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1.  Introduction 
 Sir Issac Newton (1642-1727) was the first to discover the correct laws of motion of 
particles. Since then much work has been done to verify the validity of these laws and to 

generalize them for deformable media. The study of rigid body dynamics is concerned 
with developing and analyzing the equations of motion of: a single particle, a system of 

particles, a rigid body, and a system of rigid bodies. 

 To analyze the motion of a particle it is necessary to first develop kinematical 
expressions for the position, velocity and acceleration of the particle.  Then, it is 

necessary to consider the kinetic equations of motions which characterize the influence of 
the forces applied to the particle on its motion.  Thus, the analysis of both kinematics and 

kinetics are necessary for a complete formulation of a specific problem.  Since the 

analysis of the motion of a single particle is simpler than that of a rigid body, most 
courses in dynamics develop the material in the following order.  The kinematics and 

kinetics of motion of a single particle are discussed for the simplest case of motion in a 

straight line.  Then, the equations are generalized to motion in a plane followed by 
motion in three-dimensional space.  Next, the kinematics and kinetics of motion of a 

system of particle is developed.  The analysis of rigid body motion starts with analysis in 
a plane and then is concluded with analysis in three-dimensional space.  This approach 

has the advantage that mathematical complexity increases gradually and that physical 

concepts are presented in their simplest forms.  However, it has the disadvantage that the 
more complicated mathematical tools required to analyze general three-dimensional 

motion are presented near the end of the course when there is often not sufficient time to 
fully absorb the material.   

 This course in dynamics presents the material in a different order from that in a 

standard presentation.  The course is loosely separated into two parts.  Part 1 includes 
sections 2-15 which develop the analysis of kinematics in three-dimensions and Part 2 

includes sections 16-39 which introduce the kinetic equations of motion to analyze forces 
and energies of systems of rigid bodies.  This approach has the advantage that the more 

complicated mathematical tools of analyzing motion in rotating coordinate systems is 

developed in Part 1.  Since the analysis of the kinetics of particles and rigid bodies 
necessarily requires the determination of acceleration, the more complicated 
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mathematical tools for analyzing motion in three-dimensions are used in almost all 

example problems in Part 2.  This ensures that these mathematical tools are fully 
absorbed.  Moreover, it ensures that at the end of the course each student can confidently 

formulate even the most complicated dynamics problems in three-dimensions. 
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2. Vector Algebra and Indicial Notation 

 In mechanics it is necessary to use vectors and vector equations to express physical 
laws.  To conveniently express the component forms of these vector equations it is 

desirable to use a language called indicial notation which develops simple rules 
governing manipulations of the components of these vector equations.  For the purposes 

of describing this language we introduce a set of right-handed orthonormal base vectors 

denoted by (e1,e2,e3), such that 

  e1 • e1 = 1  ,  e2 • e2 = 1  ,  e3 • e3 = 1  ,         (2.1a,b,c) 

  e1 • e2 = 0  ,  e1 • e3 = 0  ,  e2 • e3 = 0  ,         (2.1d,e,f) 

  e1 × e2 = e3  ,  e3 × e1 = e2  ,  e2 × e3 = e1  ,          (2.1g,h,i) 

where e1 • e2 denotes the dot product between the two vectors, and e1 × e2 denotes the 

cross product between the two vectors.  In this text we will use a bold faced symbol like a 
to indicate a vector quantity and in the written form we will use a wavy line under the 

symbol like ~
 
a  to indicate the same vector quantity a. 

VECTOR  ALGEBRA 
 Rules of Vector Addition and Multiplication by a Scalar:  Let a, b , and c be vectors 

and α and β be scalars.  Then the commutative and associative laws of vector addition are 

(see Fig. 2.1) 

  a + b = b + a  (commutative law)  , (2.1a) 
  a + (b + c) = (a + b) + c   (associative law)  , (2.1b) 

 Furthermore, the associative laws of scalar multiplication may be summarized as 

  α (β a) = (αβ) a = β (α a) = a (α β)  ,  (2.2a) 

  (α + β) a = α a + β a  , (2.2b) 

  α (a + b) = α a + α b  .  (2.2c) 
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a

b

a

b
a + b

b + a

 
Fig. 2.1 

 Components of a Vector:  An arbitrary vector a in Euclidean three-dimensional space 

may be expressed in terms of its components {a1,a2,a3} relative to the fixed base vectors 

{e1,e2,e3} such that 

  a = a1 e1 + a2 e2 + a3 e3  . (2.3) 

 Scalar (Dot) Product:  Magnitude and Direction of a Vector:  The scalar (or dot) 
product between two vectors a and b is defined by 

  a • b = (a1 e1 + a2 e2 + a3 e3) • (b1 e1 + b2 e2 + b3 e3) 

  = a1b1 + a2b2 + a3b3  , (2.4) 

where {b1,b2,b3} are the components of b relative to the base vectors {e1,e2,e3}.  It 

follows that the magnitude a and the unit direction ea of vector a  may be defined by 

  a = | a | =  (a • a)1/2 = (a1
2 + a2

2 + a3
2)1/2  ,  (2.5a) 

  ea = 
a
a   = 

a1
a    e1 +  

a2
a    e2 +  

a2
a    e2  ,  ea • ea = 1  ,            (2.5b,c) 

 so that a may be represented in the form 

  a = a ea  .  (2.6) 

The scalar product a • b may also be written in the more physical form 

  a • b = a b cosθ  , (2.7a) 

  a • b = a (b • ea) = a (b cosθ)  ,  a • b = b (a • eb) = b (a cosθ) ,  (2.7b,c) 

where θ is the angle between a and b (see Fig. 2.2).   The representation (2.7b) expresses 

a • b as the magnitude of a times the projection of b in the direction of a, whereas the 
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representation (2.7c) expresses a • b as the magnitude of b times the projection of a in the 

direction of b.  Furthermore, we note that the scalar product is commutative so that 
  a • b = b • a  . (2.8) 

a

b

!

b cos !

a

b

!

a cos !

 
Fig. 2.2 

Also, it follows that the components of a may be calculated by using the scalar product 
by 

  a1 = a • e1  ,  a2 = a • e2  ,  a3 = a • e3  .          (2.9a,b,c) 

Defining {θ1,θ2,θ3} as the angles between the vector a and the base vectors {e1,e2,e3}, 

respectively, the components of the direction vector ea in (2.5b) may be represented by 

(see Fig. 2.3) 

  
a1
a    = cosθ1  ,  

a2
a    = cosθ2  ,   

a3
a   = cosθ3  . (2.10a,b,c) 

a

e
1

e
2

e
3

1
!

2
!

3
!

 
Fig. 2.3 
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 Vector (Cross) Product:  The vector product between the two vectors a and b may be 

calculated directly using the expressions (2.1g,h,i) or may be calculated using the 
determinant of a matrix of the form 

  a × b = 
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪e1 e2 e3

a1 a2 a3
b1 b2 b3

   ,  (2.11a) 

  = (a2b3 – a3b2) e1 – (a1b3 – a3b1) e2 + (a1b2 – a2b1) e3 .       (2.11b) 

The vector product a × b may also be written in the more physical form 

  a × b = (a b sinθ) n  ,  n • n = 1  ,  (2.12a,b) 

where θ is the angle between a and b and n is the unit vector that is normal to the plane 

of the vectors a and b and is defined by the right-hand rule (see Fig. 2.4).  It follows that 
since n is defined by the right-hand rule the vector product is not commutative because 

  a × b = – b × a   . (2.13) 

Furthermore, from Fig. 2.4 we realize that the vector product a × b yields the area of the 

parallelogram formed by the vectors a and b times the unit normal vector n.  Thus, the 

vector product of a vector with itself vanishes (a × a = 0). 

  

!

a

bn

a

b

!

b sin !

 
Fig. 2.4 

 Scalar Triple Product:  The scalar triple product between the three vectors a,b,c may 
be expressed in the following equivalent forms 

  a • b × c = c • a × b = b • c × a = 
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪a1 a2 a3

b1 b2 b3
c1 c2 c3

   . (2.14) 

Physically, the scalar triple product may be interpreted as giving the volume of the 
parallelepiped formed by the vectors a,b,c (see Fig. 2.5) since 

  a × b • c = (a b sin θ) n • c  ,  (2.15) 
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where (a b sin θ) is the area of the base of the parallelepiped and n • c is the height of the 

parallelepiped. 

a

bc

n

!

 
Fig. 2.5 

Note that the order of the scalar and vector product may be interchanged without 

changing the value of the scalar triple product.  This can also be seen by realizing that the 
volume of the parallelepiped in Fig. 2.5 can be obtained by expressing the scalar triple 

product in terms of the vector product of an two of the three vectors a,b,c whose normal 
n (according to the right-hand rule) points toward the interior of the parallelepiped. 

 Vector Triple Product:  The vector triple product between the three vectors a,b,c may 

be expanded in the form 

  a × (b × c) = (a • c) b – (a • b) c  . (2.16) 

It is important to emphasize that since the vector product between two vectors generates 
another vector it is essential to include parentheses in the definition (2.16).  Also note that 

the vector  a × (b × c) is perpendicular to the vector (b × c).  But the vector (b × c) is 

perpendicular to the plane formed by b and c.  This means that the vector a × (b × c) 

must lie in the plane of b and c, which is consistent with the result (2.16).  Furthermore, 

the vector a × (b × c) must also be perpendicular to a, which is consistent with the result 

(2.16). 
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INDICIAL  NOTATION 

 Quantities written in indicial notation will have a finite number of indices attached to 
them.  Since the number of indices can be zero a quantity with no index can also be 

considered to be written in index notation.  The language of indicial notation is quite 
simple because only two types of indices may appear in any term.  Either the index is a 

free index or it is a repeated index.  Also, we will define a simple summation convention 

which applies only to repeated indices.  These two types of indices and the summation 
convention are defined as follows. 

 Free Indices: Indices that appear only once in a given term are known as free indices.  
For our purposes each of these free indices will take the values (1,2,3).  For example, i is 

a free index in each of the following expressions 

  (x1 , x2 , x3 ) = xi  (i=1,2,3)  , (2.17a) 

  (e1 , e2 , e3 ) = ei  (i=1,2,3)  .  (2.17b) 

Notice that the free index i in (2.17) refers to the group of three quantities defined by i 

taking the values 1,2,3. 
 Repeated Indices: Indices that appear twice in a given term are known as repeated 

indices.  For example i and j are free indices and m and n are repeated indices in the 

following expressions 
  ai bj cm Tmn dn   ,  Aimmjnn    ,  Aimn Bjmn  . (2.18a,b,c) 

It is important to emphasize that in the language of indicial notation an index can never 

appear more than twice in any term.   

 Einstein Summation Convention: When an index appears as a repeated index in a 
term, that index is understood to take on the values (1,2,3) and the resulting terms are 

summed.  Thus, for example, 
  xi ei = x1 e1 + x2 e2 + x3 e3  .  (2.19) 

Because of this summation convention, repeated indices are also known as dummy 
indices since their replacement by any other letter not appearing as a free index and also 

not appearing as another repeated index does not change the meaning of the term in 
which they occur.  For examples, 

  xi ei = xj ej  ,  ai bmcm = ai bj cj  .  (2.20a,b) 
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It is important to emphasize that the same free indices must appear in each term in an 

equation so that for example the free index i in (2.20b) must appear on each side of the 
equation. 

 Kronecker Delta: The Kronecker delta symbol δij is defined by 

  δij = ei • ej = 
⎩⎪
⎨
⎪⎧ 1  if i = j
 0  if i π j    . (2.21) 

Since the Kronecker delta δij vanishes unless i=j it exhibits the following exchange 

property 

  δij xj = ( δ1j xj , δ2j xj , δ3j xj ) = ( x1 , x2 , x3 ) = xi  .               (2.22) 

Notice that the Kronecker symbol may be removed by replacing the repeated index j in 

(2.22) by the free index i.   
 Recalling that an arbitrary vector a in Euclidean 3-Space may be expressed as a linear 

combination of the base vectors ei such that 

  a = ai ei  , (2.23) 

it follows that the components ai of a can be calculated using the Kronecker delta 

  ai = ei • a = ei • (am em) = (ei • em) am = δim am = ai   .               (2.24) 

Notice that when the expression (2.23) for a was substituted into (2.24) it was necessary 

to change the repeated index i in (2.23) to another letter (m) because the letter i already 
appeared in (2.24) as a free index.  It also follows that the Kronecker delta may be used to 

calculate the dot product between two vectors a and b with components ai and bi, 

respectively by 

  a • b = (ai ei) • (bj ej) = ai (ei • ej) bj = ai δij bj = ai bi  .  (2.25) 

 Contraction: Contraction is the process of identifying two free indices in a given 
expression together with the implied summation convention.  For example we may 

contract on the free indices i,j in δij to obtain 

  δii = δ11 + δ22 + δ33 = 3  . (2.26) 

Note that contraction on the set of 9=32 quantities Tij can be performed by multiplying 

Tij by δij to obtain 
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  Tij δij = Tii  = T11 + T22 + T33.  (2.27) 

 Matrix Multiplication:  In order to connect the summation convention with standard 
matrix multiplication consider two vectors with components ai,bi, and three square 

matrices with components Aij,Bij,Cij and define 

  bi = Aij aj  ,  Cij  = AimBmj  .  (2.28a,b) 

Since the first index of Aij indicates the row and the second index indicates the column, it 

can easily be seen that the summation on the index j in (2.28a) yields the same result of 

the multiplication of the matrix Aij with the column vector aj to obtain the column vector 

bi.  Similarly, since the second index of Aim in (2.28b) is summed with the first index of 

Bmj it is easy to see that Cij  is the matrix that is obtained by multiplying the matrix Aim  

with the matrix Bmj. 

 Transpose:  Let Aij be the components of a matrix A.  Then the components of the 

transpose AT of A are given by 

  (AT)ij = Aij
T = Aji  . (2.29) 

 In the above we have considered terms that have no free indices like in equations 
(2.19), (2.20a), (2.23), (2.25)-(2.27); that have one free index like in equations (2.22), 

(2.24), (2.28a); and that have two free indices like in equations (2.18), (2.21), (2.28b), 

(2.29).  Obviously, it is possible to write terms that have any number of free indices.  In 
general, a term is said to be of order zero if it has no free index, of order one if it has one 

free index and of order n if it has no free indices.  Usually in mechanics terms with 
indices are components of quantities called tensors, which are generalizations of vectors.  

In particular, when a and b are vectors the quantity a • b in (2.25) is called a scalar or 

zero order tensor (or a tensor of order zero).  Also, the quantities ai in (2.24) are the 

components of the vector a, which is also called a first order tensor (or a tensor of order 
one).  In this course we will consider tensors up to order three. 
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 Permutation Symbol:  The permutation symbol εijk is defined by  

 + 1 for (i,j,k) equal to an even permutation of (1,2,3), 
(i,j,k) = (1,2,3), (3,1,2), (2,3,1) 

εijk = ei × ej • ek = – 1 for (i,j,k) equal to an odd permutation of (1,2,3),       

(i,j,k) = (1,3,2),  (2,1,3), (3,2,1) 
   0 whenever any of the indices (i,j,k) are, repeated more than 

once (i.e  i=j, or i=k, or j=k, or i=j=k) 
   (2.30) 

It can be shown that the nine vectors ei × ej can be expressed in terms of the permutation 

symbol using the expression 

  ei × ej = εijk ek  .  (2.31) 

Thus, the vector product between the two vectors a and b may be expressed in the form 

  a × b = ai ei × bj ej = εijk ai bj ek  . (2.32) 

 For convenience we summarize the expanded and short forms of a number of vector 
quantities in Table 2.1. 
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Quantity Expanded Form Short Form 
 

Rectangular Cartesian 
 Coordinates 

x1,x2,x3 xi (i=1,2,3) 

Rectangular Cartesian 
Base Vectors 

e1,e2,e3 ei 

Position Vector x = x1 e1 + x2 e2 + x3 e3 xi ei 

Components of Vector a 
a1 = a • e1  ,  a2 = a • e2 
a3 = a • e3 

ai = a • ei 

Vector a a = a1 e1 + a2 e2 + a3 e3 a = ai ei 
Scalar Product a • b = a1b1 + a2b2 + a3b3 a • b = ai bi 

Vector Product 
a × b = (a2b3 – a3b2) e1 
            + (a3b1 – a1b3) e2 
            + (a1b2 – a2b1) e3 

a × b = εijk ai bj ek 

Gradient of a Scalar φ 
∇  φ = 

∂φ
∂x1

  e1 + 
∂φ
∂x2

 e2 

                 + 
∂φ
∂x3

 e3 
∇  φ = 

∂φ
∂xi

  ei 

Divergence of a Vector a ∇  • a = 
∂a1
∂x1

  + 
∂a2
∂x2

  + 
∂a3
∂x3

  ∇  • a = 
∂ai
∂xi

   

Curl of a Vector a 

∇  × a = ⎝
⎜
⎛

⎠
⎟
⎞∂a3

∂x2
 – 
∂a2
∂x3

  e1 

            + ⎝
⎜
⎛

⎠
⎟
⎞∂a1

∂x3
 – 
∂a3
∂x1

  e2 

            + ⎝
⎜
⎛

⎠
⎟
⎞∂a2

∂x1
 – 
∂a1
∂x2

  e3 

∇  × a = εijk 
∂aj
∂xi

   ek 

 

Table 2.1 
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3. Vector Calculus 

 In dynamics most vectors will be considered to be functions of time t and many of the 
equations in dynamics will be differential equations that need to be integrated.  

Consequently, it is important to learn how to differentiate and integrate vector functions.   
 Differentiation:  To this end, we define the time derivative of the vector function a(t) 

by the same limiting process that derivatives of scalar functions are defined 

  
da
dt    = •a  = 

 limit
Δt ∅ 0   

a(t+Δt) – a(t)
Δt    . (3.1) 

In (3.1) and throughout the text we use the notation da/dt and a superposed (•) to denote 
time differentiation.  It is important to note that both the magnitude and direction of a 

vector can change with time (see Fig. 3.1). 

a(t)

a(t+!t)
a(t+!t) – a(t)

 
Fig.3.1 

The standard rules of differentiation of scalar functions apply to vector functions except 

that the commutative law does not apply to the vector product between two vectors.  It 

follows that if a and b are vector functions of time and α is a scalar function of time that 

  
d
dt (a + b)  = 

da
dt   + 

db
dt    ,  (3.2a) 

  
d
dt (α a)  = 

dα
dt    a + α 

da
dt    ,  (3.2b) 

  
d
dt (a • b)  = 

da
dt    • b + a •  

db
dt    ,  (3.2c) 

  
d
dt (a ∞ b)  = 

da
dt  × b + a ×  

db
dt    . (3.2d) 

 Vector of Constant Magnitude:  Since we usually refer vectors to base vectors that 
have unit length it is desirable to consider the derivative of a general vector a of constant 

magnitude.  Thus, let 
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  a  • a = constant  . (3.3) 

Taking the derivative of (3.3) we have 

  •a  • a + a • •a  = 2 a • •a  = 0  ,   (3.4) 

which means that •a  is perpendicular to a (see Fig. 3.2) so that the vector a can only 

rotate. 

a

a
•

 
Fig. 3.2 

 Indefinite Integral of a Vector:  The indefinite integral of the vector vector function 

f(t) is denoted by 

  ∫t f(τ) dτ , (3.5) 

where the lower limit of integration is understood to be any arbitrary fixed value and τ is 

merely a variable of integration.  It follows that (3.5) denotes all functions whose 
derivative is f, so that 

  
d
dt ∫

t
 f(τ) dτ = f(t)  . (3.6) 

 Definite Integral of a Vector:  The definite integral of a vector function f(t) from time 

t0 to time t is denoted by 

  ∫ t
t0

 f(τ) dτ  . (3.7) 

 Integral of a Vector Differential Equation:  Consider the vector differential equation 
given by 

 
dF
dt    = f(t)  . (3.8) 

Integrating (3.8) using the indefinite integral (3.5) we deduce that 

  F(t) = ∫t f(τ) dτ + C  , (3.9) 
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where C is an arbitrary constant vector.  Now in order to determine the function F(t) 

uniquely we need to specify the initial value of F [say F(t0)].  Thus, with the help of this 

initial condition we may determine the value of C in (3.9) by the equation 

  F(t0) = ∫t0 f(τ) dτ + C  .  (3.10) 

Now substituting (3.10) into (3.9) we deduce that 

  F(t) = F(t0) + ∫ t
t0

 f(τ) dτ  ,  (3.11) 

where we have used the fact that 

  ∫ t
t0

 f(τ) dτ =    ∫t f(τ) dτ  –  ∫t0 f(τ) dτ  . (3.12) 

Finally, we note that the integral of the sum of two vector functions a,b is equal to the 
sum of the integrals of the functions 

  ∫ (a + b) dt = ∫ a dt + ∫ b dt  . (3.13) 
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4. Position, Velocity, Acceleration 

 Let x(t) be the position vector relative to a fixed origin of a point that moves in space 

along a curve C (see Fig. 4.1).  The average velocity vavg over the time period [t,t+Δt] is 

defined by 

  vavg =  
x(t+Δt) – x(t)

Δt     ,                             (4.1) 

and the velocity (instantaneous velocity) v is defined as the derivative of the position 
vector 

  v(t) =  •x(t)  =  
limit
Δt ∅ 0 

x(t+Δt) – x(t)
Δt      .  (4.2) 

 

 
 

Fig. 4.1 

Note from Fig. 4.1 that in the limit that Δt approaches zero the vector x(t+Δt)–x(t) 

becomes tangent to the curve C so the instantaneous velocity v is always tangent to the 

path traversed by the point.  Furthermore, the acceleration a of a point is defined as the 
derivative of the velocity so that 

 

  a = •v  =   
limit
Δt →0 

v(t+Δt) – v(t)
Δt    = ••x      .  (4.3) 

 The displacement of a point from the position x(t1) at time t1 to its position x(t2) at 

time t2 may be obtained by integrating the velocity v  

  x(t2) – x(t1) = ∫t2t1
 v(τ) dτ  . (4.4) 

e1 
e2 

e3 

x(t+Δt) 

x(t) 

x(t+Δt)–x(t) 

v(t) 
C 
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Also, the distance traveled along the path traversed by the point  is an increasing function 

of t so the distance traveled from time t1 to time t2 is calculated by integrating the 

magnitude of the velocity v and is denoted by D2/1 

  D2/1 =∫t2t1
  | v(τ) | dτ  .  (4.5) 
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5. Tangential and Normal Coordinates 

 Consider a space curve that is parameterized by the arclength s so that the position 
vector x(s) may be expressed in terms of its Rectangular Cartesian coordinates 

  x(s) = x1(s) e1 + x2(s) e2 + x3(s) e3 = xi(s) ei  ,  (5.1) 

where the arclength s is determined by integrating the element of arclength ds which is 

given by 

   (ds)2 = dx • dx  , (5.2) 

Recalling that dx is tangent to the space curve (see Fig. 5.1) we may define the unit 

tangent vector et by 

  et = 
dx
ds   .  (5.3) 

The vector et can easily be shown to be a unit vector by using (5.2)  

  et • et = 
dx
ds  • 

dx
ds   = 

dx • dx
(ds)2    = 1  .  (5.4) 

 

 

 
 

Fig. 5.1 

 
 Notice from Fig. 5.1 that the tangent vector et may change its direction as the curve is 

traversed.  Recalling that et is a unit vector of constant length its derivative with respect 

to s must be perpendicular to it so that we may write 

  
det
ds    = κ en = 

1
ρ  en  ,   κ = 

1
ρ   = ⎪⎪

⎪
⎪⎪
⎪

 
det
ds     ≥ 0  ,          (5.5a,b) 

e1 
e2 

e3 

x(s+Δs) 

x(s) C 

et(s) 

et(s+Δs) 

en(s) 
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where κ is the curvature and ρ is the radius of curvature of the space curve.  Note that 

since κ is nonnegative the vector en points towards the inside of the space curve (see Fig. 

5.1). 

 To help understand the curvature consider the special case of a planar curve for which 
  x(s) = x1(s) e1 + x2(s) e2  .        (5.6) 

Furthermore, let Δψ be the angle between the tangent vector et(s) at s and the tangent 

vector et(s+Δs) at s+Δs (see Fig. 5.2).  It follows from geometry that the vector et(s+Δs) 

may be expressed in terms of the base vectors et(s) and en(s) at s such that 

  et(s+Δs) = cosΔψ et(s) + sinΔψ en(s)  . (5.7) 
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Fig. 5.2 

 

Recalling the definition of the derivative we have 

  
det
ds    = 

limit
Δs → 0  

et(s+Δs) – et(s)
Δs     ,      (5.8a) 

  = 
limit
Δs → 0 ⎣

⎢
⎡

⎦
⎥
⎤

⎝
⎜
⎛

⎠
⎟
⎞cosΔψ – 1

Δs  et(s) + ⎝
⎜
⎛

⎠
⎟
⎞sinΔψ

Δs  en(s)    .   (5.8b) 

But using the Taylor series expansions of cosΔψ and sinΔψ  

  cosΔψ ≈ 1 –  
(Δψ)2

2    + ...  ,   sinΔψ ≈ Δψ – 
(Δψ)3

6    + ...  , (5.9a,b) 

we may rewrite (5.8b) in the form 

  
det
ds    = 

limit
Δs → 0 ⎣

⎢
⎡

⎦
⎥
⎤

 – 
(Δψ)2

2Δs  et(s) + ⎝
⎜
⎛

⎠
⎟
⎞Δψ

Δs  en(s)    =  
dψ
ds    en(s)  .      (5.10) 
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Thus, comparing the result (5.10) with the definition (5.5) we have 

 

  
1
ρ  = 

dψ
ds    ,   ds = ρ dψ  .  (5.11a,b) 

Note that the relationship (5.11b) is consistent with the relationship that connects the 

arclength of a circle with the radius of the circle and the angular displacement (see Fig. 

5.3). 

!"

#

ds

 
Fig. 5.3 

  Note also from Fig. 5.4 that for planar curves it is easy to find en (to within a plus or 

minus sign) by the formula 

  en = ± e3 × et  , (5.12) 

since e3 × et is a vector that lies in the e1–e2 plane and is normal to the space curve. 
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 For some problems it is convenient to use tangential and normal coordinates to 

describe motion of a particle moving in space.  Within this context, the position vector x 
depends on time parametrically through the specification of s(t) so that 

  x = x(s(t))   .  (5.13) 
Thus, with the help of (5.3) and (5.5a) we may use the chain rule of differentiation to 

calculate the velocity v and acceleration a in the forms 

  v = •x  = 
dx
ds  •s  = •s  et  ,    (5.14a) 

  a = •v  = ••s   et + •s •e t =  ••s   et + •s 2 
det
ds    =  ••s   et +  

•s2

ρ    en  . (5.14b) 

It follows that the tangential and normal components of the velocity and acceleration 
become 

 vt = v • et =  •s  the component of the velocity tangent to the curve defining 

the path of motion 
 vn = v • en = 0 the velocity is always tangent to the path of motion 

 at = a • et = ••s   the component of acceleration tangent to the curve 

 an = a • en =  
•s2

ρ   the component of the acceleration normal to the path of 

motion and directed towards the center of curvature of the 

path 

Note that even if the speed is constant [•s = constant, ••s  = 0] the acceleration does not 

vanish when the path is curved (ρ ≠ ∞) because the velocity changes direction. 
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Summary of Tangential and Normal Coordinates 
 

Position vector x(s(t)) 
 

arclength (ds)2 = dx • dx 
 

 
tangent vector et = 

dx
ds  

 
 
curvature  κ = ⎪⎪

⎪
⎪⎪
⎪det

ds   
 

 
radius of curvature  ρ = 

1
κ  

 
 
normal vector en = ρ 

det
ds   

 
 
velocity v =  •s  et  

 
 
acceleration a =   ••s  et +  

•s2

ρ   en  
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6. Rectilinear Motion 

 For rectilinear motion (motion in a straight line) the radius of curvature ρ becomes 

infinite so that the tangent vector et becomes constant. 

  ρ → ∞  ,  
det
ds   = 0  .  (6.1a,b) 

Thus, we may chose our coordinate system so that et is in the positive e1 direction and 

deduce that the position, velocity and acceleration are characterized by the scalars s,v,a, 

respectively, such that 

  x = s e1  ,  (6.2a) 

  v = v e1  ,  v = •s   ,  (6.2b,c) 

  a = a e1  ,  a = •v  = ••s    .  (6.2d,e) 

 In what follows we consider four cases where the acceleration a is specified by 
different functional forms.  For each case we develop equations that express the velocity 

v and the position s in terms of the initial position s1 and velocity v1 at the initial time t1 

  s(t1) = s1  ,  v(t1) = v1  .   (6.3a,b) 

Case 1:  a = constant 

 For the case when the acceleration a is constant we may integrate the differential 

equations (6.2c,e) to obtain 

  
dv
dt   = a  ⇒   v(t) = C1 + ∫ t

t1
 a dτ  = C1 + a (t – t1)  ,  (6.4a) 

  
ds
dt  = v   ⇒   s(t) = C2 + ∫ t

t1
 v(τ) dτ  = C2 + C1(t – t1) + 

1
2  a (t – t1)2   .   (6.4b) 

Now using the initial conditions (6.3) we deduce that 

  v(t) = v1 + a(t – t1)  ,  (6.5a) 

  s(t) = s1 + v1(t – t1) + 
1
2  a (t – t1)2  .  (6.5b) 

Case 2:  a = a(t) 
 For the case when the acceleration is a general function of time we can only express 

the velocity v and position s in terms of integrals that need to be evaluated 
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  v(t) = v1 + ∫ t
t1

 a(τ) dτ  , (6.6a) 

  s(t) = s1 + ∫ t
t1

 v(τ) dτ  .  (6.6b) 

Case 3:  a = a(v) 

 The case when the acceleration is a function of velocity occurs often when damping 
or air drag are modeled.  For this case the differential equation (6.2e) yields 

  
dv
dt   = a(v)   ⇒  

dv
a(v)  = dt  .  (6.7a,b) 

Thus, with the help of the initial condition (6.3b) we may obtain an equation for v(t) of 

the form 

  ∫v(t)
v1

 
dV

a(V)   = ∫ t
t1

 dτ = (t – t1)  . (6.8) 

Then s(t) can be determined by the solution (6.6b). 

