑟 = −𝑚𝑏𝑝𝑐𝑟   ,   𝑏𝑓 =
1

2
𝑚𝑏2𝑝𝑐𝑟   . 

Solving these two equations for {𝑝𝑐𝑟, 𝑓} yields 

𝑝𝑐𝑟 =
2

3

𝑇𝑐𝑟
𝑚𝑏

   ,   𝑓 =
1

3
𝑇𝑐𝑟   . 
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𝑅 

𝐶 

𝑚1 

𝑚2 

𝐿 = 4𝑅 

𝜇 

Problem 4 

Consider the assembly shown in Fig. 10.7. The hanging block of mass 𝑚2 is attached to 

the cylinder of center 𝐶, mass 𝑚1 and radius 𝑅 by an inextensible cord, wrapped around 

the cylinder and passes over a massless pulley. The coefficient of friction between the 

cylinder and the ground is 𝜇. Moreover, the system is released from rest with the cylinder 

being at a distance 4𝑅 relative to the fixed vertical wall. The coefficient of restitution 

between the vertical wall and the cylinder is given by 𝑒 = 1 2⁄ . 

1. Assuming that the cylinder rolls without slipping along the ground, determine: 

1.1. the acceleration of its center 𝐶 at the onset of motion. 

1.2. the minimum value of 𝜇 for this to happen. 

1.3. the velocity of its center 𝐶 just before impact with the wall. 

2. Determine the velocity of the center 𝐶 of the cylinder just after impact with the wall. 

3. Determine the angular velocity of the cylinder just after impact with the wall. 

4. Does the cylinder slip along the ground just after impact with the wall? Explain your 

answer. 

 

 

 

 

 

 

Figure 10.7 
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Solution: 

The free body diagrams of the cylinder and the block before impact are shown in Fig. 10.8. 

 

Figure 10.8 

If the cylinder rolls without slipping on the ground, then 

𝒗𝐵 = 𝟎  ⇒    𝒗𝐶 = 𝑥̇𝒆1 = 𝒗𝐵 +𝝎× 𝒙𝐶 𝐵⁄ = 𝜔𝒆3 × 𝑅𝒆2 = −𝜔𝑅𝒆1   ⇒    𝑥̈ = −𝜔̇𝑅   . 

Furthermore, assuming that the cord does not slip along the cylinder, it follows that 

𝒗𝐷 𝐷′⁄ = 𝟎   , 

where, 

𝒗𝐷 = 𝒗𝐶 +𝝎× 𝒙𝐶 𝐵⁄ = 𝑥̈𝒆1 + 𝜔𝒆3 × 𝑅𝒆2 = (𝑥̈ − 𝜔𝑅)𝒆1   ,   𝒗𝐷′ = 𝑦̇𝒆1   , 

such that 

𝑥̈ − 𝜔̇𝑅 = 𝑦̈   . 

Next, using that balance equation of linear momentum of the block and the cylinder 

together with the balance equation of angular momentum about the center of mass 𝐶 of the 

cylinder, it follows that 

𝑇 −𝑚2𝑔 = −𝑚2𝑦̈   ,   𝑇 − 𝑓 = 𝑚1𝑥̈   ,    𝑁 = 𝑚1𝑔   ,   − 𝑅𝑓 =
1

2
𝑚𝑅2𝜔̇   . 
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Solving the system of equations 

𝑥̈ = −𝜔̇𝑅   ,   𝑥̈ − 𝜔̇𝑅 = 𝑦̈   , 

𝑇 −𝑚2𝑔 = −𝑚2𝑦̈   ,   𝑇 − 𝑓 = 𝑚1𝑥̈   ,    𝑁 = 𝑚1𝑔   ,   − 𝑅𝑓 =
1

2
𝑚𝑅2𝜔̇   , 

for {𝑥̈, 𝑦̈, 𝜔̇, 𝑇, 𝑓} yield 

𝑥̈ = (
2𝑚2

3𝑚1 + 4𝑚2
)𝑔   ,   𝑦̈ = (

4𝑚2

3𝑚1 + 4𝑚2
) 𝑔   ,   𝜔̇ = −(

2𝑚2

3𝑚1 + 4𝑚2
)
𝑔

𝑅
   , 

𝑇 =
3𝑚1𝑚2𝑔

3𝑚1 + 4𝑚2
   ,   𝑓 =

𝑚1𝑚2𝑔

3𝑚1 + 4𝑚2
   . 

Furthermore, since the frictional force is static in this case 

𝑓 ≤ 𝜇𝑁  ⇒    𝜇 ≥
𝑚2 

3𝑚1 + 4𝑚2
   . 

Now, the velocity 𝑥̇ of the center of mas 𝐶 of the cylinder is given by 

𝑥̇ = 𝑥̇(0) + (
2𝑚2

3𝑚1 + 4𝑚2
) 𝑔𝑡   ,   𝑥̇(0) = 0  ⇒    𝑥̇ = (

2𝑚2

3𝑚1 + 4𝑚2
) 𝑔𝑡   . 

However, 

Δ𝑥 = 4𝑅 = 𝑥̇(0)𝑡 +
1

2
(

2𝑚2

3𝑚1 + 4𝑚2
) 𝑔𝑡2   ⇒    𝑡 = 2√

(3𝑚1 + 4𝑚2)𝑅

𝑚2𝑔
   . 

Hence, 

𝑥̇ = 4√
𝑚2𝑔𝑅

3𝑚1 + 4𝑚2
   . 

