HEAT TRANSFER TRANSPARENCIES

Professor Chaim Gutfinger Faculty of Mechanical Engineering Technion - Israel Institute of Technology

Fourier Law of Heat Conduction

$$\mathbf{q} = -k \nabla T$$

In cartesian coordinates

$$q_x = -k \frac{\partial T}{\partial x}$$
 $q_y = -k \frac{\partial T}{\partial y}$ $q_z = -k \frac{\partial T}{\partial z}$

in cylindrical coordinates

$$q_r = -k \frac{\partial T}{\partial r}$$
 $q_\theta = -k \frac{1}{r} \frac{\partial T}{\partial \theta}$ $q_z = -k \frac{\partial T}{\partial z}$

in spherical coordinates

$$q_r = -k \frac{\partial T}{\partial r}$$
 $q_\theta = -k \frac{1}{r} \frac{\partial T}{\partial \theta}$ $q_\phi = -k \frac{1}{r \sin \theta} \cdot \frac{\partial T}{\partial \phi}$

3

The Conduction Equation

Conduction equation

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + \dot{q}$$

 $\rho c \frac{\partial T}{\partial t} = k \nabla^2 T + \dot{q}$

For *k* = const:

In cartesian coordinates

$$\rho c \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{q}$$

in cylindrical coordinates

$$\operatorname{oc}\frac{\partial T}{\partial t} = k \left[\frac{1}{r}\frac{\partial}{\partial r}\frac{(r\,\partial T)}{\partial r} + \frac{1}{r}\left(\frac{\partial^2 T}{\partial \theta^2}\right) + \frac{\partial^2 T}{\partial z^2}\right] + \dot{q}$$

in spherical coordinates

$$\rho c \frac{\partial T}{\partial t} = k \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \right] + \dot{q}$$

In cartesian
coordinates
$$\frac{\partial^2 T}{\partial x^2} = 0 \quad \text{b.c.} \quad T(0) = T_1, \quad T(L) = T_2$$
$$T = \frac{T_2 - T_1}{L} x + T_1 \quad \dot{Q} = -kA \frac{dT}{dx} = kA \frac{T_1 - T_2}{L}$$
$$\frac{\partial}{\partial r} \frac{(r \ \partial T)}{\partial r} = 0, \quad \text{b.c.} \quad T(r_1) = T_1, \quad T(r_2) = T_2$$
$$\frac{\partial}{\partial r} \frac{(r \ \partial T)}{\partial r} = 0, \quad \text{b.c.} \quad T(r_1) = T_1, \quad T(r_2) = T_2$$
$$\frac{dT}{T_2 - T_1} = \frac{\ln(r/r_1)}{\ln(r_2/r_1)} \quad \dot{Q} = -k2\pi r L \frac{dT}{dr} = \frac{2\pi k L}{\ln(r_2/r_1)} (T_1 - T_2)$$
In spherical $\frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) = 0, \quad \text{b.c.} \quad T(r_1) = T_1, \quad T(r_2) = T_2$
$$T = \frac{T_1 - T_2}{1/r_1 - 1/r_2} \frac{1}{r} + T_1 - \frac{T_1 - T_2}{1 - r_1/r_2}, \quad \dot{Q} = -k4\pi r^2 \frac{dT}{dr} = \frac{4\pi k}{1/r_1 - 1/r_2} (T_1 - T_2)$$

2-D steady state conduction

Rectangular plate:

boundary cond.

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0 \; ; \qquad$$

 $\theta(0, y) = 0,$

 $\theta(x,0) = 0,$

$$\frac{\partial^2 \theta}{\partial v^2} = 0 \quad ; \qquad \theta = T - T$$

$$\theta(L, y) = 0$$
$$\theta(x, W) = \theta_o$$

$$y \qquad \theta = \theta_{0}$$

$$\theta_{1} = 0$$

$$T_{1} \qquad \theta_{1} = 0$$

$$T_{1} \qquad \theta_{2} = 0$$

 $\theta =$

Solution by separation of variables:

$$\frac{\theta}{\theta_o} = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} + 1}{n} \sin\left(\frac{n\pi x}{L}\right) \frac{\sinh(n\pi y/L)}{\sinh(n\pi W/L)}$$

Unsteady state conduction

Equation

with

Solution

$$\theta^* = \frac{T - T_{\infty}}{T_i - T_{\infty}} = 2\sum_{n=0}^{\infty} \frac{(-1)^n}{\lambda_n L} \cos(\lambda_n x) e^{-\lambda_n^2 \alpha t} \qquad \lambda_n = \frac{(2n+1)\pi}{2L}$$

Heat flux

$$q = -k \frac{\partial T}{\partial x}\Big|_{x=L} = \frac{2(T_i - T_\infty)}{L} \sum_{n=1}^{\infty} (-1)^n e^{-\lambda_n^2 \alpha t}$$

Heat loss

$$\frac{Q}{Q_i} = \frac{2}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n}{\left(\frac{2n+1}{2}\right)^2} \left[1 - e^{-\lambda_n^2 \alpha t} \right]$$