 Alternatively, sometimes it is of interest to find v(s) directly.  For this case v is 
thought of as a function of s and the chain rule of differentiation is used to deduce that 

  a(v) = 
d
dt [v(s(t))] = 

dv(s)
ds   •s  = v  

dv(s)
ds   . (6.9) 

Thus, the velocity v(s) can be determined by evaluating the integral 

  ∫v(s)
v1

  
VdV
a(V)   = ∫ s

s1
 dS = (s – s1)  . (6.10) 

Finally, using (6.10) the differential equation (6.2c) yields 

  
ds
dt  = v(s)  ⇒  

ds
v(s)  = dt  ,  (6.11a,b) 

which may be integrated to obtain an equation for s(t) of the form 

  ∫s(t)
s1

  
dS

v(S)  = ∫ t
t1

 dτ = (t – t1)  .  (6.12) 

Case 4:  a = a(s) 

 The case when the acceleration is a function of position occurs often when springs are 

modeled.  For this case we may multiply the differential equation (6.2e) by •s =v to obtain 
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  •s 
dv
dt   = v 

dv
dt    = a(s) •s  ,  (6.13) 

which may be integrated using the initial conditions (6.3) to obtain 

  ∫v(s)
v1

 V dV = 
1
2  [v(s)2 – v1

2] =  ∫ s
s1

 a(S) dS  . (6.14) 

Thus, v(s) becomes 

  v(s) = ± [v1
2 + 2 ∫ s

s1
 a(S) dS ]1/2

.  (6.15) 

Then, using (6.12) it is possible to determine s(t). 
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7. Polar Coordinates 

 By way of introduction to the description of general planar motion in terms of polar 
coordinates let us first consider circular planar motion.  For this case the position vector 

may be expressed in the form 
  x = x1 e1 + x2 e2  , (7.1) 

where the rectangular Cartesian coordinates x1,x2 may be expressed in terms of the radius 

r of the circle and the angle θ by (see Fig. 7.1) 

  x1 = r cosθ  ,   x2 = r sinθ  .  (7.2a,b) 
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Fig. 7.1 

Thus, the position vector may be expressed in the form 

  x = r (cosθ e1 + sinθ e2) = r er  , (7.3) 

where er is the unit vector in the direction of the point of interest 

  er = er(θ) = cosθ e1 + sinθ e2  ,  er • er = 1  .            (7.4a,b) 

Furthermore, we define the unit vector eθ by 

  eθ(θ) = 
der
dθ    = – sinθ e1 + cosθ e2  ,  eθ • eθ = 1  ,            (7.5a,b) 

which points in the direction of increasing θ (see Fig. 7.1).  Also, note that er and eθ are 

orthogonal vectors 
  er • eθ = 0  ,  (7.6) 
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and that the derivative of eθ with respect to θ is related to er by the expression 

  
deθ
dθ   = – er  . (7.7) 

 It follows from (5.2) and the above definitions that for constant radius r the increment 

of arclength ds is related to the angle increment dθ by 

  (ds)2 = dx • dx = 
dx
dθ  • 

dx
dθ  (dθ)2  = (r eθ) • (r eθ) (dθ)2 ,   (7.8a) 

  (ds)2 = r2 (dθ)2  ,  ds = r dθ  .  (7.8b,c) 

Furthermore, recall from (5.3) that the tangent vector is given by 

  et = 
dx
ds  = 

dx
dθ  

dθ
ds  = (r eθ) 

1
r  = eθ   . (7.9) 

Thus, for circular motion eθ is tangent to the path.  Also, using (5.5) we may determine 

that the normal vector en and the radius of curvature ρ are given by 

  
det
ds   = 

deθ
dθ   

dθ
ds   = – 

1
r  er =  

1
ρ  en  ,  (7.10a) 

  ρ = r  ,  en = – er  .  (7.10b,c) 

 For general planar motion the position vector is a function of time parametrically 

through the polar coordinates {r,θ} and may be expressed in terms of the polar base 

vectors er and eθ by 

  x = x(t) = r er(θ)  ,   r = r(t)  ,   θ = θ(t)  .       (7.11a,b,c) 

It is important to emphasize that unlike for rectangular Cartesian coordinates the position 

vector in polar coordinates is not equal to the sum of the coordinates times their 
associated base vectors.  This is because the base vectors er and eθ are functions of the 

angular coordinate θ, so that er already is directed towards the point of interest.  Now, 

differentiation of (7.1a) yields 

  v = •x  = •r  er + r •e r  . (7.12) 

Using the definition (7.5a) we may deduce that 



 
 

31 

  •er = 
der
dθ   

•
θ  = 

•
θ eθ  , (7.13) 

so the velocity becomes 

  v =  •r  er + r 
•
θ eθ = vr er + vθ eθ  . (7.14) 

Recalling from (5.14a) that the velocity is always tangent to the particle path the tangent 

vector et may be determined by the equation 

  et = 
v
|v|  =  

vr er + vθ eθ
(vr

2 + vθ2)1/2    .  (7.15) 

This shows that for the general planar case eθ is not tangent to the path of motion.  Next, 

differentiation of (7.14) yields the acceleration in the form 

  a =  •v  = ••r  er + •r •er + •r 
•
θ eθ + r 

••
θ  eθ + + r 

•
θ •eθ ,  (7.16a) 

  = ••r  er + •r 
•
θ eθ + •r 

•
θ eθ + r 

••
θ  eθ – r 

•
θ2 er  , (7.16b) 

  = [••r – r 
•
θ2] er + [r 

••
θ  + 2 •r 

•
θ] eθ  , (7.16c) 

  = [••r  – r 
•
θ2] er + 

1
r  

d(r2•
θ)

dt   eθ  = ar er + aθ eθ  , (7.16d) 

The physical interpretation of the velocity components in (7.14) and the acceleration 
components in (7.16c) may be summarized as follows 

•r er velocity due to changing length of the position vector 

r 
•
θ eθ velocity due to changing direction of the position vector 

••r  er acceleration due to changing radial velocity 

– r 
•
θ2 Centripetal acceleration: acceleration due to changing eθ direction 

r 
••
θ  eθ acceleration due to changing angular speed 

•
θ 

2 •r 
•
θ eθ Corriolis acceleration due to motion in a rotating coordinate system 
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8. Cylindrical Polar Coordinates 

 For cylindrical polar coordinates the position vector x of a point is defined in terms of 

the three coordinates {r,θ,x3} (see Fig. 8.1)  

  x = r er(θ) + x3 e3  , (8.1) 

and all vectors are expressed in terms of the right-handed orthonormal set of base vectors 
{er,eθ,e3} defined by 

  er(θ) = cosθ e1 + sinθ e2  ,  
der
dθ   = eθ  ,            (8.2a,b) 

  eθ(θ) = – sinθ e1 + cosθ e2  ,  
deθ
dθ   = – er  ,            (8.2c,d) 

  e3 = e3  ,  
de3
dθ   = 0  .            (8.2e,f) 

Since {er,eθ,e3} are a right-handed orthonormal set of base vectors they satisfy the 

relations 
  er • er = 1  ,  eθ • eθ = 1  ,  e3 • e3 = 1  ,         (8.3a,b,c) 

  er • eθ = 0  ,  er • e3 = 0  ,  eθ • e3 = 0  ,         (8.3d,e,f) 

 er × eθ = e3  ,  e3 × er = eθ  ,  eθ × e3 = er  .         (8.3g,h,i) 

  
Fig. 8.1 

Using the results of the previous section and the fact that e3 is a constant vector the 

velocity and acceleration may be calculated and the results are summarized below. 
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  Summary of Cylindrical Polar Coordinates 

coordinates r, θ, x3 

base vectors er, eθ, e3 

derivatives of base vectors 
der
dθ   = eθ   ,     

deθ
dθ   = – er 

position vector x = r er(θ) + x3 e3 

velocity v = •r er + r 
•
θ eθ + •x3 e3 

acceleration [••r  – r 
•
θ2] er + 

1
r  

d(r2•
θ)

dt   eθ + ••x3 e3 
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9. Relative Motion 
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Fig. 9.1 

 

 By way of introduction to the topic of relative motion consider the example shown in 
Fig. 9.1 of a cylinder rolling on a flat surface with point A moving in a slot that rotates 

with the cylinder.  It is quite difficult to describe the motion of point A relative to the 

fixed origin O directly by writing the position vector x(t) relative to e1 and e2.  However, 

it is possible to describe this complicated motion by separating the description into 
smaller simpler parts.  In separating the description of motion it is often convenient to use 

moving and rotating coordinate axes.  It is important to emphasize that depending on how 

we separate the motion we can either simplify or complicate the kinematic description.  
Since this separation is not unique we will have to develop experience solving many 

problems in order to learn the advantages and disadvantages of different separations of 
motion. 

 With reference to Fig. 9.2 we can describe the general motion of point A in terms of 

its position x, velocity v, and acceleration a, relative to the fixed origin O by separating 
the motion into the sum of the motion of point B, with position vector X and the motion 

of A relative to B, with the position vector p.  Thus, we have 

  x = X + p   ,  x = xA  ,   X = xB  ,         (9.1a,b,c) 

  v = •X + •p   ,  v = vA  ,  •X  = vB  ,         (9.1d,e,f) 

  a = ••X + ••p   ,  a = aA  ,  ••X  = aB  .         (9.1g,h,i) 
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In (9.1) the subscripts A or B are used to denote quantities characterizing the motion of 

the points A and B.  Also, the position vector p, velocity •p , and acceleration ••p, describe 

the relative motion of point A relative to point B.  Sometimes it is convenient to express 
these vectors in alternative forms that emphasize their relative nature 

  p = xA/B = xA – xB  ,  (9.2a) 

  •p  = vA/B = vA – vB  ,   (9.2b) 

  ••p = aA/B = aA – aB  , (9.2c) 

where the notation xA/B denotes the position of A relative to B. 

ABSOLUTE  AND  RELATIVE  MOTION 

 Motion relative to a fixed point in space is called absolute motion whereas motion 
relative to a moving point is called relative motion.  Thus, with reference to Fig. 9.2, the 

quantities xA, vA, aA are called the absolute position, velocity, and acceleration, 

respectively, and the quantities xA/B, vA/B, aA/B are called the relative position, velocity, 

and acceleration, respectively. 

 

 
 

 
 

 

 
 

 

Fig. 9.2 
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10. Rotating Coordinate Axes and Angular Velocity 

 In the description of relative motion it is often convenient to use a rotating coordinate 
system like the one shown in Fig. 9.1.  Here and throughout the text we let ei be a fixed 

right-handed orthonormal set of coordinate axes and let ei' be another right-handed 

orthonormal set of coordinate axes that is allowed to rotate in space. By way of 
introduction let us first consider the simple case where ei' rotates about a fixed axis e3' , 

which for convenience is identified with e3 (see Fig. 10.1).  Thus we take 

  e1'  = cosθ e1 + sinθ e2  ,  (10.1a) 

  e2'  = – sinθ e1 + cosθ e2  ,  (10.1b) 

  e3'  = e3  .  (10.1c) 
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Fig. 10.1 

Since ei are fixed their derivatives vanish (•ei =0) so differentiation of (10.1) yields 

  •e1'   = 
•
θ  (– sinθ e1 + cosθ e2)  =  

•
θ e2'   ,  (10.2a) 

  •e2'   = 
•
θ (– cosθ e1 – sinθ e2) = – 

•
θ e1'   , (10.2b) 

  •e3'   = 0  .  (10.2c) 

Now from Fig. 10.1 we observe that the angle θ characterizes the rotation of the ei' axes 

about the fixed e3'  axis so that 
•
θ characterizes the angular velocity.  In this regard it is 

important to emphasize that the origin of the rotating coordinate axes ei' can move without 
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changing the description (10.2).  Furthermore, by introducing the angular velocity vector 

ω defined by 

  ω = 
•
θ e3'   , (10.3) 

we can conveniently rewrite equations (10.2) in the compact form 

  •ei' = ω × ei'  , (10.4) 

which explicitly states that ω is the angular velocity of the ei' coordinate axes. 

 In the above we have proved equation (10.4) for the special case of rotation about a 
fixed axis in space.  However, it can be shown that (10.4) holds even if the angular 

velocity ω(t) is a function of times whose magnitude and direction change.  To prove this 

we recall that since ei'  form an orthonormal set of axes they satisfy the conditions  

  ei' • ej' = δij  .  (10.5) 

In view of the fact that (10.5) is symmetric in the indices (i,j) these equations represent 

six constraints on the nine scalar quantities that characterize the three vectors ei'.  Thus, 

the coordinate axes ei' have only three degrees of freedom, which corespond to three 

independent rotations.  To show that (10.4) is consistent with the constraints (10.5) we 

differentiate (10.5) to obtain 

  •ei' • ej' + ei' • 
•ej' = 0  .  (10.6) 

Next, substitution of (10.4) into (10.6) yields 

  •ei' • ej' + ei' • 
•ej' = (ω × ei') • ej' + ei' • (ω  × ej') = ω • (ei' × ej') + (ej'  × ei') • ω  , 

      = ω • [ei' × ej' + ej'  × ei'] = 0  . (10.7) 

This means that the differential equations (10.4) satisfy the differential form (10.6) of the 

constraint (10.5) so that the vectors ei' calculated by integrating (10.4) for arbitrary ω will 

remain an orthonormal set of vectors.  Thus, the components ωi' = ω • ei' of the angular 

velocity ω represent the rates of rotation of the rotating coordinate axes about the each of 

the axes ei', respectively.  Finally, we represent ω in terms of its magnitude ω and 

direction eω 
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  ω = ω eω  ,  eω • eω = 1  ,  (10.8a,b) 

and note that the sign convention is chosen so that positive values of ω indicate counter-

clockwise rotation about the positive eω axes. 

 As an example we can reconsider the cylindrical polar coordinate axes shown in Fig. 

10.2 and take  
  e1'  = er  ,  e2'  = eθ  , e3'  = e3  .       (10.9a,b,c) 

Noting that the angular velocity ω is given by 

  ω = 
•
θ e3  , (10.10) 

the derivatives of the vectors er,eθ,e3 may be calculated using the formula (10.4) to obtain 

  •er = ω × er = 
•
θ eθ  , (10.11a) 

  •eθ = ω × eθ = – 
•
θ er  , (10.11b) 

  •e3 = ω × e3 = 0 .  (10.11c) 
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Fig. 10.2 
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11. General Differential Operator 

 Returning to our discussion of relative motion we note that vectors can be referred to 
any complete set of base vectors.  Thus, with reference to Fig. 9.2 the vector p, which 

describes the position of point A relative to point B, may be represented in terms of the 
base vectors ei' and its components pi' relative to ei' such that 

  p = pi' ei'  . (11.1) 

Since in dynamics we are interested in the time rate of change of vectors it is important to 
emphasize that whenever we introduce a set of base vectors like ei' we must also define 

the angular velocity ω with which the base vectors are rotating.  To emphasize this we 

write 

  •ei' = ω × ei'  ,  (11.2) 

which explicitly indicates that ω is the angular velocity of the base vectors ei'.  This is 

particularly important when we use more than one set of rotating base vectors so that 
more than one angular velocity is used.   

 Now, differentiation of (11.1) and use of (11.2) yields  

  •p  = •pi' ei' + pi' 
•ei'  ,  (11.3a) 

  •p  = •pi' ei' + ω × (pi' ei') . (11.3b) 

Thus, the derivative of p naturally separates into two parts 

  •p  = 
δp
δt    + ω × p  , (11.4) 

where the operator δ( )/δt is defined as the frame derivative by 

  
δp
δt    = •pi' ei'  .  (11.5) 

The physical interpretation of these terms may be explained as follows: 
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δp
δt    =  •pi' ei' 

The frame derivative of p is the rate of change of the 
vector p measured relative to ei' assuming that ei' do not 

rotate. 

ω × p The rate of change of the vector p due to the rotation of 

the coordinate axes ei'. 

 
The differential operator (11.4) is sometimes called the general operator because it is 

valid even if the coordinate system is rotating.  It is important to emphasize that the 

angular velocity ω that appears in (11.4) characterizes the rate of rotation of the same 

coordinate system in which p is represented.  For example, if we were to consider a 

second coordinate system with base vectors ei'' which rotate with angular velocity Ω  

  •ei'' = Ω × ei''  , (11.6) 

Then the general operator (11.4) would take the form 

  •p = 
δp
δt  + Ω × p  ,   

δp
δt   = •pi'' ei''  .        (11.7a,b) 

 Recalling that the vector product ω × p may be calculated using the determinant  

  ω × p = 
⎪
⎪
⎪

⎪
⎪
⎪e1' e2' e3'

ω1' ω2' ω3'
p1' p2' p3'

  ,  (11.8) 

it is very convenient to calculate the derivative of a vector referred to a rotating 
coordinate system by writing the following table. 
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e1'  
 

 
e2'  
 

 
e3'  
 

 
ω 
 

 
ω1'  

 
ω2'  

 
ω3'  

 
p 
 

 
p1'  

 
p2'  

 
p3'  
 

 
δp
δt  

 

 
•p1'  

 
•p2'  

 
•p3'  
 

 
ω × p 

 

 
ω2'  p3'  – ω3'  p2'  

 

 
– ω1'  p3'  + ω3'  p1'  

 

 
ω1'  p2'  – ω2'  p1'  

 
 
•p 
 

 
•p1'  

+ ω2'  p3'  – ω3'  p2'  

 
•p2'  

– ω1'  p3'  + ω3'  p1'  
 

 
•p3'  

+ ω1'  p2'  – ω2'  p1'  

 

 Using the general operator (11.4) we can calculate the derivative of any vector.  For 

example we can calculate the relative acceleration ••p in the form 

  ••p = 
δ

•p
δt   + ω × •p  ,  (11.9a) 

  ••p = 
δ
δt [

δp
δt  + ω × p] + ω × [δp

δt  + ω × p]  , (11.9b) 

  ••p = 
δ2p
δt2   + 

δω
δt   × p + 2 ω × 

δp
δt   + ω × (ω × p)  .  (11.9c) 

However, using the general operator (11.4) the angular acceleration •
ω is given by 

  •
ω = 

δω
δt   + ω × ω =  

δω
δt   ,  (11.10) 

so the relative acceleration (11.9c) becomes 

  ••p = 
δ2p
δt2   + •

ω  × p + 2 ω × 
δp
δt   + ω × (ω × p)  .  (11.11) 
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The physical interpretation of these terms may be explained as follows: 
 

δ2p
δt2  

The acceleration as measured relative to ei' assuming that 
ei' do not rotate. 
 

•
ω × p The acceleration due to the angular acceleration •

ω  of the 
coordinate axes ei'. 
 

2 ω × 
δp
δt  

 

 
The Corriolis acceleration 

 
ω × (ω × p) 

 
The Centripetal acceleration 
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12. Spherical Polar Coordinates 

 For spherical polar coordinates the position vector x of a point is defined in terms of 

the three coordinates {R,θ,φ} (see Fig. 12.1)  

  x = R eR(θ,φ)   , (12.1) 

and all vectors are expressed in terms of the right-handed orthonormal set of base vectors 
{eR,eθ,eφ} defined in terms of the cylindrical polar base vectors {er,eθ,e3}by 

  eR(θ,φ) = cosφ er + sinφ e3  ,  (12.2a) 

  eθ(θ) = – sinθ e1 + cosθ e2  ,  (12.2b) 

  eφ(θ,φ) = – sinφ er + cosφ e3  ,  (12.2c) 

Since {eR,eθ,eφ} are a right-handed orthonormal set of base vectors they satisfy the 

relations 
  eR • eR = 1  ,  eθ • eθ = 1  ,  eφ • eφ = 1  ,       (12.3a,b,c) 

  eR • eθ = 0  ,  eR • eφ = 0  ,  eθ • eφ = 0  ,       (12.3d,e,f) 

 eR × eθ = eφ  ,  eφ × eR = eθ  ,    eθ × eφ = eR  . (12.3g,h,i) 

 In order to calculate derivatives of vectors expressed in spherical coordinates it is 

necessary to calculate derivatives of the base vectors.  This can be done directly by 
deriving the formulas 

  
∂eR
∂θ    = cosφ eθ  ,  

∂eR
∂φ    = eφ  , (12.4a,b) 

  
∂eθ
∂θ    = – cosφ eR + sinφ eφ  ,  

∂eθ
∂φ    = 0  ,  (12.4c,d) 

  
∂eφ
∂θ    = – sinφ eθ  ,  

∂eφ
∂φ    = – eR  ,  (12.4e,f) 

and using the chain rule of differentiation.  Alternatively we may take 
  e1'  = eR  ,  e2'  = eθ  , e3'  = eφ  , (12.5a,b,c) 

and write the angular velocity ω in the form (see Fig. 12.1) 

  ω = 
•
θ e3 – •φ  eθ  . (12.6) 
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Fig. 12.1 

 

Notice that in (12.6) 
•
θ represents the angular velocity about the e3 axis and •

φ  represents 

the angular velocity about the (–eθ) axis.  Furthermore, using (12.2) we can express the 

vector e3 in terms of the spherical base vectors such that 

  e3 = sinφ eR + cosφ eφ , (12.7) 

so the angular velocity ω becomes 

  ω = 
•
θ sinφ eR – •φ eθ + 

•
θ cosφ eφ  . (12.8) 

Now the rate of change of the base vectors may be calculated by 

  •eR = ω  × eR = 
•
θ cosφ eθ + •φ eφ  ,  (12.9a) 

  •eθ = ω  × eθ = – 
•
θ cosφ eR + 

•
θ sinφ eφ  ,  (12.9b) 

  •eφ = ω  × eφ = – •φ eR – 
•
θ sinφ eθ  .  (12.9c) 

 

Using the procedure described in the last section we can calculate the velocity and 

acceleration in spherical coordinates and the results are summarized in the following 
table. 
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Spherical Polar Coordinates 
 

 
 

eR 
 

 
eθ 

 
eφ 
 

 
ω  
 

 
•
θ sinφ 

 

– •φ  

 
•
θ cosφ 

 
 
x 
 

 
R 

 
0 

 
0 
 

 
δx
δt   

 

 
•R  

 
0 

 
0 
 

 
ω × x 

 

 
0 

 

R 
•
θ cosφ 

 

 

R •φ  

 
v 
 

 
•R  

 

R 
•
θ cosφ 

 

R •φ  

 
δv
δt   

 

 
••R  

 
•R 

•
θ cosφ 

+ R 
••
θ  cosφ 

– R 
•
θ •φ sinφ 

 

 
•R •φ  

+ R ••φ   

 
ω  × v 

 

 

– R •φ2  

– R 
•
θ2 cos2φ 

 

 

– R •φ 
•
θ sinφ 

+ 
•R •θ  cosφ 

 

R 
•
θ2 cosφ sinφ 

+ •R •φ  

 
a 
 

 
••R  

– R •φ2  

– R 
•
θ2 cos2φ 

 

 

R 
••
θ  cosφ 

+ 2 •R 
•
θ cosφ 

– 2 R 
•
θ •φ sinφ 

 

R ••φ   

+ R 
•
θ2 sinφ cosφ 

+ 2 •R •φ  
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13.  General Rigid Body Motion 

   
 

 
 

 

 
  

 
Fig. 13.1 

 

 A body is said to be rigid if the distance between any two points remains constant.  
Letting A and B be two points on the rigid body (see Fig. 13.1) we have 

  | xA/B |2 = xA/B • xA/B = constant  . (13.1) 

It follows that the angle θ between any two material lines on the rigid body remains 

constant (see Fig. 13.2) so that we can attach a coordinate system ei' to the body that will 

remain orthonormal.  This coordinate system is called a body coordinate system.  Since 

the coordinate system ei' is attached to the body its angular velocity ω 

  •ei' = ω × ei' , (13.2) 

is the same as the angular velocity of the rigid body.  Now with reference to Fig. 13.1 it is 
apparent that a rigid body has 6 degrees of freedom: 3 translational degrees of freedom 

characterized by xB ; and 3 rotational degrees of freedom characterized by ω. 

 The relative velocity between two points A and B on a rigid body may be determined 
by referring the relative position vector  to the body coordinate system 

  xA/B = p = pi' ei'  . (13.3) 

O 

e1 

e2 

e3 
e1'  

e3'  

X = xB 

p = xA/B 
A 

B x 
ω  

e2'  



 
 

47 

A

•

•

B

•C
!

 
Fig. 13.2 

Then, use of the general operator (11.4) and the expression (13.2) we have 

  vA/B = •p  = 
δp
δt    + ω × p  .  (13.4) 

However, since A and B lie on the rigid body and ei' is a body coordinate system the 

coordinates pi' are constant so that δp/δt vanishes  

  
δp
δt    = 

δxA/B
δt    = •pi' ei' = 0  ,  (13.5) 

and (13.4) reduces to 

  vA/B = ω  × xA/B  . (13.6) 

Note that this means that the relative velocity vA/B is perpendicular to the relative 

position vector xA/B so that 

  vA/B • xA/B = 0  . (13.7) 

Also, note that the result (13.7) is consistent with the basic definition of a rigid body 
because it can be obtained by differentiating (13.1). 

 Furthermore, it follows from (13.6) that the velocity of a general point A may be 

expressed in the form 

  vA = vB + ω  × xA/B  .  (13.8) 

Then, the acceleration of point A can be determined by differentiating (13.8) and using 

(13.6) to obtain 
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  aA = aB + •
ω  × xA/B + ω  × (ω  × xA/B)  . (13.9) 

 Next, we develop a formula to determine the angular velocity ω  of a rigid body using 

the velocity of three points A,B,C on the rigid body.  Specifically, using (13.6) the 
relative velocity vC/B becomes 

  vC/B = ω  × xC/B  ,  (13.10) 

so that vA/B and vC/B are both perpendicular to the angular velocity ω.  This means that 

the vector vA/B × vC/B is parallel to ω.  Consequently, with the help of (13.10) we have 

  vA/B × vC/B = vA/B ×  (ω  × xC/B)  .  (13.11) 

However, the vector triple product may be expanded with the help of (2.16) to obtain 

  vA/B × vC/B = (vA/B •  xC/B) ω – (vA/B • ω) xC/B  .  (13.12) 

Since vA/B is perpendicular to ω we can solve (13.12) for ω whenever (vA/B •  xC/B) 

does not vanish  

  ω =  
vA/B × vC/B
vA/B • xC/B

   .  (13.13) 

Finally, we note that 

  vA/B •  xC/B = (ω  × xA/B) • xC/B = ω • (xA/B × xC/B)  .  (13.14) 

Thus, in order for (vA/B •  xC/B) to be nonzero ω cannot lie in the plane of xA/B and xC/B, 

and (xA/B × xC/B) cannot vanish, which means that the points A,B,C cannot lie on the 

same line. 

 If ω lies in the plane of xA/B and xC/B then 

  ω = A xA/B + B xC/B  , (13.15) 

However,  

  vA/B = ω × xA/B = – B xA/B × xC/B  ,  vC/B = ω × xC/B = A xA/B × xC/B  , (13.16) 

which yields 

  ω = [
vC/B • vC/B

 vC/B • (xA/B × xC/B)] xA/B – [
vA/B • vA/B

 vA/B • (xA/B × xC/B)] xC/B  . (13.17) 
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Fig. 13.3 

 If we only have knowledge of the velocity of two points A and B on a rigid body 
(such as the velocity of the end points of a rigid bar; Fig. 13.3) then we cannot determine 

all components of the angular velocity.  In particular we cannot determine the component 
of the angular velocity in the direction of the relative position vector xA/B.  Letting L be 

the length of the vector xA/B  and eA/B be the unit vector directed from B to A  

  xA/B = L eA/B  ,  eA/B • eA/B = 1  ,        (13.18a,b) 

and taking the vector product of (13.6) with xA/B we may deduce that 

  xA/B × vA/B = xA/B ×  (ω  × xA/B)  = (xA/B • xA/B) ω – (xA/B • ω) xA/B 

          = L2 [ω – (eA/B • ω) eA/B]  .  (13.19) 

Thus, the normal component ωn of the angular momentum ω of the bar is given by 

  ωn = ω – (ω • eA/B) eA/B =  
xA/B × vA/B

L2   .  (13.20) 
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14. Instantaneous Screw Motion Of A Rigid Body 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
Fig. 14.1 

 In this section we show that the general motion of a rigid body can be described by 
the motion of a screw with the rigid body rotating about an axis in space and translating 

parallel to this axis.  This screw motion is considered to be instantaneous in the sense that 

the axis of rotation and velocity of translation can change with time.  