Also, the angular velocity 𝜔 of the cylinder becomes 

𝜔̇ = −
𝑥̇

𝑅
  ⇒    𝜔 = −4√(

𝑚2

3𝑚1 + 4𝑚2
)
𝑔

𝑅
   . 

Next, the free body diagram of the cylinder at impact is shown in Fig. 10.9. 
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Figure 10.9 

Using the definition of the coefficient of restitution, it follows that 

𝑒 = −
𝒗𝐸2 ⋅ 𝒆1
𝒗𝐸1 ⋅ 𝒆1

   ,   𝒗𝐸(𝑡) = 𝒗𝐶 +𝝎× 𝒙𝐸 𝐶⁄ = 𝑥̇(𝑡)𝒆1   ⇒    𝑥̇(𝑡2) = −𝑒𝑥̇(𝑡1)   ⇒ 

𝑥̇(𝑡2) = −4𝑒√
𝑚2𝑔𝑅

3𝑚1 + 4𝑚2
   . 

Moreover, using the balance equations of impulse-linear momentum and impulse-angular 

momentum about the center of mass of the cylinder at impact yield 

𝑭̂ = 𝐹̂1𝒆1 + 𝐹̂2𝒆2 = 𝑚1[𝑥̇(𝑡2) − 𝑥̇(𝑡1)]𝒆1   ⇒    𝐹̂2 = 0   , 

𝐹̂1 = −4(𝑒 + 1)𝑚1√
𝑚2𝑔𝑅

3𝑚1 + 4𝑚2
   , 

−𝑅𝐹̂2 = 0 =
1

2
𝑚1𝑅

2[𝜔(𝑡2) − 𝜔(𝑡1)]   ⇒    𝜔(𝑡2) = 𝜔(𝑡1) = −4√(
𝑚2

3𝑚1 + 4𝑚2
)
𝑔

𝑅
   . 

This shows that the cylinder slips along the ground just after impact since 

|𝑥̇(𝑡2)| ≠ 𝜔(𝑡2)𝑅   . 
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Problem Set 11 Solutions 

 

Problem 1 

A uniform circular disk of mass 𝑚 = 23 [kg] and radius 𝑅 = 0.4 [m] rolls without slipping 

along a horizontal surface in such a manner that its plane is inclined with the vertical at a 

constant angle 𝛼 and its center 𝐶 moves along a circular path of radius 𝑏 = 0.6 [m] with 

the speed 𝑣 = 2.54 [m s⁄ ], as shown in Fig. 11.1. 

1. Determine the value of 𝛼. 

2. Determine the forces exerted on the disk by the horizontal surface.  

  

 

Figure 11.1 

𝛼 𝑏 

Axis of 

symmetry 
𝑅 

𝐶 𝑂 
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Solution: 

The free body of the disk is shown in Fig. 11.2. 

 

Figure 11.2 

The systems {𝒆𝑖
′, 𝒆𝑖

′′} rotate with an angular velocity 𝛀 and the disk rotates with an angular 

velocity 𝝎, such that 

𝒆̇𝑖
′ = 𝛀 × 𝒆𝑖

′    ,   𝒆̇𝑖
′ = 𝛀 × 𝒆𝑖

′    ,   𝛀 = Ω𝒆3
′    ,   𝝎 = 𝛀 + 𝜑̇𝒆1

′′   , 

𝒆1
′ = cos(𝛼) 𝒆1

′′ − sin(𝛼) 𝒆3
′′   ,   𝒆2

′ = 𝒆2
′′   ,   𝒆3

′ = sin(𝛼) 𝒆1
′′ + cos(𝛼) 𝒆3

′′   . 

Now, the velocity 𝒗𝐶 = 𝑣𝒆2
′  of the disk’s center of mass 𝐶 takes the form 

𝒗𝐶 = 𝑣𝒆2
′ = 𝒗𝐶 𝑂⁄ = 𝛀 × 𝒙𝐶 𝑂⁄ = Ω𝒆3

′ × 𝑏𝒆1
′ =  Ω𝑏𝒆2

′    . 

Therefore, 

Ω =
𝑣

𝑏
  ⇒    𝝎 = [

𝑣

𝑏
sin(𝛼) + 𝜑̇] 𝒆1

′′ +
𝑣

𝑏
cos(𝛼) 𝒆3

′′   . 

Using the no-slip condition, then 𝒗𝐶 can be expressed as 

𝒗𝐶 = 𝑣𝒆2
′ = 𝒗𝐶 𝐵⁄ = 𝝎× 𝒙𝐶 𝐵⁄ = 𝝎 × 𝑏𝒆3

′′ = −[𝑣 sin(𝛼) + 𝑏𝜑̇]𝒆2
′′   ⇒ 

𝜑̇ = −
𝑣

𝑏
[1 + sin(𝛼)]   . 

Hence, 

𝝎 = −
𝑣

𝑏
𝒆1
′′ +

𝑣

𝑏
cos(𝛼) 𝒆3

′′   . 

Next, the balance of linear momentum of the disk yields 
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𝑹𝐵 −𝑚𝑔𝒆3
′ = 𝑚𝒂𝐶    ,   𝑹𝐵 = 𝑅𝐵𝑖

′′ 𝒆𝑖
′′   , 

𝒂𝐶 = 𝒗̇𝐶 = 𝑣𝒆̇2
′ = 𝑣(Ω𝒆3

′ × 𝒆2
′ ) = −Ω𝑣𝒆1

′ = −
𝑣2

𝑏
𝒆1
′    . 