8

S	emi-infinite solid
Equation	$\frac{\partial \theta}{\partial t} = \alpha \frac{\partial^2 \theta}{\partial x^2}; \text{where} \theta = \frac{T - T_i}{T_{\infty} - T_i} \frac{T_{\infty}}{T_{\infty}}$
Boundary & initial cond	$\theta(0,t) = 1, \qquad \theta(\infty,t) = 0; \qquad \theta(x,0) = 0$
Similarity solution	$\frac{d^2\theta}{d\eta^2} + 2\eta \frac{d\theta}{d\eta} = 0 \text{where} \eta = \frac{x}{2\sqrt{\alpha t}}$ $\theta(0) = 1, \theta(\infty) = 0$
Solution	$\theta = \operatorname{erfc} \eta$ or $\frac{T - T_i}{T_{\infty} - T_i} = 1 - \operatorname{erf}\left(\frac{x}{2\sqrt{\alpha t}}\right)$
Heat flow at surface	$\dot{Q} = -kA \frac{dT}{dx}\Big _{x=0} = \frac{kA(T_{\infty} - T_{i})}{\sqrt{\pi\alpha t}}$

Other boundary conditions

Constant surface heat flux: $q_s = q_0$

Solution $T - T_i = \frac{2q_0\sqrt{\alpha t/\pi}}{k}\exp\left(-\frac{x^2}{4\alpha t}\right) - \frac{q_0x}{k}\operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)$

Surface convection: $-k\frac{dT}{dx}\Big|_{0} = h(T_{\infty} - T)$

Solution

$$\frac{T - T_i}{T_{\infty} - T_i} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)$$
$$-\left[\exp\left(\frac{hx}{k} + \frac{h^2 \alpha t}{k^2}\right)\right]\operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}} + \frac{h\sqrt{\alpha t}}{k}\right)$$

 T_{∞}

 \boldsymbol{q}_0

T_i

T;

Navier–Stokes Equations

Navier–Stokes equation (incompressible)

 $\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{v}$

In cartesian coordinates

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right),$$

$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = \rho g_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right),$$

$$\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = \rho g_z - \frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right).$$

Thermal energy equation

The conduction equation

$$\rho c \; \frac{\partial T}{\partial t} = k \; \nabla^2 T \; + \; \dot{q}$$

The energy equation adds to this convection and dissipation

$$\rho c \ \frac{DT}{Dt} = k \ \nabla^2 T + \dot{q} + \mu \Phi_v$$
$$\mu \Phi_v = \tau_{ij} \ \frac{\partial v_i}{\partial x_i}$$

where

Two-dimensional case:

$$\rho c \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{q}$$
$$+ \mu \left[2 \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 \right]$$

13

Boundary layer on a flat plate

Momentum equation

Energy equation

Continuity equation

Integral momentum equation

Integral energy equation

Integral continuity equation

$$u\frac{\partial u}{\partial x} + \upsilon\frac{\partial u}{\partial y} = \nu\frac{\partial^2 u}{\partial y^2}$$
$$u\frac{\partial T}{\partial x} + \upsilon\frac{\partial T}{\partial y} = \alpha\frac{\partial^2 T}{\partial y^2}$$
$$\frac{\partial u}{\partial x} + \frac{\partial \upsilon}{\partial y} = 0$$

$$\frac{d}{dx}\int_{0}^{\delta} (U-u)u \, dy = v \frac{\partial u}{\partial y}\Big|_{y=0} = \frac{\tau_{w}}{\rho}$$

$$\frac{d}{dx}\int_0^\delta (T_\infty - T) u \, dy = \alpha \frac{\partial T}{\partial y} \bigg|_{y=0} = \frac{q_w}{\rho c}$$

$$\upsilon = -\int_{0}^{y} \frac{\partial u}{\partial x} \, dy$$

14

Boundary layer integral solution

Boundary conditions	$y = 0$ $u = 0$, $\frac{\partial^2 u}{\partial y^2} = 0$		
	$y = \delta$ $u = U$, $\frac{\partial u}{\partial y} = 0$		
Velocity profile	$u = C_1 + C_2 y + C_3 y^2 + C_4 y^3$		
	$\frac{u}{U} = \frac{3}{2} \left(\frac{y}{\delta}\right) - \frac{1}{2} \left(\frac{y}{\delta}\right)^3$		
Wall shear stress	$\tau_{w} = \mu \frac{\partial u}{\partial y} \Big _{y=0} = \frac{3}{2} \frac{\mu U}{\delta}$		

Integral momentum solution

The equation

 $\frac{d}{dx}\left(\frac{39}{280}\rho U^2 \delta\right) = \frac{3}{2}\frac{\mu U}{\delta} \qquad \text{with b.c.} \quad \delta(0) = 0$

The solution

$$\delta = 4.64 \sqrt{\frac{v}{U} x} = \frac{4.64}{\sqrt{\text{Re}_x}} x$$
.