 For convenience we express the angular velocity ω of the rigid body in terms of its 

magnitude ω and direction eω by 

  ω = ω eω   ,  eω • eω = 1  ,  (14.1a,b) 

and recall from (13.8) that the velocity of a general point A  on a rigid body may be 
expressed in terms of the velocity vB of another point on the rigid body by the formula 

  vA = vB+ ω × xA/B  . (14.2) 

Taking the inner product of (14.2) with the vector eω we may deduce that 

  vA • eω = vB • eω  .  (14.3) 
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This means that all points have the same component of velocity in the eω direction.  In 

other words, the body  is advancing in the eω direction with uniform velocity.   

Furthermore, since vA is not necessarily parallel to eω we realize that the body is also 

rotating about some axis parallel to eω.  To find this axis of rotation, let xC locate an 

arbitrary point on this axis of rotation and note from (14.3) that all points on this axis 
have the same absolute velocity which is parallel to eω so that 

  vC = (vB • eω) eω . (14.4) 

However, since all points C are attached to the same rigid body we may write 

  vC = vB + ω × xC/B  .  (14.5) 

Using the fact that ω is parallel to vC it follows that 

  0 = ω × vC = ω × vB + ω ×  (ω  × xC/B) 

  0 = ω × vB + (ω • xC/B) ω  – (ω • ω) xC/B  ,  (14.6) 

so that the relative position vector xC/B may be written in the form 

  xC/B =  
ω × vB
ω2    +  

(ω • xC/B) ω
ω2   ,  (14.7a) 

  xC/B =  xD/C  + s eω  ,  xD/C = 
ω × vB
ω2   ,  s = xC/B • eω  .         (14.7b,c) 

Notice that the vector xD/C  is perpendicular to eω so it locates the point D on the axis of 

rotation that is closest to the point B (see Fig. 14.1). Also, the scalar s in (14.7c) 

determines the location of an arbitrary point on the axis of rotation as measured from the 

point D. 

 In summary, the rigid body is instantaneously rotating with angular velocity ω about 

the axis DC at the same time that it is advancing in the direction eω with uniform velocity 

(vB • eω) so the motion can be described as motion of a screw. 

 For the simpler case of planar motion in the e1–e2 plane the angular velocity ω  is in 

the constant e3 direction 

  ω = ω e3  , (14.8) 
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the velocity vB is in the e1–e2 plane so the velocity vC of points on the axis of rotation 

vanishes.  Thus, the intersection of the axis of rotation with the x3=0 plane is the 

instantaneous center of rotation and is given by (14.7b) with s=0 

  xC/B =  
ω × vB
ω2    =  

| vB |
ω     

e3 × vB
| e3 × vB |

    . (14.9) 

The formula (14.9) indicates that the instantaneous center of rotation is located along a 

line perpendicular to the velocity vB and a distance | vB | / | ω | from point B (see Fig. 

14.2).  It is important to note that ω in (14.8) can be positive or negative so the sign of ω 

controls the direction of rC/B in (14.9).  Furthermore, since vC vanishes the velocity of an 

arbitrary point B on the rigid body is perpendicular to the relative position vector xB/C 

because 

  vB = vC + ω  × xB/C = ω  × xB/C  .  (14.10) 

 
 

 
 

 

 
 

 
 

Fig. 14.2 
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15. Contact of Bodies 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
Fig. 15.1 

 In this section we study the conditions that describe contact and sliding of two bodies. 

To this end, consider two bodies B' and B'' that are both translating and rotating in space. 

Let ei' be a body coordinate system attached to B' which rotates with angular velocity ω ' 

so that 

  •ei' = ω ' × ei'  .    (15.1) 

In what follows it is necessary to distinguish between the locations and velocities of 

various points.  For example, let M' be the material point on body B' that at time t1 was 
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closest to body B'' and let M'' be the material point on body B'' that at time t1 was closest 

to body B'.  Also, let P' be the point in space that lies on the surface of body B' (but is not 

a material point) that is always closest to B''.  Similarly, let P'' be the point in space that 
lies on the surface of body B'' (but is not a material point) that is always closest to B'.  In 

general, as bodies B' and B'' move the points P' and P'' traverse different material points 

on the surfaces of bodies B' and B'', respectively.  Furthermore, since  P' and P'' are the 
points of closest contact between the two bodies, the tangent planes to the bodies B' and 

B'' are parallel at the points P' and P'', and the vector n that is directed from P' towards P'' 
is normal to these tangent planes (see Fig. 15.1).   

 Here we are interested in conditions that determine whether the bodies are in contact 

and whether they will remain in contact or tend to separate.  To this end, we note that if 
the vector xP'/P'' vanishes then the two bodies are instantaneously in contact, whereas if 

the vector xP'/P'' is nonzero then the bodies are separated.  In any case, the normal 

component vP'/P'' • n of the relative velocity between the two points P' and P'' determines 

whether the two bodies maintain contact (vP'/P'' • n = 0), are separating (vP'/P'' • n < 0), or 

are approaching each other when they are separated (vP'/P'' • n > 0).  In general, since P' 

and P'' move on the surface of the bodies B' and B'', respectively, it is rather difficult to 

determine their velocities.  However, we will show presently that the normal component 
vP' • n of the velocity of point P' is equal to the normal component vM' • n of the velocity 

of the material point M' on body B' that instantaneously coincides with P'.  Thus, the 
conditions of contact can be reformulated in terms of the velocities of the material points 

M' and M'', which are easily calculated. 
 The motion of P' relative to the material point M' can be described by the vector 

  xP'/M' = (xP'/M')i' ei'  ,    (15.2) 

so the velocity of P' relative to M' may be expressed in the form 

  vP'/M' = 
δxP'/M'
δt    + ω ' × xP'/M'  ,   (15.3a) 

  
δxP'/M'
δt    = (•xP'/M')i' ei'  .    (15.3b) 
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Notice that since P' moves on the surface of body B' it follows that the vector (15.3b) is 

instantaneously tangent to the surface of B' so that 

  
δxP'/M'
δt   • n = 0  ,    (15.4a) 

  vP'/M' • n = (ω ' × xP'/M') • n  .    (15.4b) 

This means that in the limit that t approaches t1 (and xP'/M' approaches zero), the normal 

component of the velocity of the point P' of closest contact with the body B'' is the same 
as the normal component of the material point M' which instantaneously coincides with P' 

so that 

  vP'/M' • n = 0  ,   vP' • n = vM' • n    for  xP'/M' = 0  .  (15.6a,b) 

Consequently, using a similar result for the velocity of P'' relative to M'' 
  vP''/M'' • n = 0  ,   vP'' • n = vM'' • n    for  xP''/M'' = 0   .  (15.7a,b) 

it may be seen that 
  vP'/P'' • n = vM'/M'' • n   for  xP'/M' = xP''/M'' = 0  .  (15.8) 

Thus, we can use the instantaneous velocities vM' and vM'' to make the following physical 

interpretation of the relative velocity vM'/M'': 

vM'/M'' • n =  Normal component of the relative velocity which 
measures the rate of approach (positive value) or 

separation (negative value) of the bodies B' and B''. 

 
vM'/M'' – (vM'/M''• n) n = Magnitude and direction of the slip velocity of material 

points M' and M'' on the bodies B' and B'', respectively. 
It follows that if the two bodies B' and B'' are in contact at some point in time they will 

remain in contact if the relative velocity vM'/M'' of the contact points M' and M'' has 

vanishing normal component.  Furthermore, if vM'/M'' vanishes then the bodies remain in 

contact and do not slip. 

 As an example consider a cylinder of radius r which rotates with angular velocity ω 

about the e3 axis and whose center B translates with velocity v in the negative e1 

direction (see Fig. 15.2).  At time t1 the material point M' attached to the cylinder is in 
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contact with a stationary horizontal plane at the material point M''.  It follows that the 

velocity vM'' vanishes so that the velocity of point M' relative to point M'' is given by 

  vM'/M'' = vM' = vB + ω  × xM'/B = – v e1 + (ω e3) × (– r e2)  , (15.9a) 

  vM'/M'' = (ωr – v) e1  .               (15.9b) 

Since the relative velocity vM'/M'' has vanishing normal component (vM'/M'' • e2 = 0) the 

cylinder remains in contact with the horizontal plane.  Furthermore, if ωr > v then point 

M' is sliding in the positive e1 direction relative to the fixed point M'' and if ωr < v then 

M' is sliding in the negative e1 direction relative to M''.  Finally, if ωr = v then the 

relative velocity vM'/M'' vanishes and the cylinder rolls without slipping. 
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16. Kinetics of a Particle 

 In the previous sections we have devoted most of our attention to the study of 
kinematics of particles and rigid bodies by learning how to analyze position, velocity and 

acceleration.  Such kinematical quantities are considered to be primitive quantities 
because they can be measured directly.  In this section we introduce the notion of force 

which is a kinetical vector  quantity that  usually is measured indirectly.  In particular, the 

magnitude of a force is often measured by comparing it to the weight of an object or by 
using the displacement of a spring, which itself has been calibrated by measuring the 

weights of standard objects. 
 Obviously, the direction of a force matters because when we push an object in one 

direction it tends to move in that direction, whereas when we push it in the opposite 

direction it tends to move in the opposite direction.  In fact, for rectilinear motion it can 
be shown that the acceleration is in the same direction as the force.  To see if this 

observation remains true for more general motions we can consider the motion of a ball 

on a smooth (frictionless) horizontal plane that is confined to move in a circle by a string 
that is attached to a weight (Fig. 16.1).  The first thing that we can observe is that the 

acceleration vector rotates and is always pointed towards the center of the circle.  
Specifically, the acceleration vector a always points in the same direction as the force 

vector F which is applied to the ball by the string.  Mathematically this means that F is 

parallel to a 
  F | | a . (16.1) 

By keeping the weight constant and changing the radius of the circular path we can 
observe that the angular velocity of the ball changes in such a way that it preserves the 

magnitude of the acceleration. Furthermore, by using the same ball but taking different 

weights we can determine that the magnitude of the force F applied by the string on the 
ball (which is equal to the weight applied) always remains proportional to the magnitude 

of the acceleration. Thus, for different forces {F1 , F2 , F3 } and associated accelerations 

{ a1 , a2 , a3 } we have 

  
| F1 |
| a1 |   =  

| F2 |
| a2 |   =  

| F3 |
| a3 |   = m  ,  (16.2) 
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 where the constant of proportionality m is a property of the ball which is called the mass  

of the ball.  

 
Fig. 16.1 

 

NEWTONS  LAWS  OF  MOTION 
 Sir Issac Newton (1642-1727) was the first to discover the correct laws of motion of 

particles which are summarized as the following three laws of motion: 

Law I:  A particle remains at rest or continues to move in a straight line 
with uniform velocity if there is no unbalanced force acting on it. 

 F = 0  ⇒  v = constant  . (16.3) 

Law II:  The resultant force F acting on a particle is equal to the rate of 
change of linear momentum. 

 F = 
d(mv)

dt   . (16.4) 

Law III:  The forces of action and reaction between interacting bodies are 

equal in magnitude and opposite in direction (Fig. 16.2). 

 FA/B + FB/A = 0  ,  FA/B = – FB/A  .          (16.5a,b) 

(FA/B is the force applied by body B on body A) 
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Fig. 16.2 

 

CONSERVATION  OF  MASS 

 For our purposes we will only consider bodies that have constant mass so we may 
write the law of conservation of mass in the form 

  
dm
dt   = •m  = 0  .  (16.6) 

 

BALANCE  OF  LINEAR  MOMENTUM 

 Newton's second law of motion is referred to in modern terms as the balance of linear 
momentum.  In words it states that the rate of change of linear momentum (mv) is equal 

to the total external force F applied to the body.  In view of the conservation of mass 
(16.6) the balance of linear momentum can be written in the form 

  
d(mv)

dt   = m 
dv
dt   = m a = F  .  (16.7) 

It is important to emphasize that the velocity v and the acceleration a in the balance of 
linear momentum must be absolute not relative quantities so they must be measured 

relative to a fixed point. 
 Since the balance of linear momentum is a vector equation it may be expressed with 

respect to any convenient set of base vectors.  For example, if we consider two sets of 

rectangular Cartesian base vectors ei and ei' we may write the following scalar equations 

  Fi = m ai      (ei • F = m ei • a)  ,  (16.8a) 

  Fi' = m ai'      (ei' • F = m ei' • a)  .  (16.8b) 
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Similarly, if we refer the vectors to the cylindrical polar base vectors {er , eθ , e3} or the 

spherical polar base vectors {eR , eθ , eφ} we may write 

  Fr = m ar  ,  Fθ = m aθ  ,  F3 = m a3  ,  (16.9) 

or 
  FR = m aR  ,  Fθ = m aθ  ,  Fφ = m aφ  .  (16.10) 

 
FREE  BODY  DIAGRAM 

 In order to correctly translate a physical problem into a mathematical problem in 
dynamics it is essential to carefully draw a free-body diagram which isolates the body of 

interest and includes all external forces acting on the body (Fig. 16.3).  In this regard we 

should emphasize that the force F appearing in the balance of linear momentum is the 
resultant force  which is the sum of all external forces acting on the body. 

 

F
1

F
2

F
3

F
4
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Fig. 16.3 

 In the above we have focused attention on Newton's second law of motion which we 

call the balance of linear momentum.  This is because the balance of linear momentum 
actually contains Newton's first and third laws as special cases.  It is obvious from the 

balance of linear momentum (16.7) that when the resultant force F vanishes the velocity 
of the particle is constant because 

  F = 0  ⇒  a = •v  = 0  ⇒    v = constant  . (16.11) 

Thus, we have proved Newton's first law.   

 To prove Newton's third law from the balance of linear momentum we return to Fig. 
16.2 and note that FA and FB are the external forces applied to the macroparticle which is 

composed of the two particles A and B.  Assuming that the particles are small enough 
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and remain in contact it follows from continuity that they both move with the same 

acceleration a 
  aA = aB = a  .  (16.12) 

Letting mA be the mass of particle A and mB be the mass of particle B, the balance of 

linear momentum  applied to the macroparticle of total mass mA+ mB yields the equation 

  FA + FB = (mA+ mB) a  .  (16.13) 

Alternatively, we can consider the free body diagrams of the particles A and B separately 

and denote FA/B as the internal force (contact force) applied by particle B on particle A, 

and denote FB/A as the internal force applied by particle A on particle B.  Then the 

balances of linear momentum of each of the particles may be written in the forms 

  FA + FA/B = mA a  ,  FB + FB/A = mB a  .        (16.14a,b) 

Next, we add equations (16.14a,b) and subtract (16.13) from the result to deduce that 
  FA/B + FB/A = 0  ,  (16.15) 

which proves Newton's third law.  The main theoretical point associated with this proof is 
the basic assumption that the conservation of mass and the balance of linear momentum 

are valid for any arbitrary part of a body (which in this case includes both the 
macroparticle and the two particles, separately). 

 

D'ALEMBERT'S  PRINCIPLE 
 In order to extend the principle of virtual work for static problems to dynamical 

problems d'Alembert (1717-1783) introduced the notion of the "force of inertia" I, 
defined in terms of the mass of a particle and its absolute acceleration by 

  I  = – m a  .  (16.16) 

Using this definition the balance of linear momentum (16.7) can be rewritten in the form 
  F + I  = 0  .  (16.17) 

This changes the balance of linear momentum into a principle that states that every body 
is in a state of "dynamical equilibrium".  In our opinion, the introduction of the concept 

of an inertial force confuses the concept of force since acceleration is a kinematical 

quantity that can be measured independently of the concept of force and mass is an 
intrinsic property of the body that is independent of the particular motion of the body.  
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Furthermore, the introduction of the concept of "dynamical equilibrium" does not 

simplify the formulation of the balance of linear momentum because it still requires the 
calculation of the absolute acceleration a.  Also, since the balance of linear momentum 

and the principle of "dynamical equilibrium" (16.17) are mathematically identical, any 
mathematical operation performed on equation (16.17) can be performed on equation 

(16.7) to obtain the same result. 

 
TWO  MAIN  PROBLEMS  IN  DYNAMICS 

 There are two main problems in the study of dynamics which can be summarized as 
follows: 

Problem I:  Given the motion and mass of a particle, determine the 

resultant force necessary to create this motion.  This problem is relatively 
simple because we just need to differentiate the motion to determine the 

absolute acceleration and then use the balance of linear momentum to 

determine the resultant force. 
Problem II:   Given the resultant force acting on a particle and its mass, 

determine the motion of the particle.  This problem is much more difficult 
than problem I because we need to integrate the equations of motion. 

Because of the analytical difficulty with integrating the set of nonlinear equations of 

motion that usually result in dynamical problems we will focus most of our attention to 
either problem I or to the formulation (but not solution) of problem II. 
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17.  Vibrations 

 In this section we consider the physically important problem of both free and forced 
vibration of a damped spring-mass system.  To this end, let us first consider the simple 

problem of free vibrations of the undamped spring-mass system shown in Fig. 17.1.  The 
spring has a free length L and spring constant k and the body has mass m.  Friction is 

neglected but gravity is included. 

 

k , L
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m

e
1

e
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N
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Fig. 17.1 

 Recalling that the force in a spring is equal to the spring constant k times the change 
in its length relative to its force-free length L, we may use the free body diagram of the 

mass m  in Fig. 17.1 to write the resultant external force F in the form 

  F = – k(x – L) e1 + [ N – mg ] e2  ,  (17.1) 

where N is the contact force that the horizontal plate applies to the mass and mg is the 
force of gravity.  Notice that the origin of the coordinate system has been chosen 

conveniently so that x is the current length of the spring and the position of the mass. 

Furthermore, since the mass is only allowed to move in the horizontal direction its 
acceleration is given by 

  a = ••x  e1  .  (17.2) 
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Thus, the balance of linear momentum yields the following vector equation 

   – k(x – L) e1 + [ N – mg ] e2 = m  ••x  e1  , (17.3) 

which gives the following scalar equations 

  m ••x   + k (x – L) = 0  ,  N = mg   .          (17.4a,b) 

The first of these equations is a differential equation to determine the position x of the 
mass and the second merely states that the contact force is equal to the force of gravity. 

 Noting that L is constant, equation (17.4a) may be rewritten in the form 

  
d2

dt2 (x – L)  + ωn
2 (x – L) = 0  ,  ωn

2 = 
k
m   ,          (17.5a,b) 

where the constant ωn is called the natural frequency and it has the units of inverse time.  

The general solution of (17.5a) may be written in terms of sines and cosines and takes the 

form 

  x – L = A1 sin(ωnt) + A2 cos(ωnt)  , (17.6) 

where A1 and A2 are constants of integration to be determined by the initial conditions 

  x(0) = x0  ,  •x(0)  = v0  . (17.7a,b) 

However, for ease of interpretation it is more convenient to rewrite (17.6) as 

  x – L = A [ 
A1
A    sin(ωnt) + 

A2
A    cos(ωnt)]  ,   A = (A1

2  + A2
2 )1/2 ,    (17.8a,b) 

and recall the trigonometric relation 

  sin(ωnt +φ) = sin(ωnt) cosφ + cos(ωnt) sinφ  , (17.9) 

to deduce that the general solution of (17.5) may be expressed in the alternative form 

  x – L = A sin(ωnt + φ)  .  (17.10) 

In (17.10) it is easy to see that A is the amplitude of the vibration and φ is the phase 

angle. These constants (A,φ) are determined by the initial conditions (17.7) which yield 

the equations 

  x0 – L = A sinφ  ,  v0 = A ωn cosφ  .        (17.11a,b) 
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Furthermore, using the fact that sin2φ + cos2φ = 1 we can determine the value of the 

amplitude A by 

  A = 
⎣
⎢
⎡

⎦
⎥
⎤

(x0 – L)2 + 
⎝
⎜
⎛

⎠
⎟
⎞v0

ωn

2
 
1/2

   .  (17.12) 

Then the phase angle φ, which is restricted to the range [0 ≤ φ < 2π], is uniquely 

determined by the two equations (17.11a,b). The general solution (17.10)-(17.12) 

indicates that the spring-mass system vibrates freely with the natural frequency ωn and 

the amplitude of the vibration is determined by the initial conditions.  Notice from 

(17.5b) that ωn  decreases as the body becomes more "massive"  and thus has more 

inertia.  Also, ωn increases as the spring becomes stiffer with a larger spring constant. 
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Fig. 17.2 

 Next we consider the more complicated but also more realistic case of forced 

vibration of a damped spring-mass system (Fig. 17.2).  For this case we include a dashpot 

damper that creates a force c( •x  – •s ) that resists the relative motion between the two ends 

of the dashpot.  This resisting force is modeled as a linear function of the relative 

velocity, with the damping coefficient c being a property of the dashpot.  Furthermore, 
for this case the base of the spring and dashpot is forced to move with the motion 
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described by s(t).   Also, since the current length of the spring is given by (x – s) the 

resultant force applied to the mass becomes 

  F = [ – k(x – s – L)  – c(•x  – •s) ] e1 + [ N – mg ] e2   .  (17.13) 

Since x is the position of the mass m measured relative to a fixed wall, the absolute 
acceleration of the mass is still given by (17.2) so the vector equation representing the 

balance of linear momentum is given by 

   [ – k(x – s – L)  – c(•x  – •s) ] e1 + [ N – mg ] e2 = m  ••x  e1  , (17.14) 

and the two scalar equation become 

  m  ••x  + k(x – s – L)  + c(•x  – •s) = 0  ,  N = mg  .     (17.15a,b) 

By dividing (17.15a) by the mass m and using the definition (17.5b) for the natural 

frequency ωn we may rewrite (17.15a) in the form 

  ••w  + 
c
m •w  +  ωn

2  w = – ••s    ,  w = x – s – L  ,        (17.16a,b) 

where the quantity w denotes the extension of the spring from its stress-free length L.  

Integration of  (17.16a) requires the specification of the function s(t) and the initial 
conditions  (17.7). 

 In order to understand the influence of damping we first consider the case of free 

damped vibrations for which the base is held constant so that s(t) vanishes and the 
balance of linear momentum (17.16a) reduces to 

  ••w  + 
c
m •w  + ωn

2  w = 0  .  (17.17) 

By using the transformation 

  w(t) = exp(– 
ct

2m ) ξ(t)  ,  (17.18) 

together with the results 

  •w  = exp(– 
ct

2m ) [ 
•
ξ  – 

c
2m  ξ  ]  ,  (17.19a) 

  ••w  = exp(– 
ct

2m ) [ 
••
ξ   – 

c
m 

•
ξ   + ⎝

⎛
⎠
⎞c

2m
2
  ξ ]  .           (17.19b) 

we can transform (17.17) into the simpler form 
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••
ξ    + ωn

2 (1–ζ2) ξ = 0  ,  c = 2mζωn  ,  (17.20) 

where ζ is a non-dimensional damping parameter. Now, the initial conditions (17.7) with 

•s(0) = 0 may be used with the definitions (17.16b) and (17.18) to deduce that 

  w(0) = x0 – s0 – L  ,  •w(0)  = v0  , (17.21a,b) 

  ξ(0) = x0 – s0 – L  ,   
•
ξ(0)  = v0 + ζωn (x0 – s0 – L)  ,     (17.21c,d) 

Noting that (17.20) is similar to (17.5a) we obtain three types of solutions which are 

differentiated by the relative value of the damping coefficient ζ. 

Underdamped (ζ  < 1)  

  w(t) = exp(– ζωnt)  A sin(ω*t + φ)  ,  (17.22a) 

  ω* = ωn 1–ζ2  , (17.22b) 

  A = ⎣
⎢
⎡

⎦
⎥
⎤

(x0 – s0 – L)2 + ⎩
⎨
⎧

⎭
⎬
⎫v0

ω* + 
ζωn
ω*  (x0 – s0 – L)

2
 
1/2

   ,  (17.22c) 

  sinφ  = 
1
A (x0 – s0 – L)   ,  cosφ  = 

1
Aω*  [ v0 +  ζωn (x0 – s0 – L)] . (17.22d,e) 

Critically Damped (ζ = 1)  

  w(t) = exp(– ωnt) [(x0 – s0 – L) + {v0 + ωn(x0 – s0 – L)} t] ,  (17.23) 

Overdamped (ζ  > 1)  

  w(t) = exp(– ζωnt)  A sinh(ω*t + φ)   , (17.24a) 

  ω* = ωn ζ2 – 1  , (17.24b) 

  A = ⎣
⎢
⎡

⎦
⎥
⎤

⎩
⎨
⎧

⎭
⎬
⎫v0

ω* + 
ζωn
ω*  (x0 – s0 – L)

2
 – (x0 – s0 – L)2  

1/2
   ,  (17.24c) 

      sinhφ  = 
1
A (x0 – s0 – L) ,   coshφ  = 

1
Aω*  [ v0 + ζωn (x0 – s0 – L)] .  (17.24d,e) 

In deriving the solution (17.24a) we have followed similar procedures used to derive the 

solution (17.10) and have used the hyperbolic identities 

  sinh(ω*t + φ) = sinh(ω*t) coshφ + cosh(ω*t) sinhφ  ,           (17.25a) 
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  cosh2φ – sinh2φ = 1  . (17.25b) 

Notice that because of the presence of the exponential terms in (17.22a),(17.23a) and 
(17.23a) each of these solutions yields the same equilibrium solution of vanishing w for 

long times (large values of t).  More specifically, (17.22a) is called an underdamped 

solution because it exhibits oscillations that damp to zero; solution (17.23a) is called 

critically damped because the damping coefficient ζ attains its critical value (ζ=1, the 

minimum value necessary to damp to zero without any oscillation); and  solution (17.24a) 

is called overdamped because ζ attains a value larger than its critical value. This response 

for v0 = 0 is shown in Fig. 17.3 for different values of the damping coefficient ζ. 
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Fig. 17.4 

 The above solution indicates that when damping is present (ζ >0) the homogeneous 

solutions of (17.16a) damp out so that after a reasonably long time the only solution that 
remains is the particular solution.  As a special case let us consider the problem where the 

base vibrates with frequency ω and amplitude s0 such that  

  s(t) = s0 sin(ωt)  , (17.26) 

so that (17.16a) reduces to 

  ••w  + 
c
m •w  + ωn

2 w = s0 ω2 sin(ωt) .  (17.27) 
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Now, the particular solution wp of (17.27) may be written in the form 

  wp(t) = A sin(ωt + φ)  ,  (17.28) 

where the amplitude A and phase angle φ are to be determined. Substituting (17.28) into 

(17.27) we obtain 

  A [ { }ωn
2 – ω2   sin(ωt + φ) + 2ζωnω cos(ωt + φ)] = s0ω

2 sin(ωt)  ,    (17.29a) 

  A [ (ωn
2 – ω2) {sin(ωt) cos(φ) + cos(ωt) sin(φ)} 

  +  2ζωnω {cos(ωt) cos(φ) – sin(ωt) sin(φ)}] = s0 ω2 sin(ωt)  , (17.29b) 

  A [ (ωn
2 – ω2) {sin(ωt) cos(φ) + cos(ωt) sin(φ)} 

  +  2ζωnω {cos(ωt) cos(φ) – sin(ωt) sin(φ)}] = s0 ω2 sin(ωt)  ,       (17.29b) 

  A[{(
ωn

2

ω2  – 1) cos(φ) –  
2ζωn
ω   sin(φ)}sin(ωt)   

  + {(
ωn

2

ω2  – 1) sin(φ) +  
2ζωn
ω   cos(φ)}cos(ωt) ] = s0 sin(ωt)  . (17.29c) 

It follows that the term cos(ωt)  can be eliminated by appropriately specifying the phase 

angle φ so the solution becomes 

  A = s0 G(ωn,ζ,ω)   , (17.30a) 

  G(ωn,ζ,ω) = 
1

 
⎣
⎢
⎡

⎦
⎥
⎤

⎝
⎜
⎛

⎠
⎟
⎞ωn

2

ω2  – 1
2

 + ⎝
⎜
⎛

⎠
⎟
⎞2ζωn

ω

2 1/2
   ,           (17.30b) 

  sinφ = –  
2ζωn
ω   G(ωn,ζ,ω)   ,  cosφ =  ⎝

⎜
⎛

⎠
⎟
⎞ωn

2

ω2  – 1   G(ωn,ζ,ω)  ,     (17.30c,d) 

where G(ωn,ζ,ω) is called the amplification function because it determines how much the 

amplitude A of the response w is amplified relative to the forcing amplitude s0.   
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 From a physical point of view we are often more interested in the absolute motion of 

the mass instead of its motion relative to the base which is described by w.  Thus,  using 
(17.16b), (17.28) and (17.30) the solution for the position x of the mass becomes 

  x(t) = L + s0 sin(ωt) + G(ωn,ζ,ω) s0 sin(ωt + φ) .  (17.31) 

This solution can be written in the simpler form 

  x(t) = L + s0 g(ωn,ζ,ω) sin(ωt + Φ)  ,  (17.32) 

where the amplification function g and the phase angle Φ associated with the absolute 

motion of the mass are determined by the equations 

  g cosΦ = 1 + G cosφ  ,  g sinΦ = G sinφ  .  (17.33) 