Thus, 

𝑅𝐵1
′′ = 𝑚 [𝑔 sin(𝛼) −

𝑣2 cos(𝛼)

𝑏
]   ,   𝑅𝐵2

′′ = 0   ,   𝑅𝐵3
′′ = 𝑚 [𝑔 cos(𝛼) +

𝑣2 sin(𝛼)

𝑏
]   . 

Furthermore, the balance of angular momentum about the center of mass 𝐶 of the disk 

gives 

𝑴𝐶 = 𝑯̇𝐶    ,   𝑴𝐶 = 𝒙𝐵 𝐶⁄ × 𝑹𝐵 = |
𝒆1
′′ 𝒆2

′′ 𝒆3
′′

0 0 −𝑏
𝑅𝐵1
′′ 0 𝑅𝐵3

′′
| = −𝑏𝑅𝐵1

′′ 𝒆2
′′   , 

𝐻𝐶𝑖
′′ = 𝐼𝐶𝑖𝑗

′′ 𝜔𝑗
′′ =

𝑚𝑅2𝑣

4𝑏
[
2 0 0
0 1 0
0 0 1

] {
−1
0

cos(𝛼)
} =

𝑚𝑅2𝑣

4𝑏
{
−2
0

cos(𝛼)
}   ⇒ 

𝑯𝐶 =
𝑚𝑅2𝑣

4𝑏
[−2𝒆1

′′ + cos(𝛼) 𝒆3
′′]  , 

𝑯̇𝐶 =
𝛿𝑯𝐶

𝛿𝑡
+ 𝛀 ×𝑯𝐶 = 𝛀×𝑯𝐶   ⇒ 

𝑯̇𝐶 =
𝑚𝑅2𝑣2

4𝑏2
|

𝒆1
′′ 𝒆2

′′ 𝒆3
′′

sin(𝛼) 0 cos(𝛼)

−2 0 cos(𝛼)
| = −

𝑚𝑅2𝑣2 cos(𝛼)

4𝑏2
[2 + sin(𝛼)]𝒆2

′′   . 

Therefore, 

𝑅𝐵1
′′ =

𝑚𝑅2𝑣2 cos(𝛼)

4𝑏3
[2 + sin(𝛼)]   . 

Now, equating the expressions of 𝑅𝐵1
′′ , it follows that 

4𝑏3𝑔 sin(𝛼) = 2𝑣2(2𝑏2 + 𝑅2) cos(𝛼) + 𝑅2𝑣2 cos(𝛼) sin(𝛼) 

Substituting the values of {𝑚, 𝑏, 𝑅, 𝑣} together with 𝑔 = 9.81 [m s2⁄ ] into this equation 

and solving for 𝛼, it follows that the only possible solution is given by 
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𝛼 ≈ 55.22o   . 

Moreover, the reaction force 𝑹𝐵 exerted on the disk by the horizontal surface becomes 

𝑹𝐵 = 𝑚 [𝑔 sin(𝛼) −
𝑣2 cos(𝛼)

𝑏
] 𝒆1

′′ +𝑚 [𝑔 cos(𝛼) +
𝑣2 sin(𝛼)

𝑏
] 𝒆3

′′ 

≈ 44.23𝒆1
′′ + 331.8𝒆3

′′  [N]   . 
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Problem 2 

Consider the assembly shown in Fig. 11.3. The two disks 𝐴 and 𝐵, each having a mass 𝑚 

and radius 𝑅, are welded at the two ends of the shaft 𝐴𝐵 of length 2𝐿, which coincides with 

the axis of symmetry of each disk. A third disk, 𝐶, of mass 𝑚 and radius 𝑅 is welded at the 

midpoint of the shaft in such a manner that its plane is inclined with the horizontal at a 

constant angle 𝛽. Moreover, the system 𝒆𝑖
′′ is attached to the shaft and it is assumed that 

the torques at the bearing 𝐴 and 𝐵 are negligible. 

1. Determine the angular momentum of the system about 𝐶. 

2. Determine the normal bearing reactions acting on the shaft 𝐴𝐵 at 𝐴 and 𝐵. 

3. Now, the point masses 𝑚𝐴 and 𝑚𝐵 are attached at the rim of the disks 𝐴 and 𝐵, 

respectively (see Fig. 2.1). Determine the values of {𝑚𝐴, 𝑚𝐵} and {𝜑𝐴, 𝜑𝐵} that would 

eliminate the bearing reactions at 𝐴 and 𝐵. 

 

     Figure 11.3 
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Solution: 

The free body of the system is shown in Fig. 11.4. 

 

Figure 11.4 

The systems {𝒆𝑖
′′, 𝒆𝑖

′} rotate with the same angular velocity 𝝎 such that 

𝒆̇𝑖
′′ = 𝝎× 𝒆𝑖

′′   ,   𝒆̇𝑖
′ = 𝝎 × 𝒆𝑖

′    ,   𝝎 = 𝜔𝒆3
′′   ; 

𝒆1
′ = sin(𝛽) 𝒆1

′′ − cos(𝛽) 𝒆3
′′   ,   𝒆2

′ = 𝒆2
′′   ,   𝒆3

′ = cos(𝛽) 𝒆1
′′ + sin(𝛽) 𝒆3

′′   . 

Also, the system 𝒆𝑖
′′ is related to the fixed Cartesian system 𝒆𝑖 by 

𝒆1 = cos(𝜃) 𝒆1
′′ − sin(𝜃) 𝒆2

′′   ,   𝒆2 = sin(𝜃) 𝒆1
′′ + cos(𝜃) 𝒆2

′′    ,   𝒆3 = 𝒆3
′′   . 