Shear stress

$$\tau_{w} = \mu \frac{\partial u}{\partial y}\Big|_{y=0} = \frac{3}{2} \mu \frac{U}{\delta} = 0.323 \mu U \sqrt{\frac{U}{vx}} = 0.323 \frac{\rho U^{2}}{\sqrt{\text{Re}_{x}}}$$

Drag coefficient

Average drag coefficient

$$\frac{\tau_{f}}{2} = \frac{\tau_{w}}{\rho U^{2}} = 0.323 \text{Re}_{x}^{-\frac{1}{2}}.$$

$$\overline{C_f} = 2C_f \Big|_{x=L} = 1.292 \text{ Re}_x^{-\frac{1}{2}}$$

The heat transfer coefficient

$$q_{w} = -k \frac{\partial T}{\partial y} \Big|_{y=o} = h \left(T_{w} - T_{\infty} \right)$$

$$h = 0.332 k \left(\frac{U}{vx}\right)^{1/2} \Pr^{1/3} \qquad \qquad \overline{h} = \frac{1}{L} \int_0^L h dx = 2h|_{x=L}$$

$$Nu_x = \frac{hx}{k} = 0.332 \text{ Re}^{1/2} \text{Pr}^{1/3}$$

$$\overline{\mathrm{Nu}}_L = \frac{\overline{h}L}{k} = 2 \mathrm{Nu}|_{x=L}$$

Turbulent boundary layers

Turbulent momentum transfer

 $\frac{\tau_w}{\partial u} = (u + c) \frac{\partial u}{\partial u}$

dx

7

Integral momentum

Turbulent heat transfer

Power-law profile

Wall shear stress

Boundary layer thickness

$$\overline{\rho} = (\nu + \varepsilon_M) \overline{\partial y}$$

$$\frac{q_w}{\rho c} = (\alpha + \varepsilon_H) \frac{\partial T}{\partial y}$$

$$\frac{d}{dx} \int_0^h \left(1 - \frac{u}{U}\right) \frac{u}{U} dy = \frac{\tau_w}{\rho U^2}$$

$$\frac{u}{U} = \left(\frac{y}{\delta}\right)^{1/7}$$

$$\tau_w = 0.0296 \left(\frac{\nu}{Ux}\right)^{1/5} \rho U^2$$

$$\frac{d}{\delta} = \frac{72}{\delta} \times 0.0296 \left(\frac{\nu}{Ux}\right)^{1/5} x^{-1/5}$$

19

Heat transfer analogy

Boundary layer thickness

$$\frac{\delta}{x} = 0.381 \operatorname{Re}_{x}^{-1/5} - 10,256 \operatorname{Re}_{x}^{-1}$$

Friction coefficient

$$\frac{C_f}{2} = \frac{\tau_w}{\rho U^2} = 0.0296 \left(\frac{\nu}{Ux}\right)^{1/5}$$

Analogy

or

$$\frac{C_f}{2} = \operatorname{St}_x \operatorname{Pr}^{2/3}$$

$$\operatorname{St}_{x}\operatorname{Pr}^{2/3} = 0.0296 \operatorname{Re}^{-1/5}$$

$$Nu_x = 0.0296 \text{ Re}^{0.8} \text{ Pr}^{1/3}$$

 $Re < 10^{7}$

Average Nu for $L >> x_c$

 $L >> x_c \qquad \overline{\mathrm{Nu}}_{L} = 0.037 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{1/3}$

Heat transfer in pipe flow

Energy equation

Bulk temperature

Developed temp. profile

 $u\frac{\partial T}{\partial r} = \frac{\alpha}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right)$ $\overline{T} = \frac{\int \rho c T u dA}{\int \rho c u dA} = \frac{2}{\overline{u} R^2} \int_0^R u T r dr$ $\theta = \frac{T - T_w}{\overline{T} - T_w} \neq \theta(z), \quad \frac{\partial \theta}{\partial z} = 0 \quad \rightarrow \quad \frac{\partial \theta}{\partial r} \neq f(z)$ $q_{w} = h(T_{w} - \overline{T}) = -k \frac{\partial T}{\partial y} \bigg|_{y=0} = k \frac{\partial T}{\partial r} \bigg|_{r=0}$

$$\frac{h}{k} = \frac{1}{T_w - \overline{T}} \left. \frac{\partial T}{\partial r} \right|_{r=R} = -\frac{\partial \theta}{\partial r} \right|_{r=R} = \text{const}$$

Constant h

Wall heat flux

Asymptotic solution

Energy equation

$$2\overline{u}\left(1-\left(\frac{r}{R}\right)^2\right)\frac{d\overline{T}}{dz} = \frac{\alpha}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right)$$

boundary cond.

$$T(R,z) = T_w, \qquad \frac{\partial T}{\partial r}\Big|_{r=0}$$

Solution

$$T = \frac{2\overline{u}R^2}{\alpha} \left(\frac{d\overline{T}}{dz}\right) \left[\frac{1}{4} \left(\frac{r}{R}\right)^2 - \frac{1}{16} \left(\frac{r}{R}\right)^4\right] + C_1 \ln r + C_2$$

= 0

$$T = T_w + \frac{\overline{u}R^2}{2\alpha} \left(\frac{d\overline{T}}{dz}\right) \left[\left(\frac{r}{R}\right)^2 - \frac{1}{4}\left(\frac{r}{R}\right)^4 - \frac{3}{4}\right]$$