Now using the results (17.30b,c,d) we may deduce that 

  g2 = (1 + G cosφ)2 + (G sinφ)2 = 1 + 2G cosφ + G2  ,           (17.34a) 

  g =  

⎣
⎢
⎡

⎦
⎥
⎤1 + 4ζ2

⎝
⎜
⎛

⎠
⎟
⎞ω

ωn

2

⎝
⎜
⎛

⎠
⎟
⎞

1 – 
ω2

ωn
2

2

 + 4ζ2
⎝
⎜
⎛

⎠
⎟
⎞ω

ωn

2
 

1/2

   . (17.34b) 

The main physical implications of this solution can be observed by considering the 

following limiting cases: 

Limit ω << ωn 

  g ≈ 1  ,  Φ ≈ 0  ,   x(t) ≈ L + s(t) ,                    (17.35a) 

Limit ω = ωn 

  g ≈  
1
2ζ  1+4ζ2   ,  Φ ≈  – tan-1 (

1
2ζ),  (17.35b) 

Limit ω >> ωn 

  g ≈ 0  ,  Φ ≈  – 
π
2   ,  x(t) ≈ L  ,  (17.35c) 

This means that for very low forcing frequencies (ω<<ωn) the mass moves with the base; 

for very high forcing frequencies (ω>>ωn) the mass is isolated from the base vibration 

because it does not move at all.  Furthermore, for very low and very high forcing 

frequency the limiting solution is independent of the value of damping.  In contrast, when 
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the forcing frequency ω equals the natural frequency ωn, the amplitude of the vibration is 

totally controlled by the value of damping and increases as the damping coefficient 

decreases.  More specifically, if the damping coefficient vanishes (ζ = 0) then the 

response amplitude becomes infinite.  For this reason it is essential to design a 
mechanical system to have natural frequencies different from any expected forcing 

frequency.  This response can be seen graphically in Fig. 17.4 which plots the 

amplification function g. 
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18. Mechanical Power, Work and Energy (Particle) 
 In this section we consider notions of work and energy in particle mechanics.  To this 
end we first define the mechanical power P 

  P = F • v  , (18.1) 
of a force F acting on a particle with absolute velocity v.  The mechanical power P is the 

rate of work done by the force F on the particle.  Letting U=U2/1 be the work done on the 

particle by the force F during the time interval t ∈ [t1,t2] we may calculate U2/1 by the 

integral 

  U = U2/1 = ∫
t2
 
t1

 P dt  =∫
t2
 
t1

 F • v dt  . (18.2) 

 In order to better understand the meaning of mechanical power let us consider the 

simple case when P is constant so that the work U2/1 is given by 

  U = U2/1 = P (t2 – t1)  . (18.3) 

It follows form (18.3) that in order to do a given amount of work (U2/1 = constant) we 

need a short time if the mechanical power P is large and a long time if P is small.  For this 

reason it is convenient to measure the strength of motors by the mechanical power that 

they can supply. 

v

 
Fig. 18.1 

 
 Sometimes it is convenient to think of F • v as the projection of the force in the 

direction of the velocity 

  P = F • v = F • •s  et = Ft 
•s   .  (18.4) 

For example, when considering a particle moving in a stationary slot (Fig. 18.1) the 

direction et of the velocity is known to be tangent to the slot path. For this case equation 

(18.4)  means that the component of the force normal to the slot does no work.  However, 
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when the slot is not stationary then (18.4) still holds but et is no longer tangent to the path 

of the slot so the component of the force normal to the slot does work on the particle.  
R

e
R

mM

F

 
Fig. 18.2 

 Sometimes it is convenient to think of F • v as the projection of the velocity in the 

direction of the force.  For example, when considering the force of gravity acting between 
two particles of masses M and m (Fig. 18.2) the direction of the force F is known 

  P = F • v = FR (eR • v)  .  (18.4) 

 If the force F is the total resultant force applied to a particle of mass m then the 

balance of linear momentum (16.7) may be used to rewrite the mechanical power in the 

form 

  P  = F • v = m a • v = 
d
dt ⎝

⎛
⎠
⎞1

2 m v • v   = 
•
T,  (18.5) 

where the kinetic energy  T is defined by 

  T = 
1
2  m v • v = 

1
2  m v2 .  (18.6) 

Now, substitution of (18.5) into (18.2) yields 

  U = U2/1 =∫
t2
 
t1

  
•
T dt  = T2 – T1  ,  (18.7) 

which states that the work done by the resultant force applied to a particle is equal to the 

change in kinetic energy of the particle.  In order to emphasize that U in (18.7) is the 

work done by the resultant force let us consider the example of a motor lifting a mass m 
from position 1 to position 2 in a gravitational field (Fig. 18.3).  Assuming that at the 

beginning and end of the process the mass is at rest it follows that the kinetic energies T1 

and T2 vanish so that the work U also vanishes.  In order to explain how the work U can 

vanish when we lift a weight we note that the resultant force F is composed of the force 
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due to gravity and the force due to the motor.  Since the work done by F vanishes we may 

conclude that work done by the motor (which is positive) exactly balances the work done 
by gravity (which is negative).  

mPosition 2: 

Position 1: 

g

 
Fig. 18.3 
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19. Conservative Force Fields 
 The resultant force F that acts on a particle may be composed of two types of forces: 

conservative forces which are denoted by Fc and nonconservative forces which are 

denoted by Fnc 

  F = Fc + Fnc  . (19.1) 

It follows that the mechanical power P of the force F also separates into the mechanical 

power Pc associated with the conservative forces and the mechanical power Pnc 

associated with the nonconservative forces 

  P = F • v = Pc + Pnc  ,  Pc = Fc • v  ,  Pnc = Fnc • v  .  (19.2a,b,c) 

Conservative forces are of interest because they have special properties that allow the 

mechanical power Pc to be integrated easily. 

 
 

 

 
 

 
 

 

Fig. 19.1 
 

 In general a force may be a vector function of position x and time t.  However, if the 

force is a function of position x only (independent of time) 
  Fc = Fc(x)  ,  (19.3) 

then the work done by Fc can be expressed as an integral over position instead of time 

  U2/1 = ∫
t2
 
t1

 Fc • v dt  = ∫
x2
 
x1

 Fc • dx  .   (19.4) 

e1 e2 

e3 

x2 

x1 

C1 

C2 
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For a general function Fc the work done traversing path C1 from x1 to x2 is different from 

that traversing path C2 (see Fig. 19.1). However, if the work done by Fc is path 

independent  

  ∫
x2
 
C1:x1

 Fc • dx = ∫
x2
 
C2:x1

 Fc • dx  ,  (19.5) 

then Fc is called a conservative force field.  It follows from (19.5) that the work done by 

a conservative force Fc depends only on the end points of integration so the integral over 

an arbitrary closed path vanishes 

  ∫O  Fc • dx  = 0   .  (19.6) 

 It can be shown that Fc is a conservative force field with (19.6) holding for any 

closed path if and only if there exists a potential V(x) which is a function of position only 

such that  

  Fc = – ∇ V = – 
∂V
∂x   ,  Fci = – 

∂V
∂xi

   ,  (19.7a,b) 

where Fci and xi are the components of Fc and x, relative to the fixed Cartesian base 

vectors ei.  Now, substitution of (19.7) into (19.4) yields 

  U2/1 = ∫
x2
 
x1

 Fc • dx  = ∫
x2
 
x1

 [– 
∂V
∂x • dx]  = ∫

x2
 
x1

 [– dV]  

  U2/1 = – [ V(x2) – V(x1) ]  = – (V2 – V1)  .  (19.8) 

This means that the work done on the particle by a conservative force equals minus the 
change in potential energy. 

 Notice from (19.7a) that since a potential function exists for a conservative force Fc 

the conservative force field satisfied the vector equation 

  ∇  × Fc = ∇  × (– ∇ V) = 0  . (19.9) 

It follows that if ∇  × Fc = 0 and Fc is independent of time then Fc is a conservative force 

field and a potential V(x) exists that is independent of time which is related to Fc by 
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equation (19.7a).  These conditions can be used to check if a given force field is 

conservative or not.  Tables 19.1 and 19.2 summarize useful vector formulas in 
cylindrical polar coordinates and spherical polar coordinates, respectively. 

 Notice from (19.2b) and (19.7a) that the mechanical power of a conservative force is 
equal to minus the rate of change of the potential 

  Pc = Fc • v = – 
∂V
∂x   • •x  = – 

•
V  ,  (19.10) 

because the potential V is independent of time.  In order to understand why a 

conservative force field must be independent of time we note that if a force field Fnc(x,t) 

is a function of position and time and yet satisfies the equation 

  ∇  × Fnc(x,t) = 0  ,  (19.11) 

then a potential function Vnc(x,t) of position and time exits such that 

  Fnc(x,t) = – ∇  Vnc(x,t) = – 
∂Vnc
∂x   .  (19.12) 

However, for this case the mechanical power Pnc associated with Fnc is not equal to the 

total derivative of the potential because 

  Pnc = Fnc • v = – 
∂Vnc
∂x   • •x  = – 

•
Vnc + 

∂Vnc
∂t    .  (19.13) 

This means that Fnc is not a conservative force field because the work done traversing a 

given path depends on the speed at which the path is traversed. 
 In the following we consider examples of four common conservative force fields and 

one common nonconservative field. 
CONSTANT  FORCE  FIELD 

 Let Fc = b where b is a constant vector.  Since Fc is independent of time and 

independent of space it satisfies equation (19.9) so we know that Fc is a conservative 

force field.  The functional form for the potential V is obtained by integrating 

  Fc = – ∇ V  ,  
∂V
∂xi

   = – Fci = – bi  ,  (19.14a,b) 

to obtain 

  V = V0 – bi xi = V0 – b • x  ,  (19.15) 
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where V0 is a constant of integration.  

 

GRAVITATIONAL  FORCE  BETWEEN  TWO  MASSES 
 

e
R

R

M m

R
0

F
g

 
Fig. 19.2 

 The gravitational force acting between two masses M and m is a central force that 

acts along the line connecting the center of mass of the two masses.  Taking the origin of 
a spherical coordinate system at the center of mass of the body with mass M, the force Fg 

acting on mass m may be represented in the form 

  Fg = FgR eR  ,   FgR = FgR(R) = – 
KMm

R2    ,  (19.16a,b) 

where K is a universal constant of gravitation.  Denoting mg to be the magnitude of the 
gravitation force at the surface (R=R0) of mass M we have 

  | FgR(R0) | =  
KMm

R0
2    = mg  ,  K = 

gR0
2

M    ,  (19.17a,b) 

so that (19.16b) may be rewritten in the form 

  FgR =  – mg ⎝⎜
⎛

⎠⎟
⎞R0

R
2
   .  (19.18) 

Now, since Fg is independent of time and is a central force field it follows from Table 

19.2 that equation (19.9) is satisfied so that Fg is a conservative force field that is related 

to a potential Vg by the equation 

  Fg = FgR(R) eR = – 
∂Vg
∂R    eR  .  (19.19) 
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Using (19.18) we have 

  Vg = V∞ – ∫
R
 
∞

 FgR(ξ) dξ  =  V∞ + ∫
R
 
∞

  
mgR0

2

ξ2   dξ  ,           (19.20a) 

  Vg = V∞ –  
mgR0

2

R    , (19.20b) 

where V∞ is the value of the gravitational potential Vg at R=∞.  It follows that the change 

in potential energy is given by 

  Vg2 – Vg1 = mgR0
2 ⎝⎜
⎛

⎠⎟
⎞1

R1
 – 

1
R2

  > 0  for   R2 > R1  .   (19.21) 

This means that the gravitational potential increases as the distance between the masses 

increases. 

 
GRAVITATION  CLOSE  TO  THE  EARTH 

m

R = R  + x
0 3

x
3

e
R
e

3
=

 
Fig. 19.3 

For the gravitational force field close to the surface of the earth the height x3 above the 

surface of the earth is quite small relative to the radius R0 of the earth so that the position 

R of the mass m may be approximated by 

  R = R0 + x3 = R0 ⎝
⎜
⎛

⎠
⎟
⎞

1 + 
x3
R0

   ,  (19.22a) 

  
1
R   = 

1

R0 ⎝
⎜
⎛

⎠
⎟
⎞

1 + 
x3
R0

   ≈  
1

R0
 ⎝
⎜
⎛

⎠
⎟
⎞

1 – 
x3
R0

   , (19.22b) 

so that the gravitational potential (19.20b) may be approximated by 
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  Vg = V∞ – mgR0 ⎝
⎜
⎛

⎠
⎟
⎞

1 – 
x3
R0

   = (V∞ – mgR0) + mg x3  ,           (19.23a) 

  Vg = V0 + mg x3  ,  V0 = V∞ – mgR0  , (19.23b,c) 

where V0 is the value of the gravitational potential at the surface of the earth.  Notice 

again that the gravitational potential increases as the distance between the mass m and the 
surface of the earth increases (x3 increases).  At the surface of the earth the force of 

gravity g per unit mass (often called the acceleration of gravity) is approximately 9.81 

m/s2. 

 

ELASTIC  POTENTIAL  OF  A SPRING 
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e
R

•

R

m
e
F

 
Fig. 19.4 

 Consider a spring whose free length is L and whose elastic force acting on the mass m is 

given by 
  Fe = FeR(R) eR  .  (19.24) 

Since Fe is independent of time and is a central force field it is a conservative force field 

with the potential Ve given by 

  Ve = – ∫
R
 
L

   FeR(ξ) dξ  ,  (19.25) 

where we have taken Ve = 0 when the spring is force free with R=L.  For a linear spring 

we have 
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  FeR = – k(R – L)  ,  Ve = 
1
2  k (R – L)2  .  (19.26a,b) 

 
NONCONSERVATIVE  FORCE  FIELD 
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Fig. 19.5 

 An important example of a nonconservative force field is the force Ff due to sliding 

friction.  Consider the mass m sliding on a flat plane with friction coefficient µ shown in 

Fig. 19.4.   Since the force of friction always opposes the motion of the mass we may 

express Ff in terms of the velocity v of the mass by the equation 

  Ff = – µ N 
v

 | v |    for  v ≠ 0  ,  (19.27) 

where N is the magnitude of the normal force applied by the plane on the mass.  In order 
to show that the friction force Ff is nonconservative we calculate the mechanical power 

Pf due to Ff 

  Pf = Ff • v = – µ N 
v • v
 | v |   <  0  for   v ≠ 0  .  (19.28) 

Thus the rate of work done by friction on the mass is always negative so energy is always 

dissipated and the force of friction is nonconservative. 
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Table 19.1:  Cylindrical Polar Coordinates 

x = r er(θ) + x3 e3 

F = Fr er + Fθ eθ + F3 e3 

∇  V = 
∂V
∂r   er + 

1
r 
∂V
∂θ   eθ + 

∂V
∂x3

  e3 

∇  • F = 
1
r  
∂(rFr)
∂r    + 

1
r  
∂Fθ
∂θ    + 

∂F3
∂x3

  

∇  × F = ⎣
⎢
⎡

⎦
⎥
⎤1

r 
∂F3
∂θ  – 

∂Fθ
∂x3

 er + ⎣
⎢
⎡

⎦
⎥
⎤∂Fr

∂x3
 – 
∂F3
∂r  eθ + ⎣

⎢
⎡

⎦
⎥
⎤1

r 
∂(rFθ)
∂r  – 

1
r 
∂Fr
∂θ  e3 

∇2 V = 
∂2V
∂r2   + 

1
r 
∂V
∂r   + 

1
r2 
∂2V
∂θ2   + 

∂2V
∂x3

2   

 

 
Table 19.2:  Spherical Polar Coordinates 

x = R eR(θ,φ) 

F = FR eR + Fθ eθ + Fφ eφ 

∇  V = 
∂V
∂R  eR + 

1
R cosφ  

∂V
∂θ   eθ + 

1
R 
∂V
∂φ   eφ 

∇  • F = 
1

R2  
∂(R2FR)
∂R    + 

1
R cosφ   

∂Fθ
∂θ    + 

1
R cosφ  

∂(Fφ cosφ)
∂φ   

∇  × F = 
1

R cosφ ⎣
⎢
⎡

⎦
⎥
⎤∂Fφ

∂θ  – 
∂(Fθ cosφ)

∂φ   eR + 
1
R ⎣
⎢
⎡

⎦
⎥
⎤∂FR

∂φ  – 
∂(RFφ)
∂R   eθ 

+ 
1

R cosφ ⎣
⎢
⎡

⎦
⎥
⎤∂(RFθ cosφ)

∂R  – 
∂FR
∂θ   eφ 

∇2 V = 
1

R2  
∂
∂R ⎝

⎛
⎠
⎞R2 ∂V

∂R   + 
1

R2 cos2φ 
∂2V
∂θ2  + 

1
R2 cosφ 

∂
∂φ ⎝⎜

⎛
⎠⎟
⎞cosφ  

∂V
∂φ   
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20. Energy Equation For A Particle 

 With the help of (18.2) and (18.7) it follows that we can write an energy equation for 
a particle in the form 

  U2/1 = ∫
t2
 
t1

 F • v dt  = (T2 – T1)  ,  (20.1) 

where T1 and T2 are values of the kinetic energy T at the times t1 and t2, respectively, 

and U2/1 is the work done by all forces acting on the particle.  In view of the simple 

relationship (19.10) between the mechanical power and the time rate of change of the 
potential associated with a conservative force field it is convenient to separate the total 

force F into known conservative force fields Fg associated with gravity, Fe associated 

with elastic springs, and the remainder –F  such that 

  F = Fg + Fe + –F   ,  F • v = – 
•
Vg – 

•
Ve + –F  • v  ,  (20.2a,b) 

where Vg is the gravitational potential given by (19.20b) or (19.23.b), and Ve is the 

elastic potential given by (19.26b).  Defining the work –U 2/1 done by the force –F  

   –U2/1 =  ∫
t2
 
t1

 –F • v dt  , (20.3) 

we may rewrite (10.1) in the convenient form 

   –U2/1 = (T2 – T1) + (Vg2 – Vg1) + (Ve2 – Ve1) = (E2 – E1)  ,    (20.4) 

where the total energy E is equal to the sum of the kinetic energy and the potential 

energies which are not included in the work done by –F  

  E = T + Vg + Ve  .  (20.5) 

Equation (20.5) states that the work done by –F on the particle is equal to the change in 

total energy E.  In particular, notice that if all forces acting on the particle are 

conservative then –U2/1 vanishes and the total energy E remains constant. 
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 When –U2/1 vanishes or the mechanical power –F • v is a simple expression which can 

be integrated with respect to time, the energy equation (20.4) can be a very convenient 
equation to use in obtaining the solution of a particular problem.  However, we must 

emphasize that the energy equation (20.4) is merely a scalar integral of the vectorial 
equations of motion (16.7) and therefore it does not include additional information about 

the motion of a particle.  In this sense the energy equation may be used to replace one of 

the three scalar equations associated with the balance of linear momentum (16.7) but we 
must remember that by itself, the energy equation can only provide a single piece of 

information about the motion of the particle. 
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21. Linear And Angular Momentum Of A Particle 

BALANCE  OF  LINEAR  MOMENTUM 
 For a single particle it is sometimes convenient to introduce a definition of  the linear 

momentum G of the particle 
  G = m v  ,  (21.1) 

and rewrite the balance of linear momentum (16.7) in the form 

  •G  = F  .  (21.2) 

In words equation (21.2) states that the rate of change of linear momentum is equal to the 
total force acting on the particle.  It should be recalled that the velocity v that appears in 

the definition (21.1) is the absolute velocity which is measured relative to a fixed point in 
space. 

 

BALANCE  OF  ANGULAR  MOMENTUM  THEOREM 
 Although the balance of linear momentum (21.2) characterizes the complete motion 

of a particle it is sometimes desirable to introduce the notion of the angular momentum 
Ho of the particle relative to the fixed origin O of a coordinate system by the expression 

  Ho = x × G  ,  (21.3) 

where x(t) is the position of the particle relative to the point O.  Now differentiating 

(21.3) with respect to time and using (21.1) and (21.2) we may deduce that 

  •Ho = •x × G + x × •G  = v × m v + x × F = x × F ,  (21.4) 

which means that 

  •Ho = Mo  , (21.5) 

where Mo is the moment of the force F applied about the fixed point O 

  Mo = x × F  .  (21.6) 

In words, the balance of angular momentum (21.5) states that the rate of change of 

angular momentum about a fixed point is equal to the resultant moment about the same 
fixed point.  It is important to emphasize that for a single particle the balance of angular 

momentum (21.5) is  theorem which has been proved using the balance of linear 

momentum.  In this sense, the balance of angular momentum does not introduce new 
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information about the motion of the particle which is not contained in the balance of 

linear momentum. 
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Fig. 21.1 

 By way of example let us prove that the angular momentum is conserved for a 

particle that is moving under the action of a central force field only.  To this end assume 

that the earth is fixed in space and that the position of a satellite relative to the center O of 
the earth is denoted by x = R eR.  Also, let the force of gravity F applied by the earth on 

the satellite of mass m be given by F = FR eR.  It follows that the moment about O of the 

force F is given by 

  M0 = R eR × FR eR = 0  .  (21.7) 

Using the balance of angular momentum (21.5) we may deduce that the rate of change of 

angular momentum vanishes so that Ho is a constant vector c 

  Ho = c  .  (21.8) 

However, since  

  Ho = x × m v = c  , (21.9) 

it follows that x is always perpendicular to the constant vector c (x ⊥ c) so the particle 

always moves in the plane which is perpendicular to the constant vector c. 
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22. Conservation Of Momentum (?) 
 Sometimes it is easy to observe that one or more components of linear momentum G 
or angular momentum Ho are conserved (remain constant).  When this happens part of 

the equations of motion of a particle integrate simply so it is convenient to use the 

integrated equations instead of the differential equations.  For example, it follows from 

the balances of linear momentum (21.2) and angular momentum (21.5) that both linear 
and angular momentum are conserved if the force F vanishes 

  F = 0  ⇒  G = constant  ,  (22.1a) 

  F = 0  ⇒  Mo = 0  ⇒  Ho = constant  .  (22.1b) 

 In view of the simplicity of the equations (22.1a,b) it is reasonable to consider what 

might happen if only one component of force or moment vanish.  In particular, let us 

consider the case where the component of the force F in the b direction vanishes.  It 
follows from (21.2) that  

  b • F = 0  ⇒   •G • b = 0  . (22.2) 

The question then arises as to what can be said about the component of linear momentum 
in the same direction b that the force component vanishes.  To answer this question let us 

differentiate the component b • G to obtain 

  
d(b • G)

dt    =  ––––––•
b • G   = •b  • G + b • •G  = •b  • G  .  (22.3) 

Equation (22.3) shows that in general the component of linear momentum G in the 

direction b is not constant (conserved) even though the component of force F in the same 

direction vanishes.  However, if the direction b is constant so that •b vanishes then the 

component of linear momentum in the direction b will be conserved.  This means that a 

component of linear or angular momentum is conserved whenever a component of force 
or moment vanishes in a fixed direction b. 

 By way of example let us consider the motion of a particle of mass m which moves 

under the action of a force F which in cylindrical polar coordinates is expressed in the 
form 

  F = Fr er  .  (22.4) 
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From the point of view of linear momentum it follows from (22.4) that 

  eθ • •G  = 0  ,  e3 • •G  = 0  . (22.5a,b) 

Since eθ is not a constant vector we do not expect the component eθ • G to be constant 

whereas we do expect the component e3 • G to be constant.  More specifically, we have 

  x = r er + x3 e3  ,  v = •r  er + r 
•
θ eθ + •x3 e3  ,          (22.6a,b) 

  G = m ( •r  er + r 
•
θ eθ + •x3 e3 )  ,  (22.6c) 

  •G = m [ (••r  – r 
•
θ2) er + (2 •r 

•
θ  + r 

••
θ) eθ + ••x3 e3 ]  ,  (22.6d) 

Using (22.5) it follows that 

  eθ • •G = 0  ⇒  2 •r 
•
θ + r 

••
θ  = 0  ⇒  

1
r  

d
dt (r2 

•
θ)  = 0  , (22.7a) 

  e3 • •G = 0  ⇒  ••x3 = 0  ⇒  
d
dt (

•x3) = 0  .  (22.7b) 

Consequently, 

  r2 
•
θ  = constant  ,  •x3 = constant  .          (22.8a,b) 

This means that eθ • G = mr
•
θ is not necessarily constant whereas e3 • G = m•x3 is 

constant.  However, the result (22.8a) indicates that something is conserved.   

 To determine the physical meaning of (22.8a) let us consider the balance of angular 
momentum.  It follows from (22.4) that 

  Mo = x × F = (r er + x3 e3) × Fr er = x3 Fr eθ  .  (22.9) 

Thus there is no moment the er and e3 directions so we expect the component of angular 

momentum in the e3 direction to be preserved.  To see this consider 

  Ho = x × m v = (r er + x3 e3) × m ( •r  er + r 
•
θ eθ + •x3 e3 )  ,           (22.10a) 

  Ho = m [  – r 
•
θx3 er + (•r x3 – r •x3) eθ + (r2 

•
θ) e3 ]  .           (22.10b) 

Using (22.9) and (22.10b) we have 
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  e3 • Mo = 0  ⇒  e3 • Ho = constant  ⇒  r2•
θ = constant  ,   (22.11) 

which shows that the result (22.8b) indicates that angular momentum about the e3 axis is 

conserved. 



 
 

90 

23. Impulse And Momentum 

 In view of the simplicity of the balance of linear momentum (21.2) and the balance of 
angular momentum (21.5) it follows that the changes in momentum from time t1 to time 

t2 can be determined by integrating these balance laws over time.  In particular, it is 

convenient to define F̂ as the impulsive force due to F 

  F̂  = ∫
t2
 
t1

 F dt  , (23.1) 

and use the balance of linear momentum (21.2) to deduce that 

  F̂ = ∫
t2
 
t1

  •G dt  = G2 – G1  . (23.2) 

This states that the impulsive force is equal to the change in linear momentum. 

 Similarly, we can define M̂o as the impulsive moment due to Mo 

  M̂o = ∫
t2
 
t1

  Mo dt  ,  (23.3) 

and use the balance of angular momentum (21.5) to deduce that 

  M̂o = ∫
t2
 
t1

  •Ho dt  = Ho2 – Ho1  . (23.4) 

This states that the impulsive moment about a fixed point is equal to the change in 

angular momentum about the same fixed point. 

 By way of example consider the one-dimensional problem of the impact of two 
masses mA and mB.  Before impact mass mA moves with constant velocity v0 towards 

mass mB and mass mB is stationary.  After impact we assume that both masses move 

together with common velocity v (see Fig. 23.1).  Neglecting friction, the only forces 
acting on the two masses are gravity, and the contact force between themselves and the 

floor.  Let FA/B be the force applied by mass mB on mass mA and let FB/A be the force 
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applied by mass mA on mass mB.  Since by Newton's third law these forces must be equal 

in magnitude and opposite in direction we have 

  FA/B = – F e1  ,  FB/A = F e1  ,          (23.5a,b) 

where F is the magnitude of the force FB/A.  The free body diagrams of each of the 

masses are shown in Fig. 23.2. 

 

m
A B

m m
A B

m

v  = v
A 0

v  = 0
B

Before Impact After Impact

v  = v  = v
A B

e
1

e
2

 
Fig. 23.1 

 From these free body diagrams it follows that the total force FA applied to mass mA 

may be written in the form 

  FA = – F e1 + (NA – mAg) e2  .  (23.6) 

Similarly, the total force FB applied to mass mB may be written in the form 

  FB = F e1 + (NB – mBg) e2  .  (23.7) 
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Fig. 23.2 

Assuming that the impact occurs over the time interval [t1,t2] we may apply equation 

(23.2) to each of the masses and deduce that 

  F̂A = GA2 – GA1 = mA (v – v0) e1  ,  (23.8a) 
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  F̂B = GB2 – GB1 = mB v e1  ,  (23.8b) 

Next we consider the determination of the impulsive force F̂A.  By definition 

  F̂A = ∫
t2
 
t1

  [ – F e1 + (NA – mAg) e2 ] dt  . (23.9) 

During the impact the forces NA and mAg remain bounded but the force F may become 

quite large.  As a simple approximation we can assume that the impact occurs over an 

infinitesimally short time so the impulse due to NA and mAg vanish but the impulse due 

to F does not so that 

  F̂A = 
limit
t2→ t1 ∫

t2
 
t1

  [ – F e1 + (NA – mAg) e2 ] dt   

  = –  
limit
t2→ t1 ∫

t2
 
t1

 F e1 dt = – F̂ e1  .  (23.10) 

Similarly the impulsive force F̂B becomes 

  F̂B =  
limit
t2→ t1 ∫

t2
 
t1

 F e1 dt =  F̂ e1  .  (23.11) 

Now, substitution of the results (23.10) and (23.11) into the equations (23.8a,b) we may 

deduce that 

  F̂  = – mA (v – v0)  ,  F̂  = mB v  .  (23.12a,b) 

Solving these equations for v and F̂  we have 

  v = ⎝
⎜
⎛

⎠
⎟
⎞mA

mA + mB
  v0  ,  F̂ = ⎝

⎜
⎛

⎠
⎟
⎞mA mB

mA + mB
  v0  .         (23.13a,b) 

Notice that if mB is small relative to mA then v → v0 and F̂ → 0, whereas if mB is much 

greater than mA then v → 0 and F̂ → mA v0. 
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 In the above analysis we have considered the dynamics of each mass separately.  