Next, the angular momentum 𝑯𝐶 of the system about 𝐶 can be expressed as 

𝑯𝐶 = 𝑯𝐶
(𝐴) +𝑯𝐶

(𝐵) +𝑯𝐶
(𝐶)   , 

where the angular momentums {𝑯𝐶
(𝐴), 𝑯𝐶

(𝐵), 𝑯𝐶
(𝐶)} of the disks {𝐴, 𝐵, 𝐶}, respectively, are 

given by 

𝑯𝐶
(𝐴) = 𝑯̅(𝐴) + 𝒙𝐴 𝐶⁄ × 𝒗𝐴 = 𝑯̅

(𝐴) = 𝑰(𝐴)𝝎   ,   𝑯𝐶
(𝐵) = 𝑯̅(𝐵) = 𝑰(𝐵)𝝎   , 

𝑰(𝐴) = 𝑰(𝐵) =
𝑚𝑅2

4
(𝒆1
′′⊗𝒆1

′′ + 𝒆2
′′⊗𝒆2

′′) +
𝑚𝑅2

2
𝒆3
′′⊗𝒆3

′′   ⇒ 

𝑯𝐶
(𝐴) = 𝑯𝐶

(𝐵) =
𝑚𝑅2𝜔

2
𝒆3
′′   , 

𝑯𝐶
(𝐶) = 𝑯̅(𝐶) = 𝑰(𝐶)𝝎   ,   𝑰(𝐶) =

𝑚𝑅2

4
(𝒆1
′ ⊗𝒆1

′ + 𝒆2
′ ⊗𝒆2

′ ) +
𝑚𝑅2

2
𝒆3
′ ⊗𝒆3

′   ⇒ 

𝒆1 

𝒆2 

𝒆1
′′ 

𝒆2
′′ 

𝜃 

𝜃 



Dynamics (ME 34010) Homework Solutions       December 2017 

 

 

Mahmoud M. Safadi 117 M.B. Rubin 

𝑯𝐶
(𝐶) ⋅ 𝒆𝑖

′ =

[
 
 
 
 
 
 
𝑚𝑅2

4
0 0

0
𝑚𝑅2

4
0

0 0
𝑚𝑅2

2 ]
 
 
 
 
 
 

{
−𝜔 cos(𝛽)

0
𝜔 sin(𝛽)

} =

{
 
 

 
 −

𝑚𝑅2𝜔 cos(𝛽)

4
0

𝑚𝑅2𝜔 sin(𝛽)

2 }
 
 

 
 

  ⇒ 

𝑯𝐶
(𝐶) =

𝑚𝑅2𝜔

4
[− cos(𝛽) 𝒆1

′ + 2 sin(𝛽) 𝒆3
′ ]  . 

Moreover, using the transformation relations it follows that 

𝑯𝐶
(𝐶) =

𝑚𝑅2𝜔

4
[sin(𝛽) cos(𝛽) 𝒆1

′′ + {cos2(𝛽) + 2 sin2(𝛽)}𝒆3
′′] 

=
𝑚𝑅2𝜔

4
[
1

2
sin(2𝛽) 𝒆1

′′ + {1 + sin2(𝛽)}𝒆3
′′]   . 

Next, the balance of linear momentum of the system gives 

𝑹𝐴 + 𝑹𝐵 − 3𝑚𝑔𝒆1 = 𝑚𝒂̅   ,   𝒂̅ = 𝟎  . 

Therefore, 

𝑅𝐴1
′′ + 𝑅𝐵1

′′ = 3𝑚𝑔 cos(𝜃)   ,   𝑅𝐴2
′′ + 𝑅𝐵2

′′ = −3𝑚𝑔 sin(𝜃)   ,   𝑅𝐴3
′′ + 𝑅𝐵3

′′ = 0   . 

Furthermore, the balance of angular momentum of the system about 𝐶 yields 

𝑴𝐶 = 𝑯̇𝐶    , 

𝑯̇𝐶 =
𝛿𝑯𝐶

𝛿𝑡
+ 𝝎 × 𝑯𝐶 = 𝝎×𝑯𝐶 =

𝑚𝑅2𝜔2

8
sin(2𝛽) 𝒆2

′′   , 

𝑴𝐶 = 𝒙𝐴 𝐶⁄ × (𝑹𝐴 −𝑚𝑔𝒆1) + 𝒙𝐵 𝐶⁄ × (𝑹𝐵 −𝑚𝑔𝒆1) 

= |
𝒆1
′′ 𝒆2

′′ 𝒆3
′′

0 0 −𝐿
𝑅𝐴1
′′ −𝑚𝑔 cos(𝜃) 𝑅𝐴2

′′ +𝑚𝑔 sin(𝜃) 𝑅𝐴3
′′
| 

+ |
𝒆1
′′ 𝒆2

′′ 𝒆3
′′

0 0 𝐿
𝑅𝐵1
′′ −𝑚𝑔 cos(𝜃) 𝑅𝐵2

′′ +𝑚𝑔 sin(𝜃) 𝑅𝐵3
′′
|   ⇒ 
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𝑴𝐶 = 𝐿[𝑅𝐴2
′′ +𝑚𝑔 sin(𝜃)]𝒆1

′′ − 𝐿[𝑅𝐴1
′′ −𝑚𝑔 cos(𝜃)]𝒆2

′′ − 𝐿[𝑅𝐵2
′′ +𝑚𝑔 sin(𝜃)]𝒆1

′′

+ 𝐿[𝑅𝐵1
′′ −𝑚𝑔 cos(𝜃)]𝒆2

′′ = 𝐿(𝑅𝐴2
′′ − 𝑅𝐵2

′′ )𝒆1
′′ + 𝐿(𝑅𝐵1

′′ − 𝑅𝐴1
′′ )𝒆2

′′   . 