Nusselt number

Heat balance

 $z \quad z + \Delta z$

$$\begin{split} \dot{m}c\overline{T}\big|_{z} &-\dot{m}c\overline{T}\big|_{z+\Delta z} + q_{w}2\pi R\,\Delta z = 0\,; \quad \dot{m} = \rho\overline{u}\,\pi R^{2} \\ \frac{d\overline{T}}{dz} &= \frac{2\pi R}{\dot{m}c}q_{w} \qquad \qquad \frac{d\overline{T}}{dz} = \frac{2h}{\rho\overline{u}cR}(T_{w}-\overline{T}) \\ \overline{T} &= \frac{2}{\overline{u}R^{2}}\int_{0}^{R}uTr\,dr = T_{w} - \frac{11}{48}\frac{\overline{u}R^{2}}{\alpha}\frac{d\overline{T}}{dz} \\ \overline{T} - T_{w} &= \frac{11}{48}\frac{\overline{u}R^{2}}{\alpha}\frac{2h}{\rho\overline{u}cR}(\overline{T}-T_{w}) = \frac{11}{48}\frac{hD}{k}(\overline{T}-T_{w}) \end{split}$$

Nusselt No. for $q_w = \text{const}$

$$\operatorname{Nu}_{D} = \frac{hD}{k} = 4.364$$
$$\operatorname{Nu}_{D} = \frac{hD}{k} = 3.658$$

Nusselt No. for $T_w = \text{const}$

Turbulent heat transfer in pipes

Turbulent heat transfer analogy

Combine (3) and (4)

$$\frac{q_w}{T_w - \overline{T}} \frac{1}{\rho \overline{u} c} = \frac{f}{8} \longrightarrow \frac{h}{\rho \overline{u} c} = \frac{f}{8}$$

Reynolds analogy

$$\operatorname{St} = \frac{f}{8}$$
 $\operatorname{Pr} = 1$

Reynolds-Colburn analogy

$$\frac{f}{8} = \operatorname{St} \cdot \operatorname{Pr}^{2/3} \equiv j_H \qquad \operatorname{Nu}_D = \frac{f}{8} \operatorname{Re} \cdot \operatorname{Pr}^{1/3}$$

$$f = 0.316 \,\mathrm{Re}^{-0.25} \rightarrow \mathrm{Nu}_D = 0.0395 \,\mathrm{Re}^{0.75} \,\mathrm{Pr}^{1/3}$$

 $f = 0.184 \,\mathrm{Re}^{-0.2} \rightarrow \mathrm{Nu}_D = 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{1/3}$

For non-circular pipes

$$D_H = \frac{4A}{P}$$

Energy balance in pipes

$$\begin{split} \dot{m}c\overline{T}\Big|_{z} - \dot{m}c\overline{T}\Big|_{z+\Delta z} + q_{w}2\pi R \,\Delta z = 0; \quad \dot{m} = \rho \overline{u}\pi R^{2} & \text{Heat balance} \\ (1) \quad \frac{d\overline{T}}{dz} = \frac{2\pi R}{\dot{m}c}q_{w} & (2) \quad \frac{d\overline{T}}{dz} = \frac{2\pi R}{\dot{m}c}h(T_{w}-\overline{T}) & \underbrace{mc\overline{T}}_{z \quad z+\Delta z} \\ \hline \mathbf{For} \quad q_{w} = \text{const} \text{ with } T(0) = \overline{T}_{i} \quad \text{Eq.}(1) \text{ yields} \\ \overline{T}(z) = \overline{T}_{i} + \frac{2\pi R q_{w}}{\dot{m}c} z & \dot{Q} = q_{w}A = 2\pi rLq_{w} \\ \hline \mathbf{For} \quad T_{w} = \text{const} \text{ with } \Delta T = T_{w} - \overline{T} \quad \text{and } d(\Delta T) = -d\overline{T} \quad \text{Eq.}(2) \text{ yields} \\ \frac{d(\Delta T)}{\Delta T} = -\frac{2\pi R}{\dot{m}c}h \, dz \quad \ln \frac{\Delta T_{o}}{\Delta T_{i}} = \ln \frac{T_{w} - \overline{T}_{o}}{T_{w} - \overline{T}_{i}} = -\frac{2\pi RhL}{\dot{m}c}L \quad \dot{m}c = \frac{2\pi RhL}{\ln \frac{\Delta T_{o}}{\Delta T_{i}}} \\ \dot{Q} = \dot{m}c(T_{o} - T_{i}) = 2\pi RhL \frac{\Delta T_{o} - \Delta T_{i}}{\ln \frac{\Delta T_{o}}{\Delta T_{i}}} \quad \dot{Q} = hA\Delta T_{LM} \quad \Delta T_{o} \\ \hline \end{array}$$

Empirical correlations

Dittus-Boelter correlation

Convection to tube banks

 $Nu_D = 0.023 \, \text{Re}^{0.8} \, \text{Pr}^n$ n = 0.4 heating n = 0.3 cooling $\frac{hD}{k} = C \left(\frac{U_{\text{max}}D}{v}\right)^n \text{ Pr}^{1/3}$ In line : 0.05 < C < 0.5, 0.55 < n < 0.8Staggered : 0.2 < C < 0.6, 0.55 < n < 0.65

In line

Staggered

Momentum

 $u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = g\beta(T - T_{\infty}) + v\frac{\partial^2 u}{\partial y^2}, \qquad (T - T_{\infty}) = \Delta T \theta$ Energy $u \frac{\partial \theta}{\partial x} + v \frac{\partial \theta}{\partial y} = \alpha \frac{\partial^2 \theta}{\partial y^2}$ where $\theta = \frac{T - T_{\infty}}{T_w - T_{\infty}} = \frac{T - T_{\infty}}{\Delta T}$