However, sometimes it is of interest to consider the properties of the system of two 
masses.  To this end, let G be the sum of the linear momentum of each of the masses so 

that before impact we have 
  G = G1 = mA v0 e1  ,  (23.14) 

and after impact we have 

        G = G2 = (mA v + mB v) e1 = (mA + mB)  ⎝
⎜
⎛

⎠
⎟
⎞mA

mA + mB
  v0 e1 = mA v0 e1  .  (23.15) 

This means that the total linear momentum of the system of two masses did not change 

during the impact.  We can also consider what happens to the total kinetic energy T, 
which is the sum of the kinetic energies of the two masses.  Before impact we have 

  T = T1 = 
1
2   mA v0

2  ,  (23.16) 

whereas after impact we have 

  T = T2 = 
1
2   mA v2 + 

1
2   mB v2 = ⎝

⎜
⎛

⎠
⎟
⎞mA

mA + mB
 
1
2 mA v0

2  ,  (23.17) 

so that kinetic energy is lost during the impact 

  T2 – T1 = – ⎝
⎜
⎛

⎠
⎟
⎞mB

mA + mB
 
1
2 mA v0

2 < 0  .  (23.18) 

In a more complete analysis it could be shown that kinetic energy is converted into heat 
during the dissipative process which causes the two masses to stick together after impact. 
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24. Kinetics Of Systems Of Particles 

 
 

 
 

 

 
 

 
 

Fig. 24.1 

 Consider a set of N particles and let a typical particle, called the i'th particle have 
mass mi, and position xi, relative to a fixed origin.  Furthermore, let Fi be the external 

force (external to the system) applied to the i'th particle and let fij be the internal force 

applied by the j'th particle on the i'th particle.  Then the balance of linear momentum for 
the i'th particle may be expressed in the form 

   •Gi = 
d
dt (mi vi)  =  Fi + ∑j=1

N
  fij    i=1,2,...,N (no sum on i)  .  (24.1) 

In the above it is assumed that fii vanishes (i.e. the i'th particle does not apply an internal 

force on itself).  Notice that the N vector equations of motion (24.1) are sufficient to 

determine the motion of all the N particles in the system.  Sometimes it is convenient to 
determine what can be said about the system as a whole.  To this end, let us define F to 

be the total external force applied to the system, f to be the total internal force, and G to 

be the total linear momentum of the system 

  G = ∑
i=1

N
  Gi  ,  F = ∑

i=1

N
  Fi  ,   f = ∑i=1

N
 ∑
j=1

N
  fij  .   (24.2a,b,c) 

It follows by summing the equations (24.1) that we may write  

   •G = F + f  ,  (24.3) 

e2 
e1 

e3 

xj 

xi 

Fi 

fij 

fji Fj 
mj 

mi 

O 
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which is a single vector equation characterizing the balance of linear momentum of the 

system of particles. 
 A vector equation representing the balance of angular momentum of the system of 

particles can be obtained by defining the total moment Mo of external forces about the 

fixed point O, the total moment mo of internal forces about O, and the total angular 

momentum Ho about O 

  Ho = ∑
i=1

N
  xi × Gi  ,  (24.4a) 

  Mo = ∑
i=1

N
  xi × Fi  ,  mo = ∑

i=1

N
 ∑
j=1

N
  xi × fij  ,          (24.4b,c) 

Now, taking the cross product of each of equations (24.1) with the position vector xi and 

summing the resulting equations we may deduce that 

   •Ho = Mo + mo   . (24.5) 

 Before continuing let us reconsider the quantities f and mo.  In particular by changing 

the indices for the summations we have 

  f = ∑
i=1

N
 ∑
j=1

N
  fij  = ∑

j=1

N
 ∑
i=1

N
  fji  ,  (24.6a) 

  mo = ∑
i=1

N
 ∑
j=1

N
  xi × fij = ∑

j=1

N
 ∑
i=1

N
  xj × fji   .  (24.6b) 

Now, interchanging the order of the summations we may deduce that 

  f = ∑
i=1

N
 ∑
j=1

N
  fij  = ∑

i=1

N
 ∑
j=1

N
  fji  ,  (24.7a) 

  mo = ∑
i=1

N
 ∑
j=1

N
  xi × fij = ∑

i=1

N
 ∑
j=1

N
  xj × fji   .  (24.7b) 

By expressing f and mo as the averages of the two representations in (24.7a,b) we may 

write 
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  f = 
1
2   ∑

i=1

N
 ∑
j=1

N
 (fij + fji)   ,  (24.8a) 

  mo = 
1
2 ∑

i=1

N
 ∑
j=1

N
 (xi × fij + xj × fji) .  (24.8b) 

Now, in view of Newton's third law, the force fij applied by the mass mj on the mass mi is 

equal in magnitude and opposite in direction to the force fji applied by the mass mi on the 

mass mj so that 

  fij = – fji  .  (24.9) 

Substituting (24.9) into (24.8) we have 

  f = 0  ,  mo =  
1
2 ∑

i=1

N
 ∑
j=1

N
 (xi – xj) × fij  .        (24.10a,b) 

 Using the result (24.10a) together with equation (24.3) we obtain the equation 

   •G = F  ,  (24.11) 

which states that the resultant external force applied to the system of particles is equal to 

the rate of change of linear momentum of the system.  Since equation (24.11) is identical 
to the balance of linear momentum (21.2) of a single particle it is sometimes convenient 

to think of the system of particles as a single particle with total mass m located at the 

center of mass –x, such that 

  m = ∑
i=1

N
  mi  ,  m –x = ∑

i=1

N
  mi xi  .  (24.12a,b) 

Notice that the location of the center of mass of the system is defined as the mass-

weighted average of the position of the particles.  Furthermore, the linear momentum G 

and rate of change of linear momentum •G may be expressed in terms of the velocity –v = 

–•x and acceleration –a =  –
•
v of the center of mass of the system  

  G = ∑
i=1

N
  mi vi = m –v   ,  •G = ∑

i=1

N
  mi ai = m –a  .  (24.13a,b) 
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Thus, the balance of linear momentum may be written in the form 

  •G = 
d
dt  (m –v)  = m –a  = F  .  (24.14) 

Equation (24.14) is sometimes called the Principle of Motion of the Center of Mass.  In 

words it states that relative to an inertial frame of reference the mass center of a system of 
particles moves as though the system were a single particle of mass equal to the total 

mass of the system moving under the action of the total external force applied to the 

system.  It is important to note that (24.14) is only a single vector equation so it can only 
provide limited information about the motion of the system of N particles. 

 Notice that even with the help of Newton's third law (24.9) the internal moment mo 

does not necessarily vanish (24.10b).  Nevertheless, it is of interest to consider three 

cases when the internal moment mo vanishes: 

Case I:  A simple system of particles with the internal forces fij which are central forces 

that act along the line of centers of the masses so that 

  f = f(xij) (xi – xj)  ,   xij = (xi – xj) • (xi – xj) ,   (no sum on i,j)  (24.15a,b) 

where xij is the square of the distance between the masses mi and mj and the function 

f(xij) characterizes the force acting between the masses mi and mj. 

Case II:  Forces perpendicular to the line of centers of the masses are allowed but the 

masses are assumed to be in contact so that for some values of i and j we have 
  xi = xj  .  (24.16) 

Case III:  The trivial case when there are no internal forces 
  fij = 0  .  (24.17) 

For each of these cases the internal moment mo vanishes and the balance of angular 

momentum of the system of particles (24.5) reduces to 

   •Ho = Mo  ,  (24.18) 

which is identical to the balance of angular momentum (21.5) of a single particle.  
However, in contrast with the angular momentum equation for a single particle which 

was derived as a theorem, the balance of angular momentum (24.18) contains 
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independent information about the system of particles.  For example it gives information 

about the rotation of the system of particles about its center of mass. 
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25. Alternative Formulation of the Balance Laws 
 
 
 
 
 

 
 

 
 

 

Fig. 25.1 
 It is often convenient to formulate the balances of linear and angular momentum 

relative to an arbitrary moving point B.  To this end, let X denote the location of point B 

relative to a fixed origin O and let pi be the location of mass mi relative to B.  It follows 

that the position ri, velocity vi and acceleration ai of the mass mi are given by 

  xi = X + pi  ,  vi = •X + •pi  ,  ai = ••X + ••pi  . (25.1a,b,c) 

The objective here is to use the balance laws (24.11) and (24.18) to obtain alternative 

forms expressed in terms of quantities referred to the moving point B. 

 Recalling the definition (24.2a) of the linear momentum of the system of particles we 
may write 

  G = ∑
i=1

N
  mi vi = ∑

i=1

N
  mi (

•X + •pi) = m ( •X + –
•
p)  ,  (25.2) 

where m is the total mass of the system and –p denotes the location of the center of mass 

of the system relative to the point B 

  m –p = ∑
i=1

N
  mi pi  . (25.3) 

e2 
e1 

e3 

pj 

pi 

Fi 

fij 

fji Fj 

mj 

mi 

X 
B 
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Thus, the absolute position of the center of mass –x and velocity of the center of mass –v 

become 

  –x = X + –p  ,  –v = •X + –
•
p  .  (25.4a,b) 

 It follows that the balance of linear momentum may be written in the alternative form 

  m (••X + –
••
p) = F  . (25.5) 

It is important to notice that the acceleration which appears in (25.5) is the absolute 

acceleration and not the acceleration –••p of the center of mass of the system relative to the 
moving point B.  In this sense, the form of the balance of linear momentum is changed 

when it is referred to a moving point instead of a fixed point.  Also notice that when the 
point B moves with constant velocity the balance of linear momentum reduces to 

  m –
••
p = F  for  •X = constant  .  (25.6) 

This means that the balance of linear momentum remains invariant (unchanged in form) 

to a superposed constant velocity •X. 

 To develop the alternative form of the balance of angular momentum we substitute 

(25.1) into the definition (24.2a) and obtain the expressions 

  Ho = ∑
i=1

N
 (X + pi) × mi vi = X ×  ∑

i=1

N
  mi vi +  ∑

i=1

N
  pi × mi vi  , 

  Ho = X × m –v  +  ∑
i=1

N
  pi × mi (

•X + •pi) ,  

  Ho = X × m –v  +  
⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

i=1

N
 mi pi  ×  •X + ∑

i=1

N
  pi × mi 

•pi  , 

  Ho =  X × m –v  + m –p × •X + HB  , (25.7) 

where the relative angular momentum HB about the point B is defined by replacing the 

absolute position ri and velocity vi in (24.4a) by the relative position pi and relative 

velocity •pi so that 
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  HB = ∑
i=1

N
  pi × mi 

•pi . (25.8) 

Furthermore, the derivative of Ho may be expressed in the form 

  •Ho = •X × m –v  + X × m –a  + m –
•
p  × •X + m –p × ••X + •HB  , 

  •Ho = X × m –a  +  m –p × 
••X + •HB +  •X × m (–v  – –

•
p)  , 

  •Ho = X × F +  m –p × ••X + •HB +  •X × m •X , 

  •Ho = X × F +  m –p × ••X + •HB  ,  (25.9) 

where use has been made of (24.14) and (25.4b).  Now, substituting (25.1) into (24.4b) 
the expression for the moment Mo about the origin becomes 

  Mo =  ∑
i=1

N
 (X + pi) × Fi  = X × 

⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

i=1

N
 Fi   + ∑

i=1

N
  pi × Fi  , 

  Mo = X × F + MB  ,  (25.10) 

where the moment MB of the external forces about the point B is defined by 

  MB =  ∑
i=1

N
  pi × Fi  .  (25.11) 

In words, equation (25.10) states that the moment about the origin is equal to the sum of 

the moment of the resultant force F as if it were applied at the point B, and the moment 
MB of the external forces about the point B.  Finally, substitution of (25.9) and (25.11) 

into (24.18) yields the balance of angular momentum in the alternative form 

  •HB + m –p × ••X = MB  .  (25.12) 

 Notice that for a general moving point B the balance of angular momentum changes 

form.  However, for the special case when –p × ••X vanishes, the balance of angular 

momentum remains invariant with 

  •HB = MB   for  –p × ••X = 0 .  (25.13) 
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This happens for the following three cases. 

Case I:  The point B moves with constant velocity 

  •X = constant  ,  (25.14) 

so the balance of angular momentum remains invariant to a superposed constant velocity. 

Case II:  The point B is the center of mass of the system 

  –p = 0  ,  (25.15) 

and the balance of angular momentum may be written in the form 

  –•H = –M   ,  (25.16) 

where for convenience we have denoted the value of HB by –H and the value of MB by –M

, so that  –H is the relative angular momentum about the center of mass and –M is the 

moment due to external forces about the center of mass.  It is important to emphasize that 
equation (25.16) holds even when the center of mass accelerates. 

Case III:  The point B accelerates towards or away from the center of mass 

   ••X  | |  –p   .  (25.17) 

 Before closing this section it is convenient to use the result (25.7) and consider the 

special case when B is taken to be the center of mass with 

  X = –x  ,   –p = 0  ,  HB = –H  , (25.18a,b,c) 

to derive the result that  

  Ho =  (–x × m –v) +  –H  .    (25.19) 

This means that the angular momentum about the origin O is equal to the sum of the 

angular momentum of the center of mass (–x × m –v) about O and the angular momentum  

–H of the system about the center of mass.    
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26. Impulse And Momentum (System Of Particles) 
 In view of the simplicity of the balance of linear momentum (24.11) and the two 
forms of the balance of angular momentum (24.18) and (25.16) it follows that changes in 

momentum from time t1 to time t2 can be determined by integrating these balance laws.  

In particular we can define the impulsive force F̂ and impulsive moments M̂o and –̂M such 

that 

  F̂ = ∫
t2
 
t1

 F dt    ,  (26.1a) 

  M̂o = ∫
t2
 
t1

 Mo dt   ,  (26.1b) 

  –̂M = ∫
t2
 
t1

 –M dt  .  (26.1c) 

so that integration of these balance laws yields the equations 

  F̂ = ∫
t2
 
t1

 •G dt  = G2 – G1  ,  (26.2a) 

  M̂o = ∫
t2
 
t1

 •Ho dt  = Ho2 – Ho1  , (26.2b) 

  –̂M = ∫
t2
 
t1

  –•H dt = –H2 – –H1  .  (26.2c) 
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27. Mechanical Power And Kinetic Energy (System Of Particles) 
 In order to discuss the energy equation for a system of particles we first define the 
mechanical power Pi and the kinetic energy Ti associated with mass mi by the formulas 

  Pi = 
⎝
⎜
⎛

⎠
⎟
⎞

Fi + ∑
j=1

N
 fij   • vi  ,  Ti = 

1
2   mi vi • vi  .   (no sum on i) (27.1a,b) 

Recalling the balance of linear momentum (24.1) for each mass it follows that the 

mechanical power is equal to the rate of change of kinetic energy of the mass mi so that 

  Pi = •Ti  ,   (27.2) 

It now is convenient to define the total mechanical power P and the total kinetic energy T 

of the system of particles by 

  P = ∑
i=1

N
  Pi  ,   T = ∑

i=1

N
  Ti  ,  (27.3a,b) 

so that 

  P = •T   .  (27.4) 

Notice that this is the same result as that obtained for a single particle (18.5).  It follows 
that when some of the external forces applied to the system of particles are conservative 

forces then we can write an energy equation for the system of particles.  In particular if 

we separate the external effects of gravity and springs we can write an energy equation of 
the type (20.4) for the system of particles 

  –U2/1 = (T2 – T1) + (Vg2 – Vg1) + (Ve2 – Ve1)  . (27.5) 

 By representing the motion of each mass relative to the center of mass –x of the system 

of particles 

  xi = –x + pi  ,  vi = –v + •pi  ,  (27.6a,b) 

we may rewrite the kinetic energy in the form 

  T = ∑
i=1

N
 12   mi (vi • vi) = ∑

i=1

N
 12   mi (

–v + •pi) • (
–v + •pi)  ,  
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  T = ∑
i=1

N
 12   mi  [ (–v  • –v ) + 2 (–v  • •pi) + (•pi • 

•pi) ] ,  

  T = 
1
2 
⎝
⎜
⎛

⎠
⎟
⎞

∑
i=1

N
 mi  (–v • –v)  +  –v  • 

⎝
⎜
⎛

⎠
⎟
⎞

∑
i=1

N
 mi 

•pi  + ∑
i=1

N
 12   mi (

•pi • 
•pi)  .   (27.7) 

But since the motion has been referred to the center of mass we have 

  ∑
i=1

N
  mi = m  ,  ∑

i=1

N
  mi pi = m –p = 0  ,  ∑

i=1

N
  mi 

•pi = 0  ,   (27.8a,b,c) 

so that (27.7) reduces to 

  T = 
1
2   m (–v  • –v) +  ∑

i=1

N
 12   mi (

•pi • 
•pi)  .  (27.8) 

In words, equation (27.8) states that the kinetic energy of the system of particles is equal 

to the sum of the kinetic energy of center of mass of the system and the kinetic energy of 

the motion of the masses relative to the center of mass.  This split of kinetic energy is 
sometimes used in atomic theories which relate the second term in (27.8) with the 

temperature of the system. 
 Next it is desirable to reconsider the expression for total mechanical power P and in 

particular consider the role of the internal forces fij.  To this end, we use Newton's third 

law (24.9) and follow the arguments of section 24 to obtain 

  ∑
i=1

N
 ∑
j=1

N
  fij • vi = 

1
2 ∑

i=1

N
 ∑
j=1

N
  fij • (vi – vj)  ,  (27.9) 

so that the total mechanical power P becomes 

  P = ∑
i=1

N
  Fi • vi +  

1
2 ∑

i=1

N
 ∑
j=1

N
  fij • (vi – vj)  .  (27.10) 

Notice that in general the internal forces do work and thus contribute to the total 
mechanical power.  For the special case of central forces fij given by (24.15) the 

expression (27.10) further reduces to 
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  P = ∑
i=1

N
  Fi • vi +  

1
4 ∑

i=1

N
 ∑
j=1

N
  f(xij) 

•xij ,  (27.11) 

where the time derivative •xij of the relative distance squared between the masses mi and 

mj is given by 

  •xij = 2 (xi – xj) • (vi – vj)  .  (27.12) 

Since the function f(xij) depends only on the relative distance between the two masses mi 

and mj a potential function ψ(xij) exists such that 

  
dψ(xij)

dxij
  = – 

1
4  f(xij)  .  (27.13) 

Thus, (27.11) can be rewritten in the simpler form 

  P = ∑
i=1

N
  Fi • vi – ∑

i=1

N
 ∑
j=1

N
  •
ψ(xij)  .  (27.14) 

These results show that the internal forces do work and thus contribute to the change in 

kinetic energy of the system of particles. 

 For the special case of a system of particles which are rigidly connected with no 
external moments (i.e. a special rigid body) the relative distance between any two masses 

remains constant so that 

  •xij = 0  ,  (27.15) 

and the internal forces do no work.  Consequently, only the external forces contribute to 

the mechanical power so that 

  P = ∑
i=1

N
  Fi • vi  for a rigid body  . (27.16) 

Finally, we emphasize that the velocity which appears in the expression (27.16) is the 
velocity of the particular point of application of the force Fi. 
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28.  Impact of two particles 

 The objective of this section is to develop a simple empirical model for analyzing the 
impact of two particles.  To this end, consider the case of two particles of masses mA and 

mB which at time t1 just before impact are moving with absolute velocities vA1 and vB1, 

respectively.  Also, the particles are assumed to collide at a single point at which the unit 
outward normal to particle A is denoted by n (see Fig. 28.1).  The impact process occurs 

during the time period [t1,t2] and at time t2 just after impact the particles have absolute 

velocities vA2 and vB2, respectively.   

Just before impact  t=t
1

A
m

m
B

A1
v

v
B1

Common normal n and tangent t vectors at impact 

A
m

n

t

m
B

Just after impact  t=t
2

A
m

v
A2

m
B

B2
v

 
Fig. 28.1 Two particles just before (t=t1) and just after (t=t2) impact.  During the impact 

process the velocities of the particles change abruptly. 
 Given the state of the two masses just before impact 

  { mA , vA1 , mB , vB1 } , (28.1) 

the objective is to determine the velocities 
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  { vA2 , vB2 }  , (28.2) 

just after impact. 

 During the impact process a number of very complicated interactions occur between 
the two particles which can cause energy to be dissipated.  In particular, the particles can 

deform elastically, or plastically and friction can act, with or without slip.  Analyzing the 

details of these interactions is beyond the scope of particle dynamics.  Consequently, for 
simplicity, it is assumed that the impact process occurs over a very short time so that the 

impact process can be modeled as an abrupt change in momentum of each particle.  This 

means that it is only necessary to consider the impulse F̂ of the force F(t) applied by 

particle B on particle A  during the impact process 

  F̂ = ∫
t2
 
t1

 F(t) dt  .  (28.3) 

 Now, by integrating the balance of linear momentum associated with each of the 

particles it can be shown that 

  mA (vA2 – vA1) = F̂  ,  mB (vB2 – vB1) = – F̂  , (28.4a,b) 

where use has been made of Newton's third law which states that (–F) is the force applied 
by particle A on particle B (see Fig. 28.2).  Thus, the velocities vA2 and vB2 are 

determined by the equations 

  vA2 = vA1 + 
1

mA
 F̂  ,   vB2 = vB1 – 

1
mB

 F̂  . (28.5a,b) 

This means that the complicated phenomena occurring during impact can be modeled by 

proposing an equation for the impulse F̂. 

F
^

A
m ^

– F
m

B

 
Fig. 28.2 Impulse acting during the impact process. 
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Simple analysis (Coefficient of restitution) 

 In the simple analysis, the two particles are treated as a system of two particles which 
is not influenced by external forces during the impact period.  This means that the linear 

momentum of the system remains constant 
  G1 = mA vA1 + mB vB1 = mA vA2 + mB vB2 = G2  . (28.6) 

Moreover, in the simple analysis it is common to introduce an empirical constant e called 
the coefficient of restitution which specifies the ratio of the separation velocities to the 

approach velocities of the masses 

  e = 
n • (vB2 – vA2)
n • (vA1 – vB1)  = 

separation velocity
approach velocity   . (28.7) 

This empirical constant attempts to model the net effect of the complicated interactions 

during impact.   
 Next, taking the normal component of the linear momentum equation (28.6) it follows 

that 

  mA (vA2 • n) + mB (vB2 • n) = mA (vA1 • n) + mB (vB1 • n)  . (28.8) 

Also, rewriting the (28.7) in the form 
  – (vA2 • n) + (vB2 • n) = e (vA1 • n) – e (vB1 • n)  , (28.9) 

these equations can be solved to obtain 

   (vA2 • n) = 
mA – e mB

mA+mB
 (vA1 • n) + 

mB(1+e)
mA+mB

 (vB1 • n)  , 

  (vB2 • n) = 
mA(1+e)
mA+mB

 (vA1 • n) + 
mB – e mA

mA+mB
 (vB1 • n)  . (28.10) 

 For smooth particles, the impulsive force F̂ has no component in the tangential 
direction t 

  F̂ • t = 0  , (28.11) 
so that from (28.4) it follows that the component of linear momentum in the tangential 

direction is preserved for each of the particles 

  (vA2 • t) = (vA1 • t)  ,   (vB2 • t) = (vB1 • t)  . (28.12) 

Thus, with the help of (28.5a) it can be shown that for this case, the impulse F̂ is given by 
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  F̂ = – m* (1+e) [(vA1 – vB1) • n] n  . (28.13) 

where m* is the effective mass 

  m* = 
mAmB

mA+mB
  . (28.14) 

 Now, the total kinetic energy T1 before impact and T2 after impact are given by 

  T1 = 
1
2 mA [(vA1 • n)2+(vA1 • t)2] +  

1
2 mB [(vB1 • n)2+(vB1 • t)2]  , 

  T2 = 
1
2 mA [(vA2 • n)2+(vA2 • t)2] +  

1
2 mB [(vB2 • n)2+(vB2 • t)2]  , (28.15) 

so with the help of thee results for smooth particles it can be shown that the that the loss 
of kinetic energy during impact becomes 

  T1 – T2 = (1–e2) 
1
2 m* [(vA1 – vB1) • n]2

  . (28.16) 

Note, that energy is preserved if e=1 

  T1 – T2 = 0   for  e = 1  , (28.17) 

and that the maximum energy is lost if e=0   

  T1 – T2 = 
1
2 m* [(vA1 – vB1) • n]2

> 0   for  e = 0  . (28.18) 

Moreover, since energy cannot be created during the impact, the value of e is taken in the 
range 

  0 ≤ e ≤ 1  . (28.19) 

 
More general analysis 
 In a more general analysis it is of interest to analyze physical restrictions on an 

equation for F̂.  To this end, it is convenient to define the relative velocities of the 
particles just before and just after the impact event by the formulas 

  Δv1 = vA1 – vB1  ,   Δv2 = vA2 – vB2  . (28.20a,b) 

Thus, using (28.5) it can be shown that 

  Δv2 = Δv1 + 
1

m* F̂  , (28.21a,b) 
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where m* is the effective mass (28.14). 

 Next, it is assumed that the impulse F̂ must satisfy the following four physical 
restrictions: 

 (P1) The impulse F̂ must have a component that resists the relative velocity Δv1 

   F̂ • (–Δv1) > 0  ,  (28.22a) 

 (P2) The impulse F̂ must have a component that resists penetration and aids 

separation of the two particles 

   F̂ • (– n) > 0  ,  (28.22b) 

 (P3) The two particles have a tendency to separate after the impact event 

   Δv2 • (– n) ≥ 0  ,  (28.22c) 

 (P4) The dissipation of kinetic energy of the two particle system during the impact 

event is nonnegative 

   T1 – T2 ≥ 0  .  (28.22d) 

Also, it is noted that impact will not occur unless the component of the approach velocity 

Δv1 in the normal direction n is positive 

  Δv1 • n =  (vA1–vB1) • n > 0  .  (28.23) 

 Now, in order to analyze implications of these physical restrictions it is convenient to 

write F̂ in terms of its magnitude f and its direction f such that 

  F̂ = f f  ,  f ≥ 0  ,  f • f = 1  .  (28.24a,b,c) 

Then, the restrictions (28.22a,b) limit the direction of f by the expressions 

  f • (–Δv1) > 0  ,  f • (– n) ≥ 0  .  (28.25a,b) 

It will be shown presently that it is convenient to express the magnitude f of the impulse 

in terms of another parameter η through the formula 

  f = m* (1+η) (– f • Δv1)  .  (28.26) 

Thus, with the help of (28.24) and (28.26) the equation (28.21a) becomes 

  Δv2 = Δv1 + (1+η) (– f • Δv1) f  .  (28.27) 
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Moreover, by taking the dot product of (28.27) with f it can be shown that 

  η = 
(f • Δv2)

 (– f • Δv1)  =  
f • (vB2–vA2)
f • (vA1–vB1)  .  (28.28) 

Physically, this means that η is the ratio of the component of the separation velocity          

(–Δv2=vB2–vA2) in the direction of impulse f to the component of the approach velocity       

(Δv1=vA1–vB1) in the direction of f.  

 Next, consider the expressions for energy T1 before impact and T2 after impact 

  T1 = 
1
2 mA vA1 • vA1 + 

1
2 mB vB1 • vB1  ,  (28.29a) 

  T2 = 
1
2 mA vA2 • vA2 + 

1
2 mB vB2 • vB2  .  (28.29b) 

However, with the help of (28.5) and (28.26) these equations (28.5) can be rewritten in 
the forms 

  vA2 = vA1 + [
m*(1+η)(–f •Δv1)

mA
] f  ,  (28.30a) 

  vB2 = vB1 – [
m*(1+η)(–f •Δv1)

mB
] f  .  (28.30b) 

Thus, the kinetic energy after impact can be expressed in the form 

  T2 = T1 + m*(1+η)(–f • Δv1)(f • vA1) – m*(1+η)(–f • Δv1)(f • vB1) 

  + 
1
2 mA[

m*(1+η)(–f • Δv1)
mA

]2
 +  

1
2 mB[

m*(1+η)(–f • Δv1)
mB

]2
  , (28.31a) 

  T2 = T1 – m*(1+η)(–f • Δv1)2 + 
1
2 [ 1

mA
 + 

1
mB

] [m*(1+η)(–f • Δv1)]2
  , (28.31b) 

  T2 = T1 – m*(1+η)(–f • Δv1)2 + 
1
2 m*(1+η)2(–f • Δv1)2  , (28.31c) 

  T2 = T1 – 
1
2 m* (1–η2) (–f •Δv1)2  ,  (28.31d) 

so the restriction (28.22d) on the energy dissipation reduces to 

  T1 – T2 = 
1
2 m* (1–η2) (–f • Δv1)2 ≥ 0  .  (28.32) 
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This restriction can easily be satisfied by limiting the value of η by 

  η2 ≤ 1  .  (28.33) 

However, in view of the physical interpretation (28.28) of η it does not seem reasonable 

to allow η to be negative so η is restricted to the range 

  0 ≤ η ≤ 1  .  (28.34) 

In particular, note that the maximum energy dissipation (for fixed f) occurs when η=0 

and the energy is conserved if η=1.  For this reason the collision is called elastic if η=1 

and kinetic energy is preserved.  Also, note that if f is taken in the special direction which 

is parallel to Δv1 then it can be shown that 

  Δv2 = – η Δv1  for  f = – 
Δv1
|Δv1|  .  (28.35a,b) 

Thus, for this specification of the direction of the impulse the relative velocity Δv2 

remains parallel to Δv1, its direction is changed and its magnitude is reduced by the value 

of η.  