Hence, 

𝑅𝐵1
′′ − 𝑅𝐴1

′′ =
𝑚𝑅2𝜔2

8𝐿
sin(2𝛽)   ,   𝑅𝐴2

′′ − 𝑅𝐵2
′′ = 0   . 

Solving the system of equations 

𝑅𝐴1
′′ + 𝑅𝐵1

′′ = 3𝑚𝑔 cos(𝜃)   ,   𝑅𝐴2
′′ + 𝑅𝐵2

′′ = −3𝑚𝑔 sin(𝜃)   ,   𝑅𝐴3
′′ + 𝑅𝐵3

′′ = 0   , 

𝑅𝐵1
′′ − 𝑅𝐴1

′′ =
𝑚𝑅2𝜔2

8𝐿
sin(2𝛽)   ,   𝑅𝐴2

′′ − 𝑅𝐵2
′′ = 0   , 

for the reactions forces under the assumption that 𝑅𝐴3
′′ = 0 it follows that 

𝑅𝐴1
′′ =

𝑚

2
[𝑔 cos(𝜃) −

𝑅2𝜔2

8𝐿
sin(2𝛽)]   ,   𝑅𝐵1

′′ =
𝑚

2
[3𝑔 cos(𝜃) +

𝑅2𝜔2

8𝐿
sin(2𝛽)]   , 

𝑅𝐴2
′′ = 𝑅𝐵2

′′ = −
3𝑚𝑔

2
sin(𝜃)   ,   𝑅𝐴3

′′ = 𝑅𝐵3
′′ = 0   . 

This shows that the system is dynamically unbalanced. 

Next, by attaching the point masses {𝑚𝐴, 𝑚𝐵} to the disks {𝐴, 𝐵}, respectively, then the 

center of mass of the system moves to the position 

𝒙̅ =
𝑚𝐴𝒙𝑚𝐴 𝐶⁄ +𝑚𝐵𝒙𝑚𝐵 𝐶⁄

3𝑚 +𝑚𝐴 +𝑚𝐵
   , 

where, 

𝒙𝑚𝐴 𝐶⁄ = 𝑅 cos(𝜑𝐴) 𝒆1
′′ + 𝑅 sin(𝜑𝐴) 𝒆2

′′ − 𝐿𝒆3
′′   , 

𝒙𝑚𝐵 𝐶⁄ = 𝑅 cos(𝜑𝐵) 𝒆1
′′ + 𝑅 sin(𝜑𝐵) 𝒆2

′′ + 𝐿𝒆3
′′  , 

such that 
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𝒙̅ =
[𝑚𝐴 cos(𝜑𝐴) + 𝑚𝐵 cos(𝜑𝐵)]𝑅

3𝑚 +𝑚𝐴 +𝑚𝐵
𝒆1
′′ +

[𝑚𝐴 sin(𝜑𝐴) + 𝑚𝐵 sin(𝜑𝐵)]𝑅

3𝑚 +𝑚𝐴 +𝑚𝐵
𝒆2
′′

+
(𝑚𝐵 −𝑚𝐴)𝐿

3𝑚 +𝑚𝐴 +𝑚𝐵
𝒆3
′′   . 

Moreover, the contribution of these masses to 𝑯𝐶 can be expressed as 

𝑯𝐶 = 𝑯𝐶
(𝐴) +𝑯𝐶

(𝐵) +𝑯𝐶
(𝐶) +∑𝑯𝐶

(𝑚𝑖)

𝐵

𝑖=𝐴

   , 

where, 

𝑯𝐶
(𝑚𝑖) = 𝒙𝑚𝑖 𝐶⁄

×𝑚𝑖𝒗𝑚𝑖
   ,   𝑖 = {𝐴, 𝐵}   , 

such that 

𝒙𝑚𝐴 𝐶⁄ = 𝑅 cos(𝜑𝐴) 𝒆1
′′ + 𝑅 sin(𝜑𝐴) 𝒆2

′′ − 𝐿𝒆3
′′   , 

𝒗𝑚𝐴
=
𝛿𝒙𝑚𝐴 𝐶⁄

𝛿𝑡
+ 𝝎 × 𝒙𝑚𝐴 𝐶⁄ = 𝝎 × 𝒙𝑚𝐴 𝐶⁄ = 𝜔𝑅[− sin(𝜑𝐴) 𝒆1

′′ + cos(𝜑𝐴) 𝒆2
′′]   ⇒ 

𝑯𝐶
(𝑚𝐴) = 𝑚𝐴𝜔𝑅𝐿 [cos(𝜑𝐴) 𝒆1

′′ + sin(𝜑𝐴) 𝒆2
′′ +

𝑅

𝐿
𝒆3
′′]   ; 

𝒙𝑚𝐵 𝐶⁄ = 𝑅 cos(𝜑𝐵) 𝒆1
′′ + 𝑅 sin(𝜑𝐵) 𝒆2

′′ + 𝐿𝒆3
′′   , 

𝒗𝑚𝐵
=
𝛿𝒙𝑚𝐵 𝐶⁄

𝛿𝑡
+ 𝝎 × 𝒙𝑚𝐵 𝐶⁄ = 𝝎× 𝒙𝑚𝐴 𝐶⁄ = 𝜔𝑅[− sin(𝜑𝐵) 𝒆1

′′ + cos(𝜑𝐵) 𝒆2
′′]   ⇒ 

𝑯𝐶
(𝑚𝐵) = 𝑚𝐵𝜔𝑅𝐿 [− cos(𝜑𝐵) 𝒆1

′′ − sin(𝜑𝐵) 𝒆2
′′ +

𝑅

𝐿
𝒆3
′′]   . 