Integral momentum equation

$$\frac{d}{dx}\int_{0}^{\delta} u^{2} dy = g\beta\Delta T\int_{0}^{\delta} \theta dy - v\frac{\partial u}{\partial y}\Big|_{v=0}$$

Integral energy equation

$$\frac{d}{dx}\int_{0}^{\delta} u\theta dy = -\alpha \left.\frac{\partial\theta}{\partial y}\right|_{y=0}$$

Velocity and temperature profiles

 $\theta(0) = 1, \quad \theta(\delta) = 0, \quad \frac{\partial \theta}{\partial y}\Big|_{y=\delta} = 0$ Boundary cond. $\theta = a + by + cy^2 \longrightarrow \theta = (1 - y / \delta)^2$ **Temperature profile** $u = a + by + cy^2 + dy^3$ **Velocity profile** $u(0) = 0, \quad u(\delta) = 0, \quad \frac{\partial u}{\partial v} \bigg|_{\delta} = 0 \quad \frac{\partial^2 u}{\partial v^2} \bigg|_{u=0} = -\frac{g\beta\Delta T}{v}$ Boundary cond. **Velocity profile** $\frac{u}{u_x}$ $\frac{u}{u_x} = \frac{y}{\delta} \left(1 - \frac{y}{\delta} \right)^2, \quad u_x = u_0 \frac{g\beta\delta^2 \Delta T}{4\nu}, \quad u_{\text{max}} = \frac{4}{27} u_x$ 1/3y 18

Free convection integral solution

Integral momentum equation yields

 $\frac{1}{105}\frac{d}{dx}(u_x\delta) = \frac{1}{3}g\ \beta\Delta T\ \delta - v\frac{u_x}{\delta}$

$$\frac{\Delta T}{30} \frac{d}{dx} (u_x \delta) = 2\alpha \frac{\Delta T}{\delta}$$

Integral energy equation yields

 $u_x = C_1 x^m, \qquad \delta = C_2 x^n$ Let $\frac{(27/4)^2}{105}C_1^2C_2(2m+n)x^{2m+n-1} = \frac{g\beta\Delta TC_2}{3}x^n - \frac{27}{4}\frac{C_1}{C}vx^{m-n}$ Get $\frac{27}{4} \frac{C_1 C_2(m+n)}{30} x^{m+n-1} = \frac{2\alpha}{C_2} x^{-n}$ 2m + n - 1 = n = m - n, m + n - 1 = -n $m = \frac{1}{2}$, $n = \frac{1}{4}$

Boundary layer thickness

$$C_{1} = \frac{320v}{27^{2}\sqrt{15}} \left(\frac{20}{21} + \Pr\right)^{-1/2} \left(\frac{g\beta\Delta T}{v^{2}}\right)^{1/2}$$
$$C_{2} = 240^{1/4} \left(\frac{20}{21} + \Pr\right)^{1/4} \left(\frac{g\beta\Delta T}{v^{2}}\right)^{-1/4} \Pr^{-1/2}$$

The Grashof number

$$\operatorname{Gr}_{x} = \frac{g \ \beta \Delta T \ x^{2}}{v^{2}}$$

Since

Therefore

$$\delta = C_2 \quad x^n \quad \to \quad \frac{\delta}{x} = \frac{C_2}{x^{3/4}}$$

$$\frac{\delta}{x} = 3.93 \, \mathrm{Pr}^{-1/2} \left(\frac{0.952 + \mathrm{Pr}}{\mathrm{Gr}_x} \right)^{1/4}$$

The heat transfer coefficient

 $\beta = \frac{1}{T} \approx \frac{1}{T_{\infty}} \longrightarrow \operatorname{Nu}_{x} = 0.378 \operatorname{Gr}_{x}^{1/4}$

Heat flux

$$q_{w} = h \Delta T = -k \frac{\partial T}{\partial y} \Big|_{y=0} = -k \Delta T \frac{\partial \theta}{\partial y} \Big|_{y=0} = -k \Delta T \left(-\frac{2}{\delta}\right)$$

Nusselt No.
$$h = \frac{2k}{\delta}, \rightarrow \operatorname{Nu}_{x} = \frac{0.508 \operatorname{Pr}^{1/2} \operatorname{Gr}_{x}^{1/4}}{(0.952 + \operatorname{Pr})^{1/4}}$$

Average values

$$\overline{h} = \frac{1}{L} \int_0^L h \, dx = \frac{4}{3} h \big|_{x=L}$$
$$\overline{Nu} = \frac{4}{3} Nu \big|_{x=L}$$

For air

Empirical correlations

General form

$$\overline{\mathrm{Nu}} = C(\mathrm{Gr}_L \mathrm{Pr})^m = C \mathrm{Ra}^m$$
$$\mathrm{Ra} = \mathrm{Gr} \cdot \mathrm{Pr} = \frac{g \beta \Delta T L^3}{\alpha \nu}$$

The Rayleigh No.