 In summary, the physical restrictions (28.22) can be rewritten in the forms 

  f • (–Δv1) > 0  ,  f • (– n) ≥ 0  ,  (28.36a,b) 

  Δv2 • (– n) = – (Δv1 • n) + (1+η) (– f • Δv1) f • (– n) ≥ 0  , (28.36c) 

  0 ≤ η ≤ 1  .  (28.36d) 

where use has been made of the expression (28.27).  Fig. 28.3 shows that the restrictions 

(28.36a,b) require the impulse direction f to lie in a conical region.  However, it will be 
seen below that the condition (28.36c) is more difficult to satisfy in general. 
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Fig. 28.3  Conical region satisfying the restrictions (28.36) on the direction f of the 

impulse F̂ acting on particle A during the impact process. 

 
SMOOTH  PARTICLES 

 For the special case of smooth particles with no friction acting during the impact 
process the direction of impulse must be normal to the surface of impact so that 

  f = – n  .  (28.37) 

It then follows that the restrictions (28.36a,b,c) are automatically satisfied whenever η 

satisfies the restriction (28.36d).  Also, it follows that (28.27) and (28.28) reduce to 

  Δv2 = Δv1 – (1+η) (n • Δv1) n  , (28.38) 

and the equation 

  η = 
(n • Δv2)

 (– n • Δv1)  =  
n • (vB2–vA2)
n • (vA1–vB1)  .  (28.39) 

Thus, η is seen to be a generalized coefficient of restitution e defined in (28.7). 

NONSMOOTH  PARTICLES 

 For the more general case of nonsmooth particles with friction acting it is reasonable 

to specify the direction of impulse f to lie in the plane of the relative velocity Δv1 and the 

normal n.  To this end, let t be a unit vector in the contact plane (t • t=1, t • n=0) with a 

nonnegative component in the Δv1 direction such that 
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  Δv1 = Δv1 [cosθ n + sinθ t]  ,  Δv1 > 0  ,  0 ≤ θ ≤ 
π
2  . (28.40a,b,c) 

Also, define the direction f by the friction angle φ such that 

  f = – [cosφ n + sinφ t]  .  (28.41) 

Now, substitution of the expressions (28.40a) and (28.41) into the restrictions 

(28.36a,b,c) yields the expressions 

  f • (–Δv1) = Δv1 cos(φ–θ) > 0  ⇒  – 
π
2 + θ < φ < 

π
2 + θ  , (28.42a,b) 

  f • (– n) = cos φ ≥ 0  ⇒  – 
π
2  ≤ φ ≤ 

π
2  ,  (28.42c,d) 

  Δv2 • (– n) = Δv1 F(θ,φ) ≥ 0  ,    (28.42e) 

  F(θ,φ) = (1+η) cos(φ–θ) cosφ – cosθ  .  (28.42f) 

The restrictions (28.42a,c) are satisfied whenever φ lies in the range 

  – 
π
2 + θ < φ < 

π
2   .  (28.43) 

However, it can easily be shown that at the boundaries of the this range the restriction 
(28.42e) is violated 

  Δv2 • (– n) = Δv1 F(θ,– 
π
2 + θ)) = – Δv1 cosθ < 0  ,  (28.44a) 

  Δv2 • (– n) = Δv1 F(θ,
π
2)) = – Δv1 cosθ < 0  .  (28.44b) 

This means that the acceptable range of φ is completely determined by the restriction 

(28.42e). 

 To determine the bounds on φ consider the value φ* of φ which the equality holds in 

(28.42e) 

  Δv2 • (– n) = Δv1 F(θ,φ*) = Δv1 [(1+η) cos(φ*–θ) cosφ* – cosθ] = 0   . (28.45) 

Thus, φ* is determined by the equation 

   (1+η) cos(φ*–θ) cosφ* – cosθ = 0  ,  (28.46a) 

  (1+η) [cosφ* cosθ + sinφ* sinθ ] cosφ* – cosθ = 0  ,  (28.46b) 
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  [(1+η) cos2φ* – 1] cosθ + (1+η)[ sinφ* cosφ*] sinθ = 0  , (28.46c) 

  [(1+η) {1 + cos(2φ*)} – 2] cosθ + (1+η) sin(2φ*) sinθ = 0  , (28.46d) 

  (1+η) cos(2φ*) – (1–η) = – (1+η) sin(2φ*) tanθ  .  (28.46e) 

Squaring both sides of (28.46e) yields a quadratic equation for cos(2φ*) of the form 

(1+η)2 cos2(2φ*) – 2(1–η2) cos(2φ*) + (1–η)2 = (1+η)2 tan2θ [1– cos2(2φ*)] , (28.47a) 

(1+η)2 (1 + tan2θ) cos2(2φ*) – 2(1–η2) cos(2φ*) + [(1–η)2 – (1+η)2 tan2θ] = 0 (28.47b) 

  [1+η
cosθ]2 cos2(2φ*) – 2(1–η2) cos(2φ*) + [(1–η)2 – (1+η)2 tan2θ] = 0  . (28.47c) 

Thus, the solutions of this quadratic equation become 

 cos(2φ*) = 
(1–η2) ± (1–η2)2 – {1+η

cosθ}2{(1–η)2 – (1+η)2 tan2θ}

{1+η
cosθ}2

  . (28.48) 

However, the term under the radical can be simplified to obtain 

  (1–η2)2 – {1+η
cosθ}2{(1–η)2 – (1+η)2 tan2θ}  

  = (1–η2)2 [1 – 
1

cos2θ] + [(1+η)4

cos2θ ] tan2θ   

  = – (1–η2)2 tan2θ + (1+η)4 [tan2θ
cos2θ]  

  = [(1+η)4tan2θ
cos2θ ] [1 – {1–η

1+η}2cos2θ] ≥ 0  .  (28.49) 

Since this term is nonnegative, the solutions of (28.48) are real and the relevant solutions 

φ1 and φ2 of (28.45) can be written in the simplified forms  

  φ1 = – 
1
2  cos-1 [{1–η

1+η}cos2θ + {1 – {1–η
1+η}2 cos2θ}1/2sinθ]  , (28.50a) 

  φ2 = 
1
2  cos-1 [{1–η

1+η}cos2θ – {1 – {1–η
1+η}2 cos2θ}1/2sinθ]  . (28.50b) 
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Moreover, it follows from (28.25) that if the impulse is parallel to the approach velocity  

(φ=θ) then the restriction (28.42e) is satisfied since 

  Δv2 • (– n) = Δv1 F(θ,θ)  = η Δv1 cosθ ≥ 0   for  φ = θ  . (28.51) 

This means that θ is within the bounds on the friction angle φ 

  φ1 ≤ θ ≤ φ2  .  (28.52) 

 Finally, it then can be shown that all of the physical restrictions (28.22) are satisfied 

provided that  

  φ1 ≤ φ ≤ φ2  ,  0 ≤ η ≤ 1  .  (28.53) 

Fig. 28.4 plots the acceptable the bounds on φ for three different values of η.   
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Fig. 28.4  Plots of the minimum (φ1) and maximum (φ2) values of the friction angle φ as 

function of the angle θ of the approach velocity for three different values of the 

coefficient of restitution η 
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29. Equations Of Motion Of A Rigid Body 

 
 

 
 

 

 
 

 
 

 

 
Fig. 29.1 

 To describe the dynamics of rigid bodies we define the mass m, linear momentum G, 

angular momentum Ho (about the origin).  Motivated by the definitions of m, G, Ho for a 

system of particles we replace the summation process by integration over the body of an 
elemental mass dm and write 

  m = ∫ dm  ,  (29.1a) 

  G = ∫ v dm  ,  (29.1b) 

  Ho = ∫  x × v dm  ,  (29.1c) 

where v is the linear momentum per unit mass, and x × v is the angular momentum (about 

the origin) per unit mass.  In rigid body dynamics we define two types of external forces 

that act on the body: (1) body forces per unit mass denoted by the vector b (like the force 
of gravity), and (2) concentrated forces Fi acting at the points xi (see Fig. 29.1).  Then the 

resultant external force F applied to the rigid body is given by 

  F =∫  b dm + ∑
i=1

N
  Fi  . (29.2) 

Similarly, the resultant moment Mo (about the origin) is given by 

e2 
e1 

e3 x1 

O 

xN 
F1 

M1 

MM 

FN b 



 
 

119 

  Mo = ∫ x × b dm + ∑
i=1

N
  xi × Fi  + ∑

i=1

M
  Mi  ,  (29.3)  

where Mi (i=1,2,...,M) are M moments applied to the rigid body at various points. 

 We now assume that the equations of motion of a rigid body have the same form as 

those for a single particle and a simple system of particles so we postulate the 
conservation of mass 

  •m  = 0  ,  (29.4) 

the balance of linear momentum 

  •G = F  ,  (29.5) 
and the balance of angular momentum 

  •Ho = Mo  .  (29.6) 

Notice that these balance laws are postulated instead of being derived directly from the 
dynamics of a system of particles, and they are consistent with the dynamics of a system 

of particles if the internal forces are such that they apply no net moment mo to the body.   

 Ultimately the validity of these assumptions can only be verified by comparing 

theoretical predictions with results of experiments.  In this regard, we note that numerous 
experiments have proven these equations of motion of a rigid body to be quite accurate 

for nonrelativistic velocities.  In fact, the generalizations (29.4)-(29.6) hold even for 
continuous deformable media like fluids and elastic solids.  

 It is important to emphasize that since a rigid body has six degrees of freedom (three 

translational characterized by the position vector of a point on the body, and three 
rotational characterized by the angular velocity vector) both the balances of linear 

momentum and angular momentum must be used to determine the position of a point on 

the body and its angular orientation in space.  This should be contrasted with the fact that 
the balance of angular momentum of a single particle was derived as a theorem using the 

balance of linear momentum, so the balance of angular momentum contains no 
information that is not already contained in the balance of linear momentum. 
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 In our study of dynamics of rigid bodies we will confine attention to values of b 

which are constant (like the case of a constant gravitational field, e.g. b = – g e3).  For 

this case the body force Fb and the moment Mbo of the body force may be expressed in 

the simple forms 

  Fb = ∫ b dm = m b  ,  Mbo = ∫  x × b dm = –x × m b  ,   (29.7) 

where –x denotes the location of the center of mass of the body 

  m –x = ∫ x dm  .  (29.8) 

The results (29.7) indicates that when b is constant the body force Fb is merely the total 

mass of the body m times b and the body force Fb acts at the center of mass of the body.  

This proves that the gravitational force acts through the center of mass of the body. 
 

 

 
 

 
 

 

 
 

 
Fig. 29.2 

 Sometimes it is convenient to refer the equations of motion to a moving point.  To 

this end we let X be the position vector from the fixed origin to an arbitrary moving point 
B and let p be the vector from B to any material point in the body (see Fig. 29.2) so that 

  x = X + p  ,  –x = X + –p  ,  xi = X + pi  ,       (29.9a,b,c) 

where –p is the location of the center of mass of the body relative to B.  Using (29.1b) and 

differentiating (29.8) we may deduce that the linear momentum of a rigid body is the 
mass of the body times the absolute velocity of its center of mass 

e2 
e1 

e3 
x 

O 

–x  

p 

X 

b 

cm 

–p  

B 
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  G = m –v  .  (29.10) 

Now, with the help of (29.9) and (29.10) the balance of linear momentum (29.5) may be 
written in the alternative form 

  m (••X + 
••–p) = F  .  (29.11) 

This is identical to equation (25.5) for a system of particles so it follows that the balance 

of linear momentum of a rigid body remains invariant (unchanged in form) to a 

superposed constant velocity •X [see equation (25.6)].  

 To develop the alternative form of the balance of angular momentum we substitute 
(29.9a) into the definition (29.1c)  and obtain the expressions 

  Ho = ∫  (X + p) × v dm = X × ∫  v dm + ∫  p × v dm  ,  

  Ho = X × m –v +  ∫   p × ( •X + •p) dm  ,  

  Ho = X × m –v +  ∫  p dm × •X +  ∫  p × •p dm  ,   

  Ho = X × m –v + m –p × •X + HB  , (29.12) 

where HB is the relative angular momentum about the point B 

  HB =  ∫  p × •p dm  . (29.13) 

Furthermore, following the development of (25.9) we may differentiate (29.12) to obtain 

  •Ho = X × F + m –p × ••X + •HB  . (29.14) 

Now, substituting (29.9a,c) into (29.3), the expression for the moment Mo about the 

origin becomes 

  Mo =  ∫  (X + p) × b dm + ∑
i=1

N
 (X + pi) × Fi + ∑

i=1

M
  Mi  ,   

   Mo = X × [∫  b dm + ∑
i=1

N
 Fi]  +  ∫  p × b dm + ∑

i=1

N
 pi  × Fi + ∑

i=1

M
  Mi  , 
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  Mo = X × F + MB  , (29.15) 

where the moment MB of the external forces about the point B is defined by 

  MB =  ∫  p × b dm + ∑
i=1

N
 pi  × Fi + ∑

i=1

M
  Mi  .  (29.16) 

Furthermore, if b is constant then (29.16) reduces to 

  MB =  ∫  p dm × b  + ∑
i=1

N
 pi  × Fi + ∑

i=1

M
  Mi , 

  MB = –p × m b + ∑
i=1

N
 pi  × Fi + ∑

i=1

M
  Mi ,  (29.17) 

which shows that b acts through the center of mass.  Finally, substitution of (29.14) and 
(29.15) into (29.6) yields the balance of angular momentum in the alternative form 

  •HB + m –p × ••X = MB  .  (29.18) 

 Notice that for a general moving point B the balance of angular momentum changes 

form.  However, for the special case when –p × ••X vanishes, the balance of angular 

momentum remains invariant with 

  •HB = MB   for  –p × ••X = 0 .  (29.19) 

This happens for the following three cases. 

Case I:  The point B moves with constant velocity 

  •X = constant  ,  (29.20) 

so the balance of angular momentum remains invariant to a superposed constant velocity. 

Case II:  The point B is the center of mass of the system 

  –p = 0  ,  (29.21) 
and the balance of angular momentum may be written in the form 

  –•H = –M   ,  (29.22) 
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where for convenience we have denoted the value of HB by –H and the value of MB by  

–M, so that  –H is the relative angular momentum about the center of mass and –M is the 
moment due to external forces about the center of mass.  It is important to emphasize that 

equation (29.22) holds even when the center of mass accelerates. 

Case III:  The point B accelerates towards or away from the center of mass 

   ••X  | |  –p   .  (29.23) 

 Before closing this section it is convenient to use the result (29.12) and consider the 

special case when B is taken to be the center of mass with 

  X = –x  ,  –p = 0  , (29.24a,b) 

  HB = –H = ∫  (x – –x) × (v – –v) dm  ,  (29.24c) 

to derive the result that  

  Ho = (–x × m –v) +  –H  .  (29.25) 

This means that the angular momentum about the origin O is equal to the sum of the 

angular momentum of the center of mass (–x × m –v) about O and the angular momentum  

–H of the rigid body about its center of mass.  Also, we may solve (29.12) for HB and 

substitute (29.25) into the resulting expression to obtain 

  HB = Ho – X × m –v – m –p × •X = (–x × m –v) +  –H – X × m –v – m –p × •X  ,  

  HB = (X + –p) × m –v +  –H – X × m –v – m –p × •X , 

  HB =  –p × m –v +  –H – m –p × •X =  –p × m ( •X + –
•
p) + –H – m –p × •X , 

  HB =  –p × m –
•
p +  –H  .  (29.26) 

which is similar to (29.25). 
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30. Inertia Tensor 
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Fig. 30.1 

 By way of introduction to the concept of the inertia tensor of a rigid body consider the 

case of a rigid body which is connected by a frictionless joint at the fixed point O and 

rotates with angular velocity ω = ω e3 due to the moment Mo = Mo e3 (see Fig. 30.1).  

For simplicity, let the mass m of the rigid body be concentrated at a distance r from the 

point O.  Letting x be the vector from O to the concentrated mass we may use  polar 

coordinates to write 
  x = r er  .  (30.1) 

Since the mass is concentrated at a point, the integral in (29.1c) for the angular 

momentum Ho about O may be simply evaluated to obtain 

  Ho = x × m v = r er × m (rω eθ) = (m r2) ω e3 = Ho e3  ,   (30.2) 

where v = •x is the velocity of the mass and Ho is the component of Ho in the e3 direction.  

Since the mass m and the distance r are constant we have 

  •Ho = •Ho e3 = (m r2) •
ω e3  , (30.3) 

so that the balance of angular momentum (29.6) yields the equations 

  •Ho = •Ho e3 = (m r2) •
ω e3 = Mo e3 = Mo  . (30.4) 

For this simple case we can define Io to be the moment of inertia of the rigid body about 

the e3 axis 

  Io = m r2  , (30.5) 
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and write the angular momentum Ho in the form 

  Ho = Io ω  ,  (30.6) 

and the balance of angular momentum in the scalar form 

  •Ho = Mo  .  (30.7) 
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Fig. 30.2 

 Formulas of the type (30.6) and (30.7) hold for special cases of a rigid body rotating 

about the e3 axis even when the mass is not concentrated (see Fig. 30.2).  For this case we 

sometimes use the analogy of a concentrated mass (30.5) and define the radius of 

gyration  k by the formulas 

  Io = m k2  ,   k = [
Io
m]

1/2
  . (30.8) 

Thus the radius of gyration k is the radius at which the mass of the body would have to be 

concentrated in order to obtain the correct value of the moment of inertia Io for rotation 

about the origin. 
 To describe three-dimensional motion of a rigid body we must generalize the scalar 

equation (30.6) to a vector equation.  It will be shown presently that the appropriate 

vector equation can be written in the form 

  Ho = Io ω  ,  (30.9) 

where ω is the angular velocity vector of the rigid body and Io is the inertia tensor of the 

rigid body about the point O.  The inertia tensor Io is a second order tensor that operates 
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on the vector ω to give the vector Ho.  Writing (30.9) in the component form relative to 

the basis ei 

  Hoi ei = Ioij ωj ei ,   Hoi = Ioij ωj  ,  (30.10a,b) 

we may observe that the (i,j) components Ioij of Io may be identified as a square matrix 

so that (30.10) merely represents a matrix Ioij multiplying a vector ωj to obtain another 

vector Hoi.  More generally we can write the angular momentum –H  about the center of 

mass and the angular momentum HB about a moving point B in terms of the inertia –I  

about the center of mass and the inertia IB about B in the forms 

  –H  = –I  ω  ,   HB = IB ω  ,  HBi = IBij ωj  .     (30.12a,b,c) 

 To derive explicit expressions for the components of the inertia tensor let B be an 

arbitrary material point attached to the rigid body and recall the definition (29.13) for HB 

  HB = ∫ p × •p dm  ,  (30.13) 

where p is the vector from the point B to any point in the body.  Since B is a material 

point and the vector p connects two material points on the rigid body it follows that 

  •p  = ω × p  ,  (30.14) 

so that (30.13) may be written in the form 

  HB = ∫ p × (ω × p) dm = ∫ [(p • p) ω – (p • ω) p] dm . (30.15) 

It is important to note that the angular velocity ω(t) is a function of time only so it is not 

affected by the integration over the mass of the body and therefore ω can be factored out 

of the integral.  This can be done by defining the tensor product ⊗ such that for any 

vectors a,b,c, the quantity (a ⊗ b) is a second order tensor and d = (a ⊗ b) c is a vector 

having the properties  

  d = (a ⊗ b) c = a (b • c) = (b • c) a  ,  (30.16a) 

  di = (ai bj) cj = ai (bj cj) = (bj cj) ai  . (30.16b) 

Thus, we may write 
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  (p • ω) p = (p ⊗ p) ω  ,  ω = I ω  , (30.17a,b) 

where I denotes the unit tensor and should not be confused with inertia tensors which are 

denoted by the same symbol with either an over bar –I  or a subscript IB.  Now 

substituting (30.17) into (30.15) we may deduce that  

  HB = IB ω  ,   IB = ∫ [(p • p) I – (p ⊗ p)] dm .        (30.18a,b) 

 Notice that the inertia tensor IB is a property of the body and is independent of the 

motion of the body.  It follows that it is most convenient to calculate the components of 

IB relative to a body coordinate system ei' which rotates with the body 

  •ei' = ω × ei'  .  (30.19) 

Letting pi' = ei' • p be the coordinates of the body coordinate system, P' be the region of 

space occupied by the body, dV = (dp1'  dp2'  dp3' ) be the element of volume, and ρ(p1' ) be 

the positive mass density (mass per unit volume), we may write 

 IB = ∫P' ρ [(p • p) I – (p ⊗ p)] dV  , (30.20a) 

  IB' ij = ∫P' ρ [(pm'  pm' ) δij – (pi' pj')] dV  ,  (30.20b) 

where the Kronecker delta δij are the components of the unit tensor I and IB' ij are the 

components of IB relative to the basis ei'.  Notice that since we have chosen a body 

coordinate system the limits of integration in (30.20b) are independent of time 
(independent of the motion of the body). 

 In view of either of the representations (30.20a,b) it can be seen that the inertia tensor 

IB is a symmetric tensor (i.e. its transpose IB
T is equal to itself) 

  IB
T = IB  ,  IBji = IBij  ,  (30.21a,b) 

and it is a positive definite tensor.  By positive definite we mean that for an arbitrary 

nonzero constant vector a the scalar product a • IB a is positive 

  a • IB a = ai IBij aj > 0  for  a ≠ 0  .  (30.22) 

This can be proved by substituting (30.20a) into (30.22) to obtain 
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  a • IB a =∫P'ρ [(p • p) (a • a) – (p • a)(p • a)] dV > 0  , (30.23) 

which is positive since the constant vector a can only be equal to p at at most one point in 

the body. 

 In order to discuss the physical meaning of the inertia tensor IB it is convenient to 

consider the expanded forms of the components (30.20b).  In particular the diagonal 
components may be written in the forms 

  IB' 11 = ∫P' ρ [ (p2' )2 + (p3' )2 ] dV  ,  (30.24a)  

  IB' 22 = ∫P' ρ [ (p1' )2 + (p3' )2 ] dV  ,  (30.24b)  

  IB' 33 = ∫P' ρ [ (p1' )2 + (p2' )2 ] dV  ,  (30.24c)  

and the off-diagonal components may be written as 

  IB' 12 =   – ∫P' ρ [ p1'  p2'  ] dV  ,  (30.25a)  

  IB' 13 =   – ∫P' ρ [ p1'  p3'  ] dV  ,  (30.25a)  

  IB' 23 =   – ∫P' ρ [ p2'  p3'  ] dV  , (30.25a)  

Physically the integrands of the diagonal components of inertia can be interpreted as the 

square of the distance of the material point from the coordinate axes ei'.   

 It is also convenient to expand equation (30.12c) for the angular momentum to obtain 

  HB' i = IB' i1 ω1'  + IB' i2 ω2'  + IB' i3 ω3'   ,  (30.26a)  

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
HB' 1
HB' 2
HB' 3

  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞IB' 11 IB' 12 IB' 13

IB' 12 IB' 22 IB' 23
IB' 13 IB' 23 IB' 33

 
⎝
⎜
⎛

⎠
⎟
⎞ω1'

ω2'
ω3'

   .  (30.26b) 

 Notice from (30.26b) that in general the inertia tensor has six independent 

components and the angular momentum vector has a different direction from the angular 
velocity vector.  This means that if you rotate the body about a given direction then in 
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general you will get angular momentum components in the direction of rotation and in 

the plane normal to the rotation.  From a physical point of view it makes sense to ask the 
question whether there are special directions in which you can rotate the body and only 

get angular momentum in the direction of rotation.  For this case we would have 

  HB = IB ω = I ω  ,   HB' i = IB' ij ωj' = I ωi'  ,        (30.27a,b) 

where I is a scalar to be determined.  Rewriting (30.27) we have 

  (IB – I I) ω = 0  ,   (IB' ij – I δij) ωj' = 0  ,       (30.28a,b) 

or in expanded form 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞IB' 11–I IB' 12 IB' 13

IB' 12 IB' 22–I IB' 23
IB' 13 IB' 23 IB' 33–I

 
⎝
⎜
⎛

⎠
⎟
⎞ω1'

ω2'
ω3'

  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
0
0
0
    .        (30.29) 

Thus, we have reduced the problem to a standard eigenvalue problem.  Since the tensor 

IB' ij is real and symmetric there exists three eigenvalues I which are determined by the 

characteristic equation 

  det (IB' ij – I δij) = 0  ,  (30.30) 

and three associated eigenvectors which are determined by solving (30.29) for the 

associated directions of ωi'.  These eigenvectors can be ordered to form a right-handed 

orthonormal set of vectors which we denote by ei''.  Then letting IBi'' j be the components of 

IB relative to ei'' we have 

  IBi'' j = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞IB1'' 1 0 0

0 IB2'' 2 0
0 0 IB3'' 3

   ,  (30.31) 

with IB1'' 1, IB2'' 2, IB3'' 3 being positive constants, since for example 

  IB1'' 1 = ∫P' ρ [ (p2' ')2 + (p3' ')2 ] dV  .  (30.32) 

Sometimes the eigenvalues are called principal values and the eigenvectors are called 
principal directions of the tensor IB.   

 In general the components IB' ij relative to ei', and IBi'' j relative to ei'' of the tensor IB 

must satisfy tensor transformation rules in order for IB to be independent of our choice of 
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the coordinate system.  In particular, let Aij be the transformation tensor (direction 

cosines) characterizing the relationship between the orientations of ei' and ei'' such that 

  Aij = ei'' • ej'   ,  ei'' = Aij ej'  ,  ei' = Aji ej''  .     (30.33a,b,c) 

Notice that by definition the first index of Aij  always refers to the double primed system 

and the second index always refers to the single primed system.  It follows that Aij is an 

orthogonal tensor because 

         δij = ei'' • ej'' = Aim em'  • Ajn en'  = Aim Ajn δmn = Aim Ajm =  Aim Am
T

j  , (30.34a) 

          δij = ei' • ej' = Ami em' ' • Anj en' ' = Ami Anj δmn = Ami Amj = A i
T

m  Amj . (30.34b) 

Recalling that the components of IB satisfy the equations 

  IB' ij = ei' • IB ej'  ,  IBi'' j = ei'' • IB ej''  ,       (30.35a,b) 

we may use (30.33) to derive the transformation relations 

  IBi'' j = Aim em'  • IB Ajn en'  = Aim (em'  • IB en' ) Ajn ,                    (30.36a) 

  IBi'' j = Aim IB' mn Ajn = Aim IB' mn An
T

j   ,  (30.36b) 
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⎜
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⎟
⎟
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⎛
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⎟
⎟
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A13 A23 A33

   

   (30.36c) 

and 

  IB' ij = Ami em' ' • IB Anj em' ' = Aim (em' ' • IB em' ') Anj ,                (30.37a) 

  IB' ij = Ami IBm'' n Anj = A i
T

m IBm'' n Anj  ,           (30.37b) 
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⎜
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    (30.37c) 
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Fig. 30.3 
 

 In order to understand the physical meaning of the off-diagonal terms of the inertia 

tensor consider the case of a body with two concentrated masses M, which rotates with 

constant angular velocity ω about the e1' axes (see Fig. 30.3). Letting ei' be the base 

vectors of a body coordinate system and letting ω be the angular velocity of the body we 

have 

  •ei' = ω × ei'  ,  ω = ω e1'   .  (30.38a,b) 

Then referred to the basis ei', the components Io' ij of the inertia tensor about the fixed 

origin become 

  Io'11 = ∫P' [ (p2' )2 + (p3' )2 ] dm  = 2 M L2 cos2 α  ,            (30.39a)  

  Io'22 = ∫P' [ (p1' )2 + (p3' )2] dm  = 2 M L2 sin2 α  ,            (30.39b) 

  Io'33 = ∫P' [ (p1' )2 + (p2' )2] dm  = 2 M L2,  (30.39c) 

  Io'12 =  – ∫P' [ p1'  p2'  ] dm  = – M (L sin α)(L cos α)  

         – M (– L sin α)(– L cos α) = – M L2 sin 2α  ,    (30.39d) 
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  Io'13 =  – ∫P' [  p1'  p3'  ] dm  = 0  ,  (30.39e) 

  Io'23 = – ∫P' [  p2'  p3'  ] dm  = 0 ,  (30.39f) 

since the masses are located in the p3'  = 0 plane.  Substituting (30.38b) and (30.39) into 

(30.10) the angular momentum Ho may be written in the form 

  Ho = Io' ij ωj' ei' = Io' i1 ω ei' = (Io'11 ω) e1'  + (Io'21 ω) e2'  + (Io'31 ω) e3'   , 

  Ho = (2 M L2 cos2 α) ω e1'  – (M L2 sin 2α) ω e2'   . (30.40) 

Notice first that the off-diagonal term Io'12 causes the angular momentum Ho to have a 

term in the e2'  direction even though the body is only rotating about the e1'  direction.  