Hence, 

𝑯𝐶 = 𝜔𝑅𝐿 [
𝑚𝑅

8𝐿
sin(2𝛽) + 𝑚𝐴 cos(𝜑𝐴) − 𝑚𝐵 cos(𝜑𝐵)] 𝒆1

′′ 

+𝜔𝑅𝐿[𝑚𝐴 sin(𝜑𝐴) − 𝑚𝐵 sin(𝜑𝐵)]𝒆2
′′ + 𝜔𝑅2 [

𝑚{2 + sin2(𝛽)}

4
+ 𝑚𝐴 +𝑚𝐵] 𝒆3

′′   . 

Now, dynamic balancing requires that the center of mass be situated on the axis of rotation 

𝒆3
′′ and that the axis of rotation be a principal axis of inertia. Therefore, 
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𝒙̅ ⋅ 𝒆1
′′ = 0  ⇒    𝑚𝐴 cos(𝜑𝐴) + 𝑚𝐵 cos(𝜑𝐵) = 0   , 

𝒙̅ ⋅ 𝒆2
′′ = 0  ⇒    𝑚𝐴 sin(𝜑𝐴) + 𝑚𝐵 sin(𝜑𝐵) = 0   , 

𝑯𝐶 ⋅ 𝒆2
′′ = 0  ⇒    𝑚𝐴 sin(𝜑𝐴) − 𝑚𝐵 sin(𝜑𝐵) = 0   , 

𝑯𝐶 ⋅ 𝒆1
′′ = 0  ⇒    

𝑚𝑅

8𝐿
sin(2𝛽) +𝑚𝐴 cos(𝜑𝐴) − 𝑚𝐵 cos(𝜑𝐵) = 0   . 

Solving this system of equations for {𝑚𝐴,𝑚𝐵, 𝜑𝐴, 𝜑𝐵} yields 

sin(𝜑𝐴) = 0   ,    sin(𝜑𝐵) = 0   , 

𝑚𝐴 = −
𝑚𝑅 sin(2𝛽)

16𝐿 cos(𝜑𝐴)
   ,   𝑚𝐵 cos(𝜑𝐵) =

𝑚𝑅 sin(2𝛽)

16𝐿 cos(𝜑𝐵)
   . 

However, since 𝑚𝐴 > 0 and 𝑚𝐵 > 0 

{𝜑𝐴 = 𝜋   ,   𝑚𝐴 =
𝑚𝑅 sin(2𝛽)

16𝐿
}   ,   {𝜑𝐵 = 0   ,   𝑚𝐵 =

𝑚𝑅 sin(2𝛽)

16𝐿
}   . 
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Problem 3 

Fig. 11.5 shows a bar 𝐴𝐶 of mass 𝑚 and length 𝐿, which is attached at one end to the center 

𝐶 of a disk of mass 𝑚 and radius 𝑅, and the other end is placed on a stationary, frictionless 

circular plate at the point 𝐴. The bar coincides with the axis of symmetry of the disk. 

Moreover, the disk is constrained to roll without slipping along the rim of the plate in such 

a manner that its center 𝐶 moves along a circular path with the speed 𝑣0. 

1. Determine the angular velocity and acceleration of the disk. 

2. Determine the forces exerted on the disk by the plate. 

 

Figure 11.5 
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Solution: 

The free body of the system is shown in Fig. 11.6. 

 

Figure 11.6 

The angle 𝛼 is related to the geometry by the expressions 

sin(𝛼) =
𝑅

√𝐿2 + 𝑅2
   ,    cos(𝛼) =

𝐿

√𝐿2 + 𝑅2
   . 

The systems {𝒆𝑖
′, 𝒆𝑖

′′} rotate with an angular velocity 𝛀 and the disk rotates with an angular 

velocity 𝝎, such that 

𝒆̇𝑖
′′ = 𝛀 × 𝒆𝑖

′′   ,   𝒆̇𝑖
′ = 𝛀 × 𝒆𝑖

′   ,   𝛀 = Ω𝒆3
′    ,   𝝎 = 𝛀 + 𝜑̇𝒆1

′′   , 

𝒆1
′ = cos(𝛼) 𝒆1

′′ − sin(𝛼) 𝒆3
′′   ,   𝒆2

′ = 𝒆2
′′   ,   𝒆3

′ = sin(𝛼) 𝒆1
′′ + cos(𝛼) 𝒆3

′′   . 

Now, the velocity 𝒗𝐶 = 𝑣0𝒆2
′  of the disk’s center of mass 𝐶 takes the form 

𝒗𝐶 = 𝑣0𝒆2
′′ = 𝒗𝐶 𝐴⁄ = 𝛀 × 𝒙𝐶 𝐴⁄ = Ω[sin(𝛼) 𝒆1

′′ + cos(𝛼) 𝒆3
′′] × 𝐿𝒆1

′′ =  Ω𝐿 cos(𝛼) 𝒆2
′′   . 

Therefore, 

Ω =
𝑣0

𝐿 cos(𝛼)
  ⇒    𝝎 = [

𝑣0 sin(𝛼)

𝐿 cos(𝛼)
+ 𝜑̇] 𝒆1

′′ +
𝑣0
𝐿
𝒆3
′′   . 