Equations for air

Laminar flow
$$Ra < 10^9$$

Turbulent flow
$$Ra > 10^9$$

Vertical plate or cylinder

$$h = 1.42 \left(\frac{\Delta T}{L}\right)^{1/4}$$

$$h = 1.31 \left(\Delta T \right)^{1/3}$$

Horizontal cylinder

$$h = 1.32 \left(\frac{\Delta T}{d}\right)^{1/4}$$

 $h = 1.24 \left(\Delta T \right)^{1/3}$

Horizontal heated plate \uparrow h = 1

$$.32\left(\frac{\Delta T}{L}\right)^{1/4}$$

 $h=1.52(\varDelta T)^{1/3}$

Radiation

Thermal radiation

Visible light

Speed of light

 $0.01 \mu m < \lambda < 10 \mu m$ $0.35 \mu m < \lambda < 0.78 \mu m$ $c = \lambda \cdot v \qquad \text{where} \qquad c = 3 \times 10^8 \,\text{m/s}$

Radiating and irradiated bodies

Black body radiation

Black body spectral emissive power - Planck law

Black body total emissive

power - Stefan-Boltzmann law

Planck's constant

$$E_{b\lambda} = \frac{2\pi hc^2}{\lambda^5 (e^{hc/\lambda kT} - 1)} \left[\frac{W}{m^2 \cdot \mu m} \right]$$
$$h = 6.626176 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$$
$$\frac{E_{b\lambda}}{T^5} = \frac{c_1}{(\lambda T)^5 (e^{c_2/\lambda T} - 1)}$$
$$E_b = \int_0^\infty E_{b\lambda} d\lambda = \sigma T^4 \left[\frac{W}{m^2} \right]$$
$$10^{-8} \frac{W}{m^2 \cdot V^4} = 0.1714 \times 10^{-8} \frac{\mathrm{BTU}}{\ln r \cdot \theta^2 \cdot \mathrm{s}} \mathrm{P}^4$$

where

 $\sigma = 5.669 \times$ $hr \cdot ft^{-} \cdot K$ m · K

Heat transfer rate

$$\dot{Q}_b = E_b A = \sigma T^4 A \left[\mathbf{W} \right]$$

Irradiated body

In general

$$\alpha + \rho + \tau = 1$$

Opaque body:

 $\alpha + \rho = 1$ Black body: $\alpha = 1$

For gray body

In general: $EA = q_i A \alpha$ For black body: $E_b A = q_i A \cdot 1$ $\therefore \ \alpha = E / E_b$ Define emissivity $\varepsilon = E / E_b$ Kirchhoff's Law $\varepsilon = \alpha$

$$\varepsilon_{\lambda} = E_{\lambda} / E_{b\lambda} = \varepsilon = \text{const}$$

 $\dot{Q} = \varepsilon A \sigma T^4$

Radiation shape factor

 $F_{m n}$ - Fraction of radiation energy leaving *m* and reaching *n*

 $\dot{Q}_{1-2} = A_1 F_{12} E_{b1} - A_2 F_{21} E_{b2}$ Net radiation between black bodies **For** $T_1 = T_2$ $\dot{Q}_{1-2} = 0$ $E_{h1} = E_{h2}$ $\therefore A_1F_{12} = A_2F_{21}$ $\dot{Q}_{1-2} = A_1 F_{12} (E_{h1} - E_{h2}) = A_2 F_{21} (E_{h1} - E_{h2})$ $\sum F_{ij} = 1.0$ Shape factor relations i=1 $F_{1-2,3} = F_{1-2} + F_{1-3}$ $F_{12} = \frac{A_2}{A_1} F_{21}$

Radiation between gray bodies

J - radiosity, G - irradiation

$$q = \frac{\dot{Q}}{A} = J - G$$

$$J = \varepsilon E_b + \rho G = \varepsilon E_b + (1 - \varepsilon)G$$
$$G = \frac{J - \varepsilon E_b}{(1 - \varepsilon)} \left[\frac{W}{m^2}\right]$$

Irradiation, i.e., total radiation arriving at surface

Net heat transfer from gray body

Radiation heat transfer between two gray bodies

$$\dot{Q} = \frac{E_b - J}{(1 - \varepsilon)/\varepsilon A} \qquad \begin{array}{c} E_b \leftarrow \mathcal{N} \\ \frac{1 - \varepsilon}{\varepsilon A} \end{array} \qquad \begin{array}{c} J \\ \frac{1 - \varepsilon}{\varepsilon A} \end{array}$$

$$\dot{Q}_{1-2} = \frac{J_1 - J_2}{1/A_1 F_{12}} = \frac{E_{b1} - E_{b2}}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}$$

Gray body relations

Radiation between two gray bodies

Special case:

$$F_{12} = F_{21} = 1$$

 $A_1 = A_2$

$$\dot{Q}_{1-2} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}$$

$$\dot{Q}_{1-2} = \frac{\sigma A \left(T_1^4 - T_2^4\right)}{1 \left(\varepsilon_1 + 1\right) \left(\varepsilon_2 - 1\right)}$$

Reradiating surface (3)

$$J_{3} = E_{b3} = Q_{1} = \frac{\sigma(T_{1}^{4} - T_{2}^{4})}{\frac{1 - \varepsilon_{1}}{\varepsilon_{1}A_{1}} + \frac{1}{\varepsilon_{1}A_{1}} + \frac{1}{A_{1}F_{12}} + \frac{1}{(1/A_{1}F_{13}) + (1/A_{2}F_{23})} + \frac{1 - \varepsilon_{2}}{\varepsilon_{2}A_{2}}$$

Heat Exchangers - Classification

- a. Classification by type: Regenerators Recuperators
- b. Classification by flow character: Single phase: liquid–liquid, liquid–gas, gas–gas. Two-phase: boilers, reboilers, evaporators, condensers
- c. Classification by shape: double pipe, shell-and-tube, plate h.e., air radiator, stirred tank heat exchanger.