Recalling that Ho is expressed in terms of the rotating basis ei', the rate of change of 

angular momentum becomes 

  •Ho = ω × Ho = – (M L2 sin 2α) ω2 e3'   ,  (30.41) 

since ω is constant.  Thus the balance of angular momentum (29.6) yields an expression 

for the moment Mo applied to the body of the form 

  Mo = Io'12 ω2 e3'  = – (M L2 sin 2α) ω2 e3'   .  (30.42) 

 Notice from (30.42) that if the angle α vanishes then ei' are principal axes of inertia so 

the off-diagonal terms of the inertia tensor vanish and there is no moment required to 

rotate the body with constant angular velocity about the principal e1'  axes.  This means 

that in general there is no moment required to rotate a body with constant angular 

velocity about any of its principal directions.  Notice also, that if 0 < α < π/2 then the 

moment Mo is directed along the negative e3'  axes which is consistent with the physical 

notion that if masses were allowed to rotate freely in the e1' –e2'  plane then the angle α 

would tend to zero. 
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Fig. 30.4 

 
 Since we can always choose a body coordinate system in which the inertia tensor is 

diagonalized it is of interest to reconsider the previous example and examine what 

simplification and complications occur when we refer all tensors to the vectors ei'' which 

are oriented along the principal directions of the body (see Fig. 30.4).  For this case the 

base vectors ei'' also rotate with angular velocity ω such that 

  •ei'' = ω × ei''  ,  ω = ω (cos α e1' ' + sin α e2' ')  .        (30.43a,b) 

Since ei'' are principal axes of inertia the components Ioi'' j of the inertia tensor referred to 

ei'' become 

  Io1'' 1 = Io3'' 3 = 2 M L2  ,   Io2'' 2 = Io1'' 2 = Io1'' 3 = Io2'' 3 = 0  . (30.44a,b) 

Recalling that any vector or tensor can be referred to any coordinate system, the angular 

momentum vector Ho may be written in the form 

  Ho = Io' i'j ωi'' ei'' = (Io1'' 1 ω1' ') e1' ' + (Io2'' 2 ω2' ') e2' ' + (Io3'' 3 ω3' ') e3' ' , 

  Ho = (Io1'' 1 ω1' ') e1' ' = (2 M L2) (ω cos α) e1' '  . (30.45) 

Since ω is constant we have 

  •Ho = ω × Ho = – (M L2 sin 2α) ω2 e3''  ,  (30.46) 
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which gives the same moment Mo as in (30.42).  Notice that here the components Io' i'j of 

the inertia tensor are simple but the components of the angular velocity ω referred to ei'' 

are more complicated.  Since both choices of the coordinate system yield rather simple 

analyses the particular choice becomes merely a matter of preference. 
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31. Transfer Theorem For The Inertia Tensor 
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Fig. 31.1 

 
 If a body is composed of N parts PI' (I=1,2,...,N) (see Fig. 31.1), then by the additive 

property of integration we obtain the additive property of the inertia tensor referred to an 

arbitrary point B in the body 

  P' = P1'∪ P2'∪...∪PN'    ,  (31.1a) 

  IB = 1IB + 2IB + ... + NIB  ,  (31.1b) 

where IB is the inertia tensor of the whole body relative to B and IIB is the inertia tensor 

of the part PI' of body relative to B 

  IB = ∫P  ρ [(p • p) I – p⊗p] dV  ,  (31.2a) 

  IIB = ∫PI
 ρ [(p • p) I – p⊗p] dV  .  (31.2b) 

Furthermore letting IB' ij be the components of IB and IIB' ij be the components of IIB 

relative to the body base vectors ei' we have 

  IB' ij = 1IB' ij + 2IB' ij + ... + NIB' ij  . (31.3) 

It is important to emphasize that the components of tensors can only be added if they are 
referred to the same base vectors. 
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Fig. 31.2 

 Sometimes a body is composed of simple parts such as the body shown in Fig. 31.2.  

Since the each of the parts is a simple geometric shape it is usually possible to find the 

principal values of inertia about the part's center of mass in tables found in dynamics 
books. However since the centers of mass and principal directions of the parts do not 

necessarily coincide the components found in the tables cannot be added directly.  It is 
necessary to calculate the inertia tensor of each part relative to the common point B and 

also transform the components to a common coordinate system before we can use the 

formula (31.3).  In the previous section we discussed the transformation of components 
of a tensor from the primed system ei' to the double primed system ei'' [see equations 

(30.37) and (30.37)] so here we can focus on the transfer theorem which allows us to 

calculate the inertia tensor relative to an arbitrary point B attached to the body, given the 

inertia tensor –I  of the body relative to its center of mass.  

 To this end let: B be an arbitrary point attached rigidly to the body; –p be the position 
vector of the center of mass cm relative to B; p be the position vector of an arbitrary point 

in the body relative to B; and ξ  be the position vector of an arbitrary point in the body 

relative to the center of mass so that (see Fig. 31.3) 
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Fig. 31.3 

  p = –p + ξ   . (31.4) 

Using the formula (31.2a) for IB, and the representation (31.4) we may write 

  IB = ∫P ρ [{(–p + ξ  ) • (–p + ξ  )} I – (–p + ξ  )⊗(–p + ξ ) ] dV  ,  

       IB = ∫P ρ [(–p • –p + 2 –p • ξ + ξ  • ξ  ) I – (–p⊗–p + –p⊗ξ  + ξ⊗–p+ ξ  ⊗ξ  ) ] dV  ,  

       IB = ∫P ρ [(ξ • ξ  ) I – ξ⊗ξ  ] dV +  ∫P ρ [(–p • –p) I – –p⊗–p] dV 

      +  ∫P ρ [(2–p • ξ  ) I – (–p⊗ξ  + ξ⊗–p) ] dV  , (31.5) 

However, since ξ   is measured from the center of mass of the body  

  ∫P ρ ξ  dV = 0  , (31.6) 

and –p is independent of the integration equation (31.5) reduces to 

  IB = m [(–p • –p) I – –p⊗–p] + –I   , (31.7) 

where –I is the inertia tensor relative to the center of mass.  This is the transfer theorem 

for the inertia tensor.  Now, if we refer all tensors to the base vectors ei' we may write the 

component form of (31.7) as 

e2 
e1 

e3 

x 

O 

–x  

p 

cm 
–p  

B 

e1'  

e2'  
e3'  

ξ  

xB 



 
 

138 

  IB' ij = –Iij'  + m [(–pm'  –pm' ) δij – –pi' 
–pj']  ,  (31.8a) 

and the expanded form as 

  IB' 11 = –I11'   + m [(–p2' )2 + (–p3' )2]  ,  (31.9a) 

  IB' 22 = –I22'   + m [(–p1' )2 + (–p3' )2]  ,  (31.9b) 

  IB' 33 = –I33'   + m [(–p1' )2 + (–p2' )2]  ,  (31.9c) 

  IB' 12 = –I12'   – m [–p1'  
–p2' ]  ,  (31.9d) 

  IB' 13 = –I13'   – m [–p1'  
–p3' ]  ,  (31.9e) 

  IB' 23 = –I23'   – m [–p2'  
–p3' ]  .  (31.9f) 

Notice that even if ei' are parallel to the principal directions of inertia about the center of 

mass (i.e. –Iij'   is a diagonal tensor) they may no longer be parallel to the principal 

directions of inertia relative to the point B (i.e. IB' ij may not be a diagonal tensor).  

Finally, we emphasize that although equation (31.7) holds even if the point B is not 
rigidly attached to the body the resulting tensor IB cannot be used in the expression HB = 

IB ω for the angular momentum of the body since then –p will not be a vector of constant 

length rotating with angular velocity ω  (i.e. 
•–p ≠ ω × –p). 
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32. Planar Motion 

 
 

 
 

 

 
 

 
Fig. 32.1 

GENERAL  PLANAR  MOTION 

 For general planar motion of a rigid body relative to the plane e1–e2 we require all 

points in the rigid body to move in planes parallel to the plane e1–e2.  Mathematically 

this means the velocity of every point in the e3 direction vanishes 

  e3 • v = 0  .  (32.1) 

Letting: p be the position of an arbitrary point in the body relative to the center of mass; 
–v  be the velocity of the center of mass; and ω  be the angular velocity of the rigid body, 

the condition (32.1) requires 

  e3 • (–v  + ω × p) = e3 • –v  + (e3 × ω) • p = 0  ,  (32.2) 

for every point p.  It follows that for planar motion we require 

  e3 • –v  = 0  ,  e3 × ω = 0  ,  (32.3a,b) 

which means that the center of mass moves in the e1–e2 plane and the body only rotates 

about the e3 direction so the angular velocity becomes 

  ω = ω e3  .  (32.4) 

 Since the center of mass only moves in the plane it follows that it has no acceleration 

in the e3 direction so from the balance of linear momentum we may deduce that the force 

F is also planar with 

  F = F1 e1 + F2 e2  ,  –a  = –a1 e1 + –a2 e2  .          (32.5a,b) 
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Thus, for planar motion the balance of linear momentum reduces to the two scalar 

equations 

  m  –a1 = F1  ,  m  –a2 = F2  .  (32.6a,b) 

We can also refer the vectors to the rotating body coordinate system ei' defined by 

  •ei' = ω × ei'  ,  ω = ω e3 = ω e3'   ,  (32.7a,b) 

and write the balance of linear momentum in the form 

  m  –a1'  = F1'   ,  m –a2'  = F2'    .          (32.8a,b) 

 Letting –Iij'  be the components of the inertia tensor –I relative to the center of mass we 

may express the angular momentum –H relative to the center of mass in the form 

  –H = –I ω = –Iij'  ωj' ei' = –Ii1'  ω1'  ei' + –Ii2'  ω2'  ei' + –Ii3'  ω3'  ei' , 

  –H = –I ω = –Ii3'  ω ei'  = –I13'  ω e1'  + –I23'  ω e2'  + –I33'  ω e3'  .   (32.9) 

Thus, the rate of change of angular momentum becomes 

  –•H = 
δ

–H
δt   + ω × –H =  

δ
–H
δt  + ω e3'  × –H  .  (32.10) 

However since ei' is a body coordinate system the components –Iij'  are constants so that 

   
δ

–H
δt   = –Ii3'  •

ω ei'   .  (32.11) 

Expanding the cross product in (32.10) we deduce that 

  –•H = (–I13'
•
ω – –I23'  ω2) e1'  + (–I23'

•
ω + –I13'  ω2) e2'  + (–I33'  •

ω) e3'   . (32.12) 

Thus, the component form of the balance of angular momentum (29.22) may be written 
as 

  –I13'
•
ω – –I23'  ω2 = –M1'   ,  (32.13a) 

  –I23'
•
ω + –I13'  ω2 = –M2'   ,  (32.13b) 

  –I33'  •
ω = –M3'   . (32.13c) 
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It is important to emphasize that since the body is rotating about an axis which is not 

parallel to a principal axis of inertia the off diagonal components of the inertia tensor do 

not vanish so we must apply moments –M1'  and –M2'  in order to maintain planar motion 

relative to the e1' –e2'  plane.  

PURELY  PLANAR  MOTION 

 If the plane of motion e1' –e2'  is perpendicular to a principal direction of the inertia 

tensor then two of the off-diagonal components of inertia vanish (note that –I12'  need not 

vanish and will depend on our choice of ei') 

  –I13'  = 0  , –I23'  = 0  ,  (32.14a,b) 

so the balance of angular momentum reduces to a single scalar equation (32.13c) which 

can be rewritten in the simpler form (–I = –I33' ) 

  –•H = –I •
ω = –M  ,  –H = –I ω  .  (32.15a,b) 

For this case the motion is called purely planar motion since the only moment that need 
be supplied is a moment in the direction perpendicular to the plane of motion.  
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33. Impulse On A Rigid Body 
 In view of the simplicity of the balance of linear momentum (29.5) and the two forms 
of the balance of angular momentum (29.6) and (29.2) it follows that changes in 

momentum from time t1 to time t2 can be determined by integrating these balance laws.  

In particular, we can define the impulsive force F̂ and impulsive moments M̂o , –̂M such 

that 

  F̂ = ∫
t2
 
t1

  F dt    ,  (33.1a) 

  M̂o = ∫
t2
 
t1

 Mo dt   ,  (33.1b) 

  –̂M = ∫
t2
 
t1

 –M dt    .  (33.1c) 

so that integration of these balance laws yields the equations 

  F̂ = ∫
t2
 
t1

 •G dt = G2 – G1  ,  (33.2a) 

  M̂o = ∫
t2
 
t1

 •Ho dt = Ho2 – Ho1  ,  (33.2b) 

  –̂M = ∫
t2
 
t1

 –•H dt = –H2 – –H1  .  (33.2c) 

 As an example let us consider the purely planar motion of a rigid body that is acted 

upon by an impulsive force R̂ (see Fig. 33.1).  The body has mass m, moment of inertia   

–I = m –k2 about its center of mass and is initially at rest.  The impulsive force R̂ is applied 

in the e1'  direction 
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  R̂ = R̂ e1'   ,  (33.3) 

at the position x1 relative to the center of mass 

  x1 = – s e1'  – h e2'     .  (33.4) 

 
 

 
 

 

 
 

 
 

Fig. 33.1 

 Letting –v2 be the velocity of the center of mass after the application of the impulsive 

force, equation (33.2a) can be used to deduce that  

  F̂ = R̂ = R̂ e1'  = m (–v2 –  –v1) = m –v2  ,  
–v2 = 

R̂
m  e1'   , (33.5) 

which means that the center of mass moves in the direction of the impulsive force.  Next, 

we consider the consequence of the balance of angular momentum about the center of 

mass and let ω2 = ω2 e3'  be the angular velocity of the body after the application of the 

impulsive force, so that  (33.2c) yields 

  –̂M = –H2 – –H1 = –I ω2 e3'    . (33.6) 

However, if we assume that the impulsive force is applied to the body over an 

infinitesimally small time interval then the vector x1 remains nearly constant during the 

application of the impulsive force so that –̂M may be approximated by 

  –̂M =  ∫
t2
 
t1

 x1 × R(t) dt = x1 × R̂ = h R̂ e3'   ,  (33.7) 

R̂ 

e1'  

e2'  

s 
h 

x1 

p A 
cm 

ω 

center of percussion 
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where R(t) is the force associated with the impulsive force R̂.  Substituting (33.7) into 

(33.6) we may calculate the value of the angular velocity ω2 

  ω2 = ω2 e3'   ,  ω2 =  
h R̂
–I

  .          (33.8a,b) 

 Next, we calculate the velocity of an arbitrary point A which is attached to the body 

and which is located by the position vector p relative to the center of mass.  Thus, after 
application of the impulsive force we have 

  vA = –v + •p  =  –v + ω × p  ,  

  vA =  
R̂
m  e1'  +  

h R̂
–I

 e3'  × (p1'  e1'  + p2'  e2' )  , 

  vA = [R̂
m  –  

h R̂
–I

  p2' ] e1'   + [h R̂
–I

  p1' ] e2'    . (33.9) 

Recall that the body instantaneously rotates about its instantaneous center of zero velocity 
which is located by the values of p1'  and p2'  associated with the point A whose velocity 

vanishes 

  p1'  = 0  ,  p2'  =  
–I

m h   =  
–k2
h    .        (33.10a,b) 

The result (33.10a) states that the instantaneous center of zero velocity lies along the line 

perpendicular to the velocity of the center of mass of the body as it should.  Also, note 
that for impulsive problems this point is called the center of percussion because if the 

body were hinged there the impulsive reaction at the hinge would vanish. 
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34. Energy Equation For A Rigid Body 
 Recall from (18.5) that we proved that for a single particle the rate of work of all 
external forces is equal to the rate of change of kinetic energy 

  P = F • v = 
•
T = 

d
dt [

1
2 m v • v] . (34.1) 

Similarly we proved for a system of particles rigidly connected by central forces that the 
internal forces do no work so the rate of work done by external forces again equals the 

rate of change of kinetic energy [see (27.4) and (27.16)] 

  P = ∑
i=1

N
  Fi • vi  = 

•
T = ∑

i=1

N
  Ti  ,  Ti = 

1
2   mi vi • vi   . (34.2a,b) 

 Before developing the energy equation for a rigid body it is desirable to first develop 
an expression for the kinetic energy of the rigid body.  It follows from the definition 

(27.3b) for the kinetic energy of a system of particles that the kinetic energy of a rigid 
body should be defined by 

  T = ∫  12 v • v dm  .  (34.3) 

Next, referring the motion to the center of mass we may write 

  x = –x + p  ,  v = –v + •p = –v + ω × p  ,  (34.4a,b) 

where p is the vector from the center of mass –x to an arbitrary point in the body and ω is 

the angular velocity of the body.  It follows from (34.4b) that 

  v • v = (–v + ω × p) • (–v + ω × p)  , 

  v • v = –v • –v + 2 –v • (ω × p) + (ω × p) • (ω × p)  , 

  v • v = –v • –v + 2 –v • (ω × p) + ω • [ p × (ω × p) ] , 

  v • v = –v • –v + 2 –v • (ω × p) + ω • [ (p • p) ω – (p • ω) p ]  .   (34.5) 

Thus, the kinetic energy becomes 

  T =  ∫  12  –v • –v dm + 2 –v • [ω × ∫  12  p dm]   

                        + 
1
2  ω • ∫  [ (p • p) ω – (p • ω) p ] dm  , 
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  T = 
1
2   m –v • –v + –T  ,  (34.6) 

where the kinetic energy of motion relative to the center of mass –T  is given by 

  –T = 
1
2 ω • –H = 

1
2 ω • –I ω  = 

1
2 ωi' 

–I ij'  ωj'  .  (34.7) 

Note that in words, equation (34.6) states that the kinetic energy of the rigid body is equal 
to the kinetic energy of the center of mass plus the kinetic energy of motion relative to 

the center of mass. 

 If the body rotates about a fixed point O (see Fig. 34.1) then the kinetic energy T may 
be expressed in the alternative form 

  T = ∫  12  v • v dm  = 
1
2 ∫ (ω × x • v) dm = 

1
2 ∫ (ω  • x × v) dm   , 

          T = 
1
2  ω • ∫ (x × v) dm = 

1
2  ω • Ho = 

1
2  ω • Io ω  = 

1
2 ωi' 

–Io' ij ωj'  .   (34.8) 

 One of the differences between a rigid body and a system of particles is that it is 
possible to apply external moments at points on a rigid body which can do work on the 

body.  Therefore, in order to develop the general form of the energy equation for a rigid 
body we generalize the procedure used to obtain (34.2) which took the scalar product of 

the equations of linear momentum of each particle with its associated velocity and 

summed the  result.  Thus, for a rigid body we multiply the linear momentum equation 

(29.5) by the velocity of the center of mass –v and multiply the balance of angular 

momentum (29.22) by the angular velocity ω and sum the results to obtain 

  [∫ b dm + ∑
i=1

N
  Fi ]  • –v + [∫ p × b dm + ∑

i=1

N
  pi × Fi + ∑

i=1

M
  Mi] • ω 

  = m –
•
v • –v + –•H • ω  ,  (34.9) 

where pi is the vector measured from the center of mass to the point of application of the 

force Fi.  Using the properties of the scalar triple product and the fact that –v and ω are 

functions of time only it is possible to rearrange this equation into the form 
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  ∫ b • (–v + ω × p) dm + ∑
i=1

N
  Fi • (

–v + ω × pi) + ∑
i=1

M
  Mi • ω = m –

•
v • –v + –•H • ω  . (34.10) 

However, since p and pi are each vectors that connect two material points on the rigid 

body it follows that the absolute velocity v of an arbitrary material point and the absolute 
velocity vi of the point of application of the force Fi are given by 

  v = –v + ω × p ,   vi = –v + ω × pi , (34.11a,b) 

so that (34.10) reduces to 

  ∫ b • v dm + ∑
i=1

N
   Fi • vi + ∑

i=1

M
  Mi • ω  = m –

•
v • –v + –•H • ω . (34.12) 

Next, using (34.7) and the fact that ei' is a body coordinate system it may be shown that 

  –•T = ωi' 
–I ij'  

•
ωj'  .  (34.13) 

Moreover, expressing –H in terms of its components relative to ei' we have 

  –H = –Iij'  ωj' ei'  ,  (34.14a) 

  –•H = 
δ

–H
δt   + ω × –H ,  (34.14b) 

  –•H • ω = 
δ

–H
δt  • ω = –Iij'  

•
ωj' ei' • ω = ωi' 

–I ij'  
•
ωj' = –

•
T  . (34.14c) 

Thus, it follows that 

  m –
•
v • –v + –•H • ω = •T  ,  (34.15) 

so the energy equation for a rigid body may be written in the usual form 

  P = •T ,  (34.16) 

where the mechanical power P is defined by 

  P = ∫ b • v dm + ∑
i=1

N
   Fi • vi + ∑

i=1

M
  Mi • ω  .  (34.17) 
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For a uniform (independent of position) body force b, the rate of work of the body force 

can be expressed in the simple form 

  ∫ b • v dm = m b • –v  ,  (34.18) 

which is equivalent to an external force (m b) acting at the center of mass of the body. 
Then, (34.17) reduces to the simpler form 

  P = mb • –v + ∑
i=1

N
   Fi • vi + ∑

i=1

M
  Mi • ω   .  (34.19) 

Here it is important to emphasize that the external forces Fi are multiplied by the absolute 

velocities vi of the material points where they are applied and that all the external 

moments Mi are multiplied by the same absolute angular velocity ω of the rigid body. 

 Using the form (34.19) of the mechanical power we may integrate the energy 
equation (34.16) over the time interval [t1,t2] and write an energy equation in the form 

  –U2/1 = (T2 – T1) + (Vg2 – Vg1) + (Ve2 – Ve1)  ,  (34.20) 

where –U2/1  is the work done by all external forces which don't contribute to gravitational 

potential energy Vg or elastic potential energy Ve and the work done by all external 

moments.   
 

 

 
 

 
 

 

 
 

Fig. 34.1 
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35.  Angular Momentum And Transformation Relations 

 
 

 
 

 

 
 

 
 

 

 
Fig. 35.1 

 Consider a rigid body that is moving and rotating with absolute angular velocity ω  

relative to a fixed coordinate system ei with origin O.  Let ei' be a body coordinate system 

rotating with angular velocity ω  and let ei'' be another coordinate system rotating with 

angular velocity Ω  such that 

  •ei' = ω  × ei'  ,  
•ei'' = Ω  × ei''  .          (35.1a,b) 

Recall from (29.25) that the angular momentum Ho of a body about the fixed point O is 

the angular momentum of the center of mass plus the angular momentum –H about the 

center of mass 

  Ho = –x × m –v + –H  , (35.2) 

where –H may be expressed in terms of the components –Iij'  of the inertia tensor –I relative 

to the basis ei' as 

  –H = –Iij'  ωj' ei'  . (35.3) 

Note that since –H, –I, ω are tensors we can express them in terms of any basis which we 

choose.  In particular we can use the basis ei'' and write 

e1'  

e2'  

ω  

O 

e3'  

x 

e1 

e2 

e3 

–x 

cm 
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  –H = –Iij'' ωj'' ei''  . (35.4) 

To prove this we recall the properties (30.33a,c),(30.34a) of the transformation tensor Aij 

between the two bases ei'' and ei' 

  Aij = ei'' • ej'  ,  ei' = Ami em''    ,  AimAjm = δij ,    (35.5a,b,c) 

and use (30.33b,c) to derive the transformation relations between the components ωi' and 

ωi'' of the angular velocity vector ω 

  ωi'' = Aij ωj'  ,    
⎝
⎜
⎛

⎠
⎟
⎞ω1''

ω2''
ω3''

  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞A11 A12 A13

A21 A22 A23
A31 A32 A33

  
⎝
⎜
⎛

⎠
⎟
⎞ω1'

ω2'
ω3'

  ,  (35.6a,b) 

  ωi' = Aji ωj'' = Aij
T ωj'' ,   

⎝
⎜
⎛

⎠
⎟
⎞ω1'

ω2'
ω3'

 = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞A11 A21 A31

A12 A22 A32
A13 A23 A33

  
⎝
⎜
⎛

⎠
⎟
⎞ω1''

ω2''
ω3''

  .          (35.6a,b) 

Then, with the help of (35.5), (35.6) and the transformation relations (30.37b) it may be 
shown that  

  –H = –Iij'  ωj' ei' = (Ami Anj 
–Imn'' ) (Arj ωr'') (Asi es'')  , 

  –H  = (Ami Asi) (Anj Arj) (
–Imn''  ωr'' es'')  = δms δnr (

–Imn''  ωr'' es'')  , 

  –H  = –Isr''  ωr'' es'' = –Iij'' ωj'' ei''  . (35.7) 

 Using the expressions (35.3) and (35.4) and recalling the associated angular velocities 

of the base vectors ei' and ei'' we may calculate the rate of change of angular momentum in 

the equivalent forms 

  –•H = 
d
dt (

–Iij'  ωj') ei'  + ω × –H  ,  (35.8a) 

  –•H =  
d
dt (

–Iij'' ωj'') ei''  + Ω × –H  .  (35.8b) 

It is important to note that although the components –Iij'  are independent of time because ei'  

is a body coordinate system the components –Iij'' may depend on time. 
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 For example, let us consider the simple case when ei' are parallel to the principal axes 

of inertia so that 

  –Iij'  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞I1 0 0

0 I2 0
0 0 I3

   . (35.9) 

Also, let ei' be related to ei'' such that  

  e1'  = cosφ e1'' + sinφ e2''  ,  e2'  = – sinφ e1'' + cosφ e2'' , (35.10a,b) 

  e3'  = e3''  ,  φ = pt  ,  (35.10c,d) 

For this case the rigid body rotates with angular velocity p e3'' relative to the ei'' coordinate 

system.  It follows from the definition (35.5a) that 

  Aij = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

cosφ –sinφ 0
sinφ cosφ 0

0 0 1
   ,  (35.11) 

so that the transformation relations (30.36c) yield 

 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞–I11''

–I12''
–I13''

–I12''
–I22''

–I23''
–I13''

–I23''
–I33''

  = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

cosφ –sinφ 0
sinφ cosφ 0

0 0 1
 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞I1 0 0

0 I2 0
0 0 I3

 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

cosφ sinφ 0
–sinφ cosφ 0

0 0 1
  

 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞–I11''

–I12''
–I13''

–I12''
–I22''

–I23''
–I13''

–I23''
–I33''

 = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

cosφ –sinφ 0
sinφ cosφ 0

0 0 1
  
⎝
⎜
⎛

⎠
⎟
⎞I1cosφ I1sinφ 0

–I2sinφ I2cosφ 0
0 0 I3

  

 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞–I11''

–I12''
–I13''

–I12''
–I22''

–I23''
–I13''

–I23''
–I33''

 =
⎝
⎜
⎛

⎠
⎟
⎞I1cos2φ + I2sin2φ {I1–I2}sinφcosφ 0

{I1–I2}sinφcosφ I1sin2φ + I2cos2φ 0
0 0 I3

  .  (35.12) 

Notice from (35.12) that in general the components –Iij'' are functions of time and that –Iij'' is 

not a diagonal tensor.  However, if the components of inertia I1 and I2 of the body along 

the axes perpendicular to the axis of relative rotation e3'' are equal 
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  I1 = I2  ,  (35.13) 

then (35.12) simplifies to give 

  –Iij'' = –Iij'  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞I1 0 0

0 I1 0
0 0 I3

   .  (35.14) 

Physically, this means that when two principal values of inertia are equal then the body 
possesses rotational symmetry about any axis in the plane characterized by the associated 

principal axes of inertia.  Consequently, the components of the tensor of inertia are 
insensitive to rotations of the coordinate axes about the axis perpendicular to this plane. 
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36. Point Masses, Massless Links, And A System Of Rigid Bodies 
 A point mass is an idealized rigid body which has finite mass m but zero volume so 

that its mass is concentrated at a point instead of distributed over a region of space.  It 
follows from the definition (30.20a) of the inertia tensor about a point B that the inertia 

tensor –I about the center of mass of a mass point vanishes 

  –I = 0  .  (36.1) 

Thus, the angular momentum –H about the center of mass of the mass point vanishes 

  –H = 0  ,  (36.2) 

so the balance of angular momentum requires the resultant moment –M about the center of 

mass to also vanish 

  –M = 0  ,  (36.3) 

These results indicate that a mass point can only be subjected to a force which passes 

through its center of mass.  

 

 
Fig. 36.1 

 Sometimes a rigid body may be idealized as a collection of point masses connected 
by massless rigid links (see Fig. 36.1).  It follows that if the rigid body is idealized as 

massless then both the linear momentum G and the angular momentum –H vanish so the 
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balances of linear momentum and angular momentum require the resultant force F and 

moment –M to vanish 

  F = 0  ,  –M = 0  .  (36.4) 
Furthermore since the mass vanishes it follows from the balance of angular momentum 

(29.18) about an arbitrary moving point B that the resultant moment MB vanishes 

  MB = 0  .  (36.5) 

This means that the resultant moment about any point vanishes. 

 

 
 

 

 
 

 
 

 

Fig. 36.2 
 Here we consider a system of N rigid bodies connected by M massless  links.  For 

example, consider a typical case where the L'th massless link connects the I'th, J'th and 
K'th rigid bodies (see Fig. 36.2).  Let RI be the resultant external force applied to the I'th 

rigid body and let µ I be the resultant external moment applied to the I'th rigid body about 

its center of mass –xI.  Also, let  RL and µ L be the resultant external force and moment 

applied to the L'th link at the point xL.  Furthermore, let fIL be the force and mIL be the 

moment, both applied by the L'th link on the I'th rigid body at their point of contact xIL.  