Using the no-slip condition, then 𝒗𝐶 can be expressed as 

𝒗𝐶 = 𝑣0𝒆2
′′ = 𝒗𝐶 𝐵⁄ = 𝝎× 𝒙𝐶 𝐵⁄ = [{Ω sin(𝛼) + 𝜑̇}𝒆1

′′ +Ωcos(𝛼) 𝒆3
′′] × 𝑅𝒆3

′′

= −𝑅[Ω sin(𝛼) + 𝜑̇]𝒆2
′′   . 

Hence, 
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𝜑̇ = −𝑣0 [
1

𝑅
+

sin(𝛼)

𝐿 cos(𝛼)
]   ⇒    𝝎 = −

𝑣0
𝑅
𝒆1
′′ +

𝑣0
𝐿
𝒆3
′′   . 

Notice that 𝝎 must lie along the line joining the points 𝐴 and 𝐵 since 𝒗𝐴 = 𝒗𝐵 = 𝟎. In 

particular, its direction must satisfy 

𝒆𝜔 =
𝝎

|𝝎|
= −𝒆1

′    . 

Using the result obtained previously, it follows that 

𝒆𝜔 = −(
𝐿

√𝐿2 + 𝑅2
) 𝒆1

′′ + (
𝑅

√𝐿2 + 𝑅2
)𝒆3

′′ = −𝒆1
′    , 

as it should be. 

Furthermore, the disk’s angular acceleration 𝝎̇ takes the form 

𝝎̇ =
𝛿𝝎

𝛿𝑡
+ 𝛀 ×𝝎 = 𝛀×𝝎 = |

𝒆1
′′ 𝒆2

′′ 𝒆3
′′

Ωsin(𝛼) 0 Ω cos(𝛼)

Ω sin(𝛼) + 𝜑̇ 0 Ω cos(𝛼)
| = 𝜑̇Ω cos(𝛼) 𝒆2

′′   ⇒ 

𝝎̇ = −
𝑣0
2(𝐿2 + 𝑅2)

𝐿3𝑅
𝒆2
′′ 

Next, the balance of linear momentum of the system yields 

𝑹𝐴 + 𝑹𝐵 − 2𝑚𝑔𝒆3
′ = 𝑚(𝒂𝐶 + 𝒂𝐺)   ,   𝑹𝐴 = 𝑅𝐴𝑖

′′ 𝒆𝑖
′′   ,   𝑹𝐵 = 𝑅𝐵𝑖

′′ 𝒆𝑖
′′   , 

𝒂𝐶 =
𝑑

𝑑𝑡
(𝑣0𝒆2

′ ) = 𝑣0(𝛀 × 𝒆2
′ ) = 𝑣0Ω𝒆3

′ × 𝒆2
′ = −𝑣0Ω𝒆1

′ =
𝑣0
2

𝐿
(−𝒆1

′′ +
𝑅

𝐿
𝒆3
′′)   , 

𝒂𝐺 =
𝒂𝐶
2
=
𝑣0
2

2𝐿
(−𝒆1

′′ +
𝑅

𝐿
𝒆3
′′)   . 

Thus, 

𝑅𝐴1
′′ + 𝑅𝐵1

′′ −
2𝑚𝑔𝑅

√𝐿2 + 𝑅2
= −

3𝑚𝑣0
2

2𝐿
   ,   𝑅𝐴2

′′ + 𝑅𝐵2
′′ = 0   , 

𝑅𝐴3
′′ + 𝑅𝐵3

′′ −
2𝑚𝑔𝐿

√𝐿2 + 𝑅2
=
3𝑚𝑣0

2𝑅

2𝐿2
   . 
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Also, the balance of angular momentum of the system about the point 𝐴 gives 

𝑴𝐴 = 𝑯̇𝐶 + 𝑯̇𝐺 + 𝒙𝐶 𝐴⁄ ×𝑚𝒂𝐶 + 𝒙𝐺 𝐴⁄ ×𝑚𝒂𝐺 = 𝑯̇𝐶 + 𝑯̇𝐺 −
5𝑚𝑣0

2𝑅

4𝐿
𝒆2
′′   , 

𝐻𝐺𝑖
′′ = 𝐼𝐺𝑖𝑗

′′ Ω′′ =
𝑚𝐿2Ω

12
[
0 0 0
0 1 0
0 0 1

] {
sin(𝛼)
0

cos(𝛼)
} =

𝑚𝐿2Ω

12
{

0
0

cos(𝛼)
}   ⇒ 

𝑯𝐺 =
𝑚𝐿𝑣0
12

𝒆3
′′   ⇒    𝑯̇𝐺 =

𝛿𝑯𝐺

𝛿𝑡
+ 𝛀 × 𝑯𝐺 = 𝛀×𝑯𝐺 = −

𝑚𝑣0
2𝑅

12𝐿
𝒆2
′′   , 

𝐻𝐶𝑖
′′ = 𝐼𝐶𝑖𝑗

′′ ω′′ =
𝑚𝑅2𝑣0
4

[
2 0 0
0 1 0
0 0 1

] {
−1 𝑅⁄
0
1 𝐿⁄

} =
𝑚𝑅2𝑣0
4

{
−2 𝑅⁄
0
1 𝐿⁄

}   ⇒ 

𝑯𝐶 =
𝑚𝑅2𝑣0
4

(−
2

𝑅
𝒆1
′′ +

1

𝐿
𝒆3
′′)   ⇒ 

𝑯̇𝐶 =
𝛿𝑯𝐶

𝛿𝑡
+ 𝛀 × 𝑯𝐶 = 𝛀 ×𝑯𝐶 =

𝑚𝑅2𝑣0
4

|

𝒆1
′′ 𝒆2

′′ 𝒆3
′′

Ω sin(𝛼) 0 Ω cos(𝛼)