Thermal design problems

Problem #1:

Given entrance temperatures of the two streams, given one exit temperature; find heat-transfer area, *A*.

Problem #2:

Given entrance temperatures of the two streams, given the heat-transfer area, *A*; find the exit temperatures of the two streams.

Design algorithm

	n	n		1
_		M	U	L

Calculation

Results

- 1. Flowrates
- 2. Temperatures
- 3. Pressures
- 4. Shape of h.e.
- **5. Properties of fluids**
- 6. Fouling factors

A. Calculation of size and geometry
B. Heat transfer correlations (*h*)
C. Pressure drop correlations (*h*)

Exit temperatures for given area Heat transfer area for given thermal load Pressure drops

Flow configurations

Heat exchanger with 1 shell and 2 tube passes

Overall heat transfer coefficient

Plane wall $\dot{Q} = UA\Delta T$

$$\frac{1}{U} = \frac{1}{h_A} + R_{FA} + \frac{\Delta x}{k} + R_{FB} + \frac{1}{h_B}$$

Cylindrical wall

$$\dot{Q} = U_o A_o \Delta T$$

$$\frac{1}{U_o} = \left(\frac{D_o}{D_i}\right) \frac{1}{h_i} + \left(\frac{D_o}{D_i}\right) R_{Fi} + \frac{D_o}{2k} \ln\left(\frac{D_o}{D_i}\right) + R_{Fo} + \frac{1}{h_o}$$

Typical correlation for *h*

$$\frac{hD}{k} = 0.023 \left(\frac{D\overline{v}}{v}\right)^{0.8} \left(\frac{c_p \mu}{k}\right)^{1/3}$$

Thermal analysis

- **1. Mass balance** $\dot{m} = \rho \overline{u} A_x N$
- **2. Heat balance** $\dot{Q} = \dot{m}_c (h_2 h_1)_c = \dot{m}_h (h_1 h_2)_h$
 - For h = cT

$$\dot{Q} = \dot{m}_c c_c (t_2 - t_1) = \dot{m}_h c_h (T_1 - T_2)$$

3. Rate equation

$$\dot{Q} = U_o A_o \Delta T_{LM} = U_o A_o \frac{\Delta T_A - \Delta T_B}{\ln \frac{\Delta T_A}{\Delta T_B}}$$

Rate equation for multi-pass etc.

$$\dot{Q} = U_o A_o \Delta T_{LM} \cdot F = U_o A_o \frac{(T_1 - t_2) - (T_2 - t_1)}{\ln \frac{(T_1 - t_2)}{(T_2 - t_1)}} \cdot F$$

HEAT TRANSFER WITH PHASE CHANGE

BOILING

The Pool Boiling Curve The Boiling Process Nucleate Boiling Correlations Critical Heat Flux Correlations Film Boiling Correlations Forced Convection Boiling Flow Boiling Correlations

CONDENSATION

Dropwise vs. Filmwise Condensation Condensation on Vertical Surfaces Condensation on Horizontal Tubes Condensation Inside Tubes

Pool boiling

Given q find T_w

Vapor-liquid equilibrium

$$T_G = T_L$$
$$\mu_G = \mu_L$$
$$p_G = p_L + \frac{2\sigma}{r}$$

Temperature that sustains a bubble of radius *r*

$$T = T_{sat}(p_L) \left[1 + \frac{\nu_{LG} 2\sigma \rho_L}{h_{LG} r \rho_L - \rho_G} \right]$$

Effect of surface roughness on boiling

Boiling heat transfer coefficient

Heat transfer coefficient

$$h_b = \frac{q''}{T_w - T_{sat}}$$

Nusselt number
$$\operatorname{Nu} = \frac{h_b D_B}{k_L} = \frac{q'' D_B}{(T_w - T_{sat})k_L}$$
; $\operatorname{Nu} = f(\operatorname{Re}_B, \operatorname{Pr}_L)$

Reynolds number
$$\operatorname{Re} = \frac{G_B D_B}{\mu_L}$$
 where $G_B = \frac{\pi}{6} D_B^3 \rho_B fn$
 $D_B = 0.0148 \ \beta \left[\frac{2\sigma}{g(\rho_L - \rho_G)} \right]^{1/2}$

Heat flux

$$q \propto (T_w - T_{sat})^n$$

where

 $n \approx 3$

Pool boiling correlations $q = \mu_L h_{LG} \left[\frac{g(\rho_L - \rho_G)}{\sigma} \right]^{1/2} \left| \frac{c_L (T_w - T_{sat})}{h_{LG} \operatorname{Pr}_L^{1.7} C_{c}} \right]^3$ Rohsenow (1952) Critical heat flux $\frac{q_{\max}}{\rho_G h_{LG}} = 0.149 \left[\frac{\sigma(\rho_L - \rho_G)g}{\rho_C^2} \right]^{1.4} \left(\frac{\rho_L + \rho_G}{\rho_C} \right)^{1/2}$ **Zuber (1959)** $\frac{q_{\text{max}}}{\rho_C h_{LC}} = 0.16 \left[\frac{\sigma(\rho_L - \rho_G)g}{\rho_C^2} \right]^{1/4}$ Kutateladze (1952)

Film boiling – minimum heat flux

Zuber & Tribus (1958) $\dot{q}_{\min} = 0.09 \rho_{Gf} h_{LG} \left| \frac{g(\rho_L - \rho_G)}{\rho_L + \rho_G} \right|^{1/2} \left| \frac{\sigma}{\sigma(\rho_L - \rho_G)} \right|^{1/4}$

Forced convection boiling

Definition of quality $x = m_G / m$ At equilibrium $h = h_L + xh_{LG} \longrightarrow x = \frac{h - h_L}{h_{LG}}$ Enthalpy along the tube $h = h(0) + \frac{2\pi R}{\dot{m}} \int_0^z q(z) dz$

Flow regions in convective boiling

The boiling map

Forced convection correlation

Superposition analysis

$$h = h_{nb} + h_{fcv}$$

Dittus-Boelter forced convection correlation

$$h_{fcv} = 0.023 \,\mathrm{Re}_{L}^{0.8} \,\mathrm{Pr}_{L}^{0.4} \,\frac{k_{L}}{D}$$

where

$$\operatorname{Re}_{L} = \frac{G(1-x)D}{\mu_{L}}$$

Forster & Zuber (1955)nucleate boiling correlation

$$h_{FZ} = 0.00122 \left[\frac{k_L^{0.79} c_{pL}^{0.45} \rho_L^{0.49}}{\sigma^{0.5} \mu_L^{0.29} h_{LG}^{0.24} \rho_G^{0.24}} \right] \Delta T_{sat}^{0.24} \Delta p_{sat}^{0.75}$$

Dropwise vs. film condensation

Condensation on Vertical Surfaces

Continuity equation

Momentum equation

Energy equation

$$u_L \frac{\partial T_L}{\partial x} + \upsilon_L \frac{\partial T_L}{\partial y} = \sigma \frac{\partial^2 T_L}{\partial y^2}$$

 $\frac{\partial u_L}{\partial x} + \frac{\partial v_L}{\partial y} = 0$

Boundary conditions y = 0;

$$u_L = v_L = 0 \qquad T = T_w$$

 $u_{L}\frac{\partial u_{L}}{\partial x} + v_{L}\frac{\partial u_{L}}{\partial y} = \frac{(\rho_{L} - \rho_{G})g}{\rho_{L}} + v_{L}\frac{\partial^{2}u_{L}}{\partial y^{2}}$

$$y = \delta; \quad \mu \frac{\partial u_L}{\partial y} = \tau_i \qquad T = T_{sat}, \qquad k \frac{\partial T}{\partial y} = h_{LG} \frac{d\delta}{dx}$$

 $-\delta(x) -$

Nusselt solution

Heat transfer coefficient

$$h(x) = \frac{q''}{\Delta T} = \left[\frac{k_L^3(\rho_L - \rho_G)gh_{LG}}{4\nu_L x\Delta T}\right]^{1/4}$$

Average heat transfer coefficient

$$\overline{h} = \frac{4}{3}h(L) = 0.943 \left[\frac{k_L^3(\rho_L - \rho_G)gh_{LG}}{\nu_L L\Delta T}\right]^{1/4}$$
$$\Delta T = T_{sat} - T_w$$

Rohsenow subcooling correction

Variable liquid properties correction

 $h_{LG}^{\odot} = h_{LG} (1 + 0.68c_L \Delta T / h_{LG})$ $T_{ref} = T_w + 0.31(T_{sat} - T_w)$

Turbulent film condensation (Colburn)

$$h = 0.074k_L \left[\rho_L (\rho_L - \rho_G)g / \mu_L^2 \right]^{1/3} \operatorname{Re}_L^{0.2} \operatorname{Pr}_L^{1/2}$$

Condensation on Horizontal Tubes

Nusselt analysis

$$\overline{h} = 0.727 \left(\frac{(\rho_L - \rho_G)gh_{LG}k_L^3}{D\nu_L\Delta T} \right)^{1/4}$$

For *n* tubes

$$\overline{h}_n = n^{-1/4} \overline{h}_l$$

Condensation inside horizontal tubes

Chato equation (1962)

$$\overline{h} = 0.557 \left[\frac{\rho_L - \rho_G g h_{LG} k_L^3}{D v \Delta T} \right]^{1/4}$$

Boyko and Kruzhilin equation (1967)

$$\frac{\bar{h}D}{k_L} = 0.024 \left(\frac{\dot{m}D}{\mu_L}\right)^{0.8} \Pr_L^{0.43} \frac{1 + \sqrt{\rho_L / \rho_G}}{2}$$

This equation holds also for inclined and vertical tubes