−2 𝑅⁄ 0 1 𝐿⁄
|

= −
𝑚𝑣0

2𝑅(2𝐿2 + 𝑅2)

4𝐿3
𝒆2
′′   , 

𝑴𝐴 = 𝒙𝐵 𝐴⁄ × 𝑹𝐵 + 𝒙𝐺 𝐴⁄ × (−𝑚𝑔𝒆3
′ ) + 𝒙𝐶 𝐴⁄ × (−𝑚𝑔𝒆3

′ )

= |
𝒆1
′′ 𝒆2

′′ 𝒆3
′′

𝐿 0 −𝑅
𝑅𝐵1
′′ 𝑅𝐵2

′′ 𝑅𝐵3
′′
| − 𝑚𝑔 (

3𝐿

2
𝒆1
′′) × [sin(𝛼) 𝒆1

′′ + cos(𝛼) 𝒆3
′′]

= 𝑅𝑅𝐵2
′′ 𝒆1

′′ + [
3𝑚𝑔𝐿2

2√𝐿2 + 𝑅2
− 𝑅𝑅𝐵1

′′ − 𝐿𝑅𝐵3
′′ ] 𝒆2

′′ + 𝐿𝑅𝐵2
′′ 𝒆3

′′   . 

Consequently, 

𝑅𝐵2
′′ = 0   ,   𝑅𝑅𝐵1

′′ + 𝐿𝑅𝐵3
′′ −

3𝑚𝑔𝐿2

2√𝐿2 + 𝑅2
=
𝑚𝑣0

2𝑅

𝐿
(
11

6
+
𝑅2

4𝐿2
)   . 

Now, the equations of motion to be solved are given by 

𝑅𝐵2
′′ = 𝑅𝐴2

′′ = 0   ,   𝑅𝐴1
′′ + 𝑅𝐵1

′′ −
2𝑚𝑔𝑅

√𝐿2 + 𝑅2
= −

3𝑚𝑣0
2

2𝐿
   , 
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𝑅𝐴3
′′ + 𝑅𝐵3

′′ −
2𝑚𝑔𝐿

√𝐿2 + 𝑅2
=
3𝑚𝑣0

2𝑅

2𝐿2
   ,   𝑅𝑅𝐵1

′′ + 𝐿𝑅𝐵3
′′ −

3𝑚𝑔𝐿2

2√𝐿2 + 𝑅2
=
𝑚𝑣0

2𝑅

𝐿
(
11

6
+
𝑅2

4𝐿2
) . 

Assuming that the 𝒆1
′  component of the reaction force at 𝐴 vanishes (𝑹𝐴 ⋅ 𝒆1

′ = 0), it 

follows that 

𝑹𝐴 ⋅ 𝒆1
′ = (𝑅𝐴1

′′ 𝒆1
′′ + 𝑅𝐴3

′′ 𝒆3
′′) ⋅ [cos(𝛼) 𝒆1

′′ − sin(𝛼) 𝒆3
′′] = 0  ⇒    𝐿𝑅𝐴1

′′ − 𝑅𝑅𝐴3
′′ = 0   . 

Solving the system of four equations 

𝑅𝐴1
′′ + 𝑅𝐵1

′′ −
2𝑚𝑔𝑅

√𝐿2 + 𝑅2
= −

3𝑚𝑣0
2

2𝐿
   ,   𝑅𝐴3

′′ + 𝑅𝐵3
′′ −

2𝑚𝑔𝐿

√𝐿2 + 𝑅2
=
3𝑚𝑣0

2𝑅

2𝐿2
   , 

𝑅𝑅𝐵1
′′ + 𝐿𝑅𝐵3

′′ −
3𝑚𝑔𝐿2

2√𝐿2 + 𝑅2
=
𝑚𝑣0

2𝑅

𝐿
(
11

6
+
𝑅2

4𝐿2
)    ,   𝐿𝑅𝐴1

′′ − 𝑅𝑅𝐴3
′′ = 0   , 

for the reaction forces {𝑅𝐴1
′′ , 𝑅𝐴3

′′ , 𝑅𝐵1
′′ , 𝑅𝐵3

′′ } yields 

𝑅𝐴1
′′ =

𝑚𝑅

2(𝐿2 + 𝑅2)
[
𝑔(𝐿2 + 4𝑅2)

√𝐿2 + 𝑅2
−
11𝑣0

2𝑅

3𝐿
(1 +

3𝑅2

22𝐿2
)]   , 

𝑅𝐴3
′′ =

𝑚𝐿

2(𝐿2 + 𝑅2)
[
𝑔(𝐿2 + 4𝑅2)

√𝐿2 + 𝑅2
−
11𝑣0

2𝑅

3𝐿
(1 +

3𝑅2

22𝐿2
)]   , 

𝑅𝐵1
′′ =

3𝑚𝐿

2(𝐿2 + 𝑅2)
[

𝑔𝑅𝐿

√𝐿2 + 𝑅2
− 𝑣0

2 (1 −
2𝑅2

9𝐿2
−
𝑅4

6𝐿4
)]   , 

𝑅𝐵3
′′ =

3𝑚𝐿

2(𝐿2 + 𝑅2)
[

𝑔𝐿2

√𝐿2 + 𝑅2
+
20𝑣0

2𝑅

9𝐿
(1 +

21𝑅4

40𝐿4
 )]   . 

 

 