Since the force and moment applied by the I'th rigid body on the L'th link are equal in 
magnitude and opposite in direction to the fIL and mIL, respectively, the free-body 

diagrams of the I'th rigid body and the L'th link are given by Fig. 36.3. 
 

J'th rigid body I'th rigid body 

K'th rigid body 

L'th massless link 

O 

e1 
e2 

e3 

µ L 
RL 

xL 

–xI 

µ I 

RI 

xJL 
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Fig. 36.3 
 It follows from the free body diagram that the balances of linear and angular 

momentum of the I'th rigid body may be written in the forms 

  •GI = RI + fIL  ,  (36.6a) 

  •HIo = –xI × RI + µ I + xIL× fIL + mIL  , (36.6b) 

where GI is the linear momentum of the I'th rigid body and HIo is the angular momentum 

of the I'th rigid body about the fixed origin O. 
 For our present purposes we allow the massless link to be a joint which enforces 

kinematical constraints on the relative motion of the connected body or even a motorized 

joint which can control the relative motion between the connected bodies.  However, 
since the link is considered to be massless we assume that like a massless rigid body, the 

resultant force and moment applied to it both vanish.  In particular, with reference to the 

L'th link in Fig. 36.3 this assumption requires 
  RL + (– fIL) + (– fJL) + (– fKL)  = 0  ,  (36.7a) 

  xL × RL + µ L + [ xIL × (– fIL) + xJL × (– fJL) + xKL × (– fKL)  

  + (– mIL) + (– mJL) + (– mKL)] = 0  .  (36.7b) 

 Now, if we sum the balances of linear and angular momentum of the system of three 
rigid bodies in Fig. 36.2 we may deduce that 

  •GI + •GJ + •GK = (RI + fIL) + (RJ + fJL) + (RK + fKL) , 

L'th massless link 

µ L RL 

– fIL 

– mIL 

– mKL – fKL 

– fJL 

– mJL µ I 

fIL 

I'th rigid body 

RI 

mIL 

–xI 

xIL 
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  •GI + •GJ + •GK = (RI + RJ + RK) + (fIL + fJL + fKL)  ,  (36.8a) 

  •HIo + •HJo + •HKo = (–xI × RI + µ I + xIL × fIL + mIL)   

  + (–xJ × RJ + µ J + xJL × fJL + mJL) 

           + (–xK × RK + µ K + xKL × fKL + mKL)  , 

 •HIo + •HJo + •HKo = (–xI × RI + µ I + –xJ × RJ + µ J + –xK × RK + µ K) 

  + [xIL × fIL + mIL + xJL × fJL + mJL + xKL × fKL + mKL] . (36.8b) 

With the help of the equations of motion (36.7) of the massless link equations (36.8) may 
be rewritten in the forms 

  •GI + •GJ + •GK = (RI + RJ + RK) + RL  ,  (36.9a) 

       •HIo + •HJo + •HKo = (–xI × RI + µ I + –xJ × RJ + µ J + –xK × RK + µ K)  

  + xL × RL + µ L . (36.9b) 

These equations state that the rate of change of the linear momentum of the system is 
equal to the total resultant external force applied to the system 

  •G = F  ,  (36.10) 

and that the rate of change of angular momentum of the system about the fixed point O is 

equal to the total resultant external moment applied to the system about O 

  •Ho = Mo  .  (36.11) 

It is important to emphasize that in calculating the resultant external force applied to the 
system we must include both the external forces and moments applied directly to the rigid 

bodies as well as those applied directly to the link. 

 Obviously, this analysis of a system of three rigid bodies connected by a single 
massless link can be generalized to a system of any number of rigid bodies connected by 

any number of massless links.  The end result of such and analysis is the statement of the 
balances of linear momentum and angular momentum of the system in the forms (36.10) 

and (36.11), respectively. 
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Fig. 36.4 

 

 Consider the example shown in Fig. 36.4 of two point masses, each of mass m, which 
are connected to a massless link AOBD which is allowed to rotate freely about the fixed 

e2'  axis.  Letting ei'  be a rotating set of base vectors defined so that the two masses remain 

in the e1' –e2'   plane we have 

  •ei' = ω × ei'  ,   ω = ω e2'  .  (36.12a,b) 

Furthermore, the link has a motor D (also idealized as massless!) which controls the 

angle α between the bars OA and OB  and the e2'  direction.  Initially the system has 

constant angular velocity ω0 and constant angle α0 so that 

  ω(0) = ω0  ,  α(0) = α0  ,  •
α(0) = 0  .  (36.13a,b,c) 

The motor D is then operated to change the angle α as a function of time. The objective is 

to determine the value of ω(t) caused by this change in α. 

m m 

L 

A B 

O 

α(t) 

D 

e2'  

e1'  

ω(t) 

α(t) 
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 e1'  e2'  e3'  
ω 0 ω 0 
xA – L sinα L cosα 0 

δxA/δt – L •
α cosα – L •

α sinα 0 
ω × xA 0 0 ω L sinα 

vA – L •
α cosα – L •

α sinα ω L sinα 

xA × m vA m ω L2 sinα cosα m ω L2 sin2α mL2 •
α 

xB L sinα L cosα 0 
δxB/δt L •

α cosα – L •
α sinα 0 

ω × xB 0 0 – ω L sinα 
vB L •

α cosα – L •
α sinα – ω L sinα 

xB × m vB – m ω L2 sinα cosα m ω L2 sin2α – m L2 •
α 

G 0 – 2 m L •
α sinα 0 

δG/δt 0 – 2 m L 
d
dt (

•
α sinα) 0 

ω × G 0 0 0 
•G 0 – 2 m L 

d
dt (

•
α sinα) 0 

Ho 0 2 m ω L2 sin2α 0 

δHo/δt 0 2 m L2 ddt (ω sin2α) 0 

ω × Ho 0 0 0 
•Ho 0 2 m L2 ddt (ω sin2α) 0 

 
Table 36.1 
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 Since the link is presumed to be massless the balance laws (36.10) and (36.11) hold 

for the system under consideration where 

  G = m vA + m vB   ,   Ho = xA × m vA + xB × m vB . (36.14a,b) 

In particular, with the help of Table 36.1 we have 

  F = – 2 m L 
d
dt (

•
α sinα)  e2'   ,  (36.15a) 

  Mo = 2 m L2 
d
dt (ω sin2α) e2'   .  (36.15b) 

 

 

 
 

 

 
 

 
 

 

 
 

 
Fig. 36.5 

Replacing the bearing with a force F1 and moment M1, each associated with the point x1 

of application of the force, and neglecting the force of gravity we obtain the free body 

diagram Fig. 36.5 and expressions for F and Mo of the form 

  F = F1  ,  Mo = x1 × F1 + M1  .  (36.16a,b) 

However since x1 is parallel to the e2'  axis with 

  x1 = – h e2'   ,  (36.17) 

it follows from (36.15a) that (36.16b) may be written in the simpler form 

  Mo = M1  .  (36.18)  

m m 

L 

A B 

O 

α 

D 

e2'  

e1'  x1 h 

ω 

F1 M1 
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Furthermore, since the system is free to rotate about the e2'  axis the component of the 

external moment M1 in the e2'  direction vanishes 

  M1 • e2'  = 0  .  (36.19) 

Thus, in view of the result (36.15b) and (36.18) we may conclude that Mo vanishes 

  Mo = 0  ,  (36.20) 

so the angular momentum Ho is constant 

  Ho = 2 m ω L2 sin2α  e2'  = constant  .  (36.21) 

With the help of the initial conditions (36.13) we may conclude that 

  ω = ⎝
⎜
⎛

⎠
⎟
⎞sinα0

sinα  
2
 ω0  ,  (36.22) 

which is the desired result.  Notice from (36.15a) and (36.22) that the external force 
applied by the bearings on the system is in the e2'  direction only and that the angular 

velocity ω increases as the angle α decreases. 

 As another example consider the system of two rigid disks A and B connected by a 
massless link that includes a motor D (see Fig. 36.6).  The system is free to rotate about 

the fixed e2'' axis and the angle α between the horizontal plane and the shaft of the motor 

remains constant.  The system is initially at rest.  Then the motor D is turned on and it 
starts rotating body A relative to body B until the shaft of motor D attains a constant 

angular speed p. At this time the system reaches steady state with body B rotating with 

angular speed Ω in the e2'' direction.  The objective is to determine the angular velocity of 

the body B. 
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Fig. 36.6 

 To this end, let ei'' be base vectors defining a body coordinate system which rotates 

with body B such that the angular velocity Ω  is given by 

  •ei'' = Ω × ei''  ,  Ω = Ω e2''  ,  (36.23a,b) 

and the shaft of motor D remains in the e1''–e2'' plane.  Furthermore, let  ei''' be another set 

of rotating base vectors defined by taking e3''' parallel to e3'' and e1''' parallel to the shaft of 

the motor so that 

  e1''' = cosα e1'' + sinα e2''  ,  (36.24a) 

  e2''' = – sinα e1'' + cosα e2''  ,  (36.24b) 

  e3''' = e3''  ,  (36.24c) 

  •ei''' = Ω × ei'''  .  (36.24d) 

Also, since the body A rotates relative to ei'' with angular speed p in the direction of the 

shaft of motor D it has angular velocity ω given by 

  ω = Ω  + p e1''' = Ω (sinα e1''' + cosα e2''') + p e1'''  . (36.25) 
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e1''' e2'' 

e1'' 
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Fig. 36.7 

 Replacing the bearing with a force F1 and moment M1, each associated with the point 

x1 of application of the force, and neglecting the force of gravity we obtain the free body 

diagram Fig. 36.7 and expressions for resultant external force F and moment Mo of the 

form 

  F = F1  ,  Mo = x1 × F1 + M1  ,  (36.26a,b) 

where x1 is parallel to the e2'' and is given by 

  x1 = – h e2''  .  (36.27) 

Since the system is free to rotate about the e2'' axis, the component of the external moment 

M1 in the e2'' direction vanishes 

  M1 • e2'' = 0  .  (36.28) 

It then follows from (36.26b)–(36.28) that no matter what the value of F1 we have 

  Mo • e2'' = 0  ,  (36.29) 

so that the balance of angular momentum of the system yields the result that the 
component of angular momentum Ho in the constant e2'' direction remains constant 

  Ho • e2'' = constant  .  (36.30) 

p 

e2''' 
e1''' e2'' 

e1'' 

Ω 
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F1 
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x1 h 
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However, since the system initially is at rest the value of the constant is zero so that 

  Ho • e2'' = 0  .  (36.31) 

 In order to derive an expression for Ho of the system for the steady state situation we 

denote the mass of body A by mA and its inertia tensor –IAij'''  about its center of mass and 

relative to the ei''' system by 

   –IAij'''  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞IA1 0 0

0 IA2 0
0 0 IA2

   .  (36.32) 

This indicates that body A has rotational symmetry about the e1''' axis.  Similarly, we 

denote the mass of body B by mB and its inertia tensor –IBij''  about its center of mass and 

relative to the ei'' system by 

    –IBij''  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞IB1 0 0

0 IB2 0
0 0 IB1

   .  (36.33) 

This indicates that body B has rotational symmetry about the e2'' axis. 

 Now, the angular momentum Ho of the system may be represented in the form 

  Ho = [–xA × mA –vA + –HA]+ [–xB × mB –vB + –HB]  .  (36.34) 

However, for body A we have 

  –xA = L e1'''   ,   
–vA = Ω × –xA = – Ω L cosα e3'''   ,  (36.35a,b) 

  –xA × mA –vA = mA Ω L2 cosα e2'''   ,  (36.35c) 

  –HA = –IA ω = IA1 (Ω sinα + p) e1''' + IA2 (Ω cosα) e2'''  ,  (36.35d) 

and for body B we have 

  –vB = 0  ,  –HB = –HB Ω   = IB2 Ω e2''  .  (36.36a,b) 

Combining these results we have 

      Ho = IA1 (Ω sinα + p) e1'''  + (Ω cosα) (mA L2 + IA2) e2''' + IB2 Ω e2''  . (36.37) 
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Here, it is important to emphasize that we have calculated each of the vectors with 

respect to the base vectors which yield the simplest expressions and that we have added 

these results in vectorial form.  It follows from (36.31) that Ω and p are related by the 

expression 

  IA1 (Ω sinα + p) (e1''' • e2'')  + (Ω cosα) (mA L2 + IA2) (e2''' • e2'') + IB2 Ω = 0  .    (36.38) 

Next, with the help of (36.24) we may deduce that 

 IA1 (Ω sinα + p) sinα + (Ω cosα) (mA L2 + IA2) cosα + IB2 Ω = 0 , (36.39) 

so that 

  Ω = – 
IA1 p sinα

IA1 sin2α + (mA L2 + IA2) cos2α + IB2
   ,  (36.40) 

which is the desired result.  Notice that the denominator is positive and that for α 

between 0 and π/2 and the sign of Ω is opposite to that of p.  
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37.  Gyroscopic Effects 
 In order to begin to understand gyroscopic effects let us first consider the simple case 
of a gyroscope which is designed with three perpendicular frictionless gimbals that allow 

the gyroscope to rotate freely without applying any moment about its center of mass 

  –M  = 0  .  (37.1) 

It follows from the balance of angular momentum that (37.1) causes the angular 

momentum –H about the center of mass to be constant 

  –H  = constant  . (37.2) 

Now if we start the gyroscope spinning with angular velocity ω parallel to one of its 

principal axis of inertia we have 

  –H = –I ω = –I ω  ,  (37.3) 

where –I is the principal value of inertia associated with this axis of rotation.  Since –I is 

constant it follows from (37.2) and (37.3) that angular velocity ω remains constant 

  ω = constant   . (37.4) 

This means that the gyroscope will continue to rotate with constant rotational speed |ω  | 

about a fixed direction in space.  For this reason the gyroscope tends to point in a 
constant direction and can be used for navigational purposes.  Of course, frictional effects 

cause small moments to be applied to the gyroscope which must be corrected. 

 
 

 

 

 

 

 

 

 

Fig. 37.1 

 Now that we know what happens to a gyroscope which is free of moment let us 
consider the case when moments are applied that cause constant angular speed about two 

e2 p 

q 

e1'' 
e2'' 

θ(t) 
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axes.  With reference to Fig. 37.1, let e1'' be parallel to a principal axis of a body which is 

tilted by an angle θ(t) relative to the horizontal plane.  Furthermore, let the ei'' coordinate 

system rotate with angular velocity Ω   so that e3'' always remains in the horizontal plane 

and the vertical e1''–e2'' plane rotates about the vertical axis e2 with constant angular speed 

q so that 

  •ei'' = Ω × ei''  , (37.5a) 

  Ω  = q e2 + 
•
θ e3'' = q (sinθ e1'' + cosθ e2'') + 

•
θ e3''  . (37.5b) 

Also, let the body rotate relative to the ei'' coordinate system with constant angular speed 

p about the e1'' axis so that the absolute angular velocity ω of the body becomes 

  ω = Ω  + p e1'' = (q sinθ + p) e1'' + q cosθ e2'' +  
•
θ  e3''  .   (37.6) 

In this example we calculate the moments applied to the body about its center of mass O 

and we calculate the rotation θ(t) caused when the body is assumed to rotate freely about 

the e3'' axis.  

 Assuming that the body is a homogeneous body of revolution with respect to the e1'' 

axis, the components –Iij'  of the inertia tensor relative to its center of mass and relative to a 

body coordinate system ei' parallel to the principal axes of inertia may be written in the 

form 

  –Iij'  = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

–I1 0 0
0 –I2 0
0 0 –I2

   . (37.7) 

Since –I22'  and –I33'  are equal it follows that the components of inertia –Iij'' relative to ei'' are 

unaffected by the rotation of ei' relative to ei''  so that 

  –Iij'' = –Iij'   .  (37.8) 

Thus, the angular momentum –H about the center of mass becomes 
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  –H = –Iij'' ω j'' ej'' = –I1 (q sinθ + p) e1'' + –I2 (q cosθ) e2'' +  –I2 
•
θ e3''  .   (37.9) 

From the balance of angular momentum we may calculate the moment –M  applied to the 

center of mass 

  –M = –•H  . (37.10) 

The results of this calculation are summarized in Table 37.1.  Since the body is free to 

rotate about the e3'' axis the component of the moment about this axis vanishes 

  –M • e3'' = 0  .  (37.11) 

This gives an equation for determining θ(t) of the form 

  –I2 
••
θ+ (–I2 – –I1) q2 sinθ cosθ – –I1 p q cosθ = 0  .  (37.12) 

Multiplying (37.12) by 
•
θ and integrating we obtain 

  
1
2  –I2 

•
θ2 + 

1
2  (–I2 – –I1) q2 sin2θ – –I1 p q sinθ = C  , (37.13) 

where C is a constant of integration which is determined by the initial conditions.  For 

example if the initial values of θ and •θ  are given by 

  θ(0) = 0  ,  
•
θ(0)  = 0   ,  (37.14a,b) 

then the constant C vanishes and (37.12) and (37.13) may be written in the forms 

  
••
θ  =  

1
–I2

  ⎣⎡ ⎦
⎤ (–I1 – –I2) q2 sinθ + –I1 p q   cosθ ,  (37.15a) 

  
•
θ2 =  

1
–I2

  ⎣⎡ ⎦
⎤ (–I1 – –I2) q2 sinθ + 2 –I1 p q   sinθ   .          (37.15b) 

Notice that initially we have 

  
•
θ(0) = 0  ,  

••
θ(0) =  

–I1
–I2

  p q   ,               (37.16a,b) 
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so that if pq > 0 then 
••
θ(0) > 0 and the axis e1'' tends to tilt up whereas if pq < 0 then     

••
θ(0) < 0 and the axis e1'' tends to tilt down.  Also, notice that when θ= ±π we have 

  
•
θ(±π) = 0  ,  

••
θ(±π) = –  

–I1
–I2

  p q   .         (37.17a,b) 

This means that the body will oscillate between θ=0 and θ=π for pq > 0 whereas it will 

oscillate between θ=0 and θ= –π for pq < 0. 

 

 e1'' e2'' e3'' 

Ω  q sinθ q cosθ •
θ 

–H 
–I1 (q sinθ + p) –I2 (q cosθ) –I2 

•
θ 

δ
–H/δt 

–I1 q 
•
θ cosθ  – –I2 q 

•
θ sinθ –I2 

••
θ  

Ω  × –H 
q cosθ –I2 

•
θ 

– q cos θ 
–I2 

•
θ 

– q sinθ –I2 
•
θ 

+  –I1 (q sinθ + p) 
•
θ 

q sinθ 
–I2 (q cosθ) 

––I1(q sinθ +p)qcosθ 

–•H 
–I1 q 

•
θ cosθ 

– 2 –I2 q 
•
θ sinθ  

+  –I1 (q sinθ + p) 
•
θ 

–I2 
••
θ  

+(–I2––I1)q2sinθcosθ 

– –I 1 p q cosθ 

 

Table 37.1 
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38.  Euler Angles And A Spinning Top 
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Fig. 38.1 

 In order to describe Euler angles it is convenient to consider the physical problem of a 

spinning top whose tip O is fixed in space (see Fig. 38.1).  In this problem we introduce 

four coordinate systems and consider the transformation relations between them 

  ei →  ei'''  →   ei''   →   ei'    .  (38.1) 

The base vectors ei  are fixed in space with 

  •ei = 0  , (38.2) 

whereas the base vectors ei''', ei'', ei' rotate with angular velocities which are functions of 

the rates of change of the Euler angles {ψ, θ, φ} which define the orientation of ei' relative 

to ei. 

Precession Angle ψ:  The base vectors ei''' are related to ei by a rotation about the e3 axis 

through the angle ψ, which is called the precession angle, and the transformation 

relations are given by 
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  e1' '' = cos ψ e1 + sin ψ e2  ,  (38.3a) 

  e2' '' = – sin ψ e1 + cos ψ e2  ,  (38.3b) 

  e3' '' = e3  .  (38.3c) 

Nutation Angle θ:  The base vectors ei'' are related to ei''' by a rotation about the e1' '' axis 

through the angle θ, which is called the nutation angle, and the transformation relations 

are given by 

  e1' ' = e1' ''  .  (38.4a) 

  e2' ' = cos θ e2' '' + sin θ e3' ''  ,  (38.4a) 

  e3' ' = – sin θ e2' '' + cos θ e3' ''  .  (38.4b) 

Spin Angle φ:  The base vectors ei' are associated with a body coordinates system which 

rotates with the top.  These base vectors are related to ei'' by a rotation about the e3' ' axis 

through the angle φ, which is called the spin angle, and the transformation relations are 

given by 

  e1'  = cos φ e1' ' + sin φ e2' '  ,  (38.5a) 

  e2'  = – sin φ e1' ' + cos φ e2' '  ,  (38.5b) 

  e3'  = e3' '  .  (38.5c) 

It is important to note that even though the relationship between ei' and ei is quite 

complicated it can be described by three consecutive simple rotations, each about a single 

axis (see Fig. 38.2). 
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Fig. 38.2 
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 Before proceeding with the solution of the spinning top problem it is important to 

note that the transformations (38.3)–(38.5) can be written in a convenient matrix forms 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1' ''
e2' ''
e3' ''

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

cosψ sinψ 0
–sinψ cosψ 0

0 0 1
 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1
e2
e3

   ,  (38.6a) 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1' '
e2' '
e3' '

  = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

1 0 0
0 cosθ sinθ
0 –sinθ cosθ

 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1' ''
e2' ''
e3' ''

   ,  (38.6b) 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1'
e2'
e3'

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

cosφ sinφ 0
–sinφ cosφ 0

0 0 1
 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1' '
e2' '
e3' '

   .  (38.6c) 

Furthermore, since the matrices in (38.6) are orthogonal their inverses are equal to their 

transposes so that the inverse transformations can be written in the matrix forms 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1
e2
e3

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

cosψ –sinψ 0
sinψ cosψ 0

0 0 1
 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1' ''
e2' ''
e3' ''

    ,  (38.7a) 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1' ''
e2' ''
e3' ''

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

1 0 0
0 cosθ –sinθ
0 sinθ cosθ

 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1' '
e2' '
e3' '

    ,  (38.7b) 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1' '
e2' '
e3' '

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

cosφ –sinφ 0
sinφ cosφ 0

0 0 1
 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
e1'
e2'
e3'

    .  (38.7c) 

 Now the angular velocity Ω  of the system ei'' is given by 

  •ei'' = Ω  × ei''  ,  Ω  = •
ψ  e3 + 

•
θ  e1' '  .          (38.8a,b) 

However from the geometry of Fig. 38.1 we may write e3 in terms of ei'' in the form 

  e3 = sinθ e2' ' + cosθ e3' '  , (38.9) 

so that Ω  becomes 

  Ω   = 
•
θ  e1' ' + •

ψ ( sinθ e2' ' + cosθ e3' ' )   .  (38.10) 

Also, the angular velocity ω of the system ei' is given by 
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  •ei' = ω  × ei'  ,  (38.11a) 

  ω  = Ω + •φ e3' ' = 
•
θ  e1' ' + ( •

ψ  sinθ ) e2' ' + ( •
ψ  cosθ + •φ) e3' ' .  (38.11b) 

Furthermore, let the body base vectors ei' be parallel to the principal axes of inertia and let 

the top have rotational symmetry about the e1'  and e2'   axes so that the components Ioij'   of 

the inertia tensor about the point O and relative to the basis ei' are 

  Ioij'  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞Io11 0 0

0 Io11 0
0 0 Io33

   .  (38.11) 

However since Io11'  = Io22'  it follows that the components Ioij''  of the inertia tensor relative 

to ei'' are unchanged by the spin •φ  so that 

  Ioij''  = Ioij'   .  (38.12) 
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Fig. 38.3 

 From the free-body diagram in Fig. 38.3 we see that the only forces acting on the top 

are the force of gravity mg which acts through the center of mass in the negative e3 

direction and the reaction R applied at the point O by the floor on the top so that 

  F = R – mg e3 = Ri'' ei'' – mg (sinθ e2' ' + cosθ e3' ')  ,    (38.13a) 



 
 

173 

  F = (R1'') e1' ' + (R2'' – mg sinθ) e2' ' + (R3'' – mg cosθ) e3' '  .  (38.13b)  

In order to calculate the value of R and the motion {ψ(t), θ(t), φ(t)} we must consider the 

balances of linear and angular momentum.  To this end we note that the vector –x from O 

to the center of mass is given by 

  –x = L e3' '   ,  (38.14) 

where L is a constant.  Also, the angular momentum Ho about the fixed point O becomes 

  Ho = Ioω = Ioij''  ω j'' ei'' , (38.15a) 

  Ho = (Io11 
•
θ ) e1' ' + (Io11 •

ψ  sinθ) e2' ' + [ Io33 ( •
ψ  cosθ + 

•
φ ) ] e3' '  .  (38.15b) 

Now the acceleration –a of the center of mass and the rate of change of angular 

momentum are calculated in Table 38.1. 
 It follows from the balance of linear momentum that 

  R = mg e3 + m –a  = mg (sinθ e2' ' + cosθ e3' ') + m –a   ,       (38.16a) 

  R1'' = m [L ••ψ sinθ + 2 L •
ψ 

•
θ  cosθ ]  ,  (38.16b) 

  R2'' = m [ g sinθ – L 
••
θ  + L •

ψ2 sinθ cosθ ]  ,  (38.16c) 

  R3'' = m [ g cosθ – L 
•
θ2 – L •

ψ2 sin2θ ]  . (38.16d) 

Furthermore, the moment Mo  about the point O becomes 

  Mo = (L e3' ') × [ – mg e3 ]  ,  (38.17a) 

  Mo = (L e3' ') × [ – mg (sinθ e2' ' + cosθ e3' ') ]  ,  (38.17b) 

  Mo = mg L sinθ e1' '  ,  (38.17c) 

so the balance of angular momentum yields the equations 

         Io11 [ 
••
θ  – •

ψ2 sinθ cosθ ] + Io33 •
ψ sinθ ( •

ψ cosθ + 
•
φ) = mg L sinθ ,  (38.18a) 

  Io11 [ ••ψ sinθ + 2 •
ψ 

•
θ cosθ ] – Io33 ( •

ψ cosθ + 
•
φ) 

•
θ = 0  ,           (38.18b) 

  Io33  
d
dt  (

•
ψ cosθ + 

•
φ)  = 0  .  (38.18c) 
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 In general the solution of (38.18) is quite complicated, however, for the special case 

of steady precession we have 

  •
ψ  = Ω  ,  ••ψ = 0  ,  (38.19a,b) 

  
•
θ  = 0  ,  

••
θ  = 0  ,  (38.19c,d) 

  •
φ  = p  ,  ••φ  = 0  ,  (38.19e,f) 

so that the equations (38.16) for the forces Ri'' reduce to 

  R1'' = 0 ,  (38.20a) 

  R2'' = m [ g sinθ + L Ω2 sinθ cosθ ]  ,  (38.20b) 

  R3'' = m [ g cosθ  – L Ω2 sin2θ ]  ,  (38.20c) 

and the angular momentum equations (38.18) reduce to the single equation 

         – Io11 Ω2 sinθ cosθ + Io33 Ω sinθ (Ω cosθ + p) = mgL sinθ .   (38.21) 

Rewriting (38.21 we have 

  [ { (Io11  – I033) cosθ } Ω2  – (Io33 p) Ω + mgL] sinθ = 0  .  (38.22) 

Trivial solutions of (38.22) correspond to sinθ = 0 for which θ = 0 or θ = ±π and the top 

is vertical.  If we discard these solutions then the term in square brackets must vanish so 

we get a quadratic equation for the rate of precession Ω in terms of rate of spin p  which 

gives the solutions 

  Ω =  
Io33 p ±  (Io33 p)2 – 4 mgL (Io11 – Io33) cosθ 

2 (Io11 – Io33) cosθ      .     (38.23) 

Since we require Ω to be real, the term under the square root sign must be nonnegative so 

that  

  p2 ≥  
4 mgL (Io11 – Io33) cosθ

(Io33)2    .  (38.24) 

If Io11 ≤ Io33 then (38.24) place no restriction on the magnitude of the spin,  whereas if 

Io11 > Io33 then (38.24) means that the spin p must be greater than a minimum value for 

steady precession to exist. 
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 At this point it is reasonable to ask which one of the solutions (38.23) is the one most 

observed?  In order to get a simple estimate for the difference in magnitude of these two 
solution let us consider the reasonable approximation that the spin p is quite large.  It 

follows that (38.23) may be rewritten in the equivalent, but alternative, form 

     Ω =  
Io33 p

2 (Io11 – Io33) cosθ  
⎣⎢
⎢⎡

⎦⎥
⎥⎤ 1 ±  1 – 

4 mgL (Io11 – Io33) cosθ
 (Io33 p)2     .  (38.25) 

Now, for large values of the spin p the second term in the square root function is small so 

by using a Taylor series expansion we can approximate (38.25) by 

 

       Ω =  
Io33 p

2 (Io11 – Io33) cosθ  
⎣
⎢
⎡

⎦
⎥
⎤

 1 ± 
⎩
⎨
⎧

⎭
⎬
⎫

 1 – 
2 mgL (Io11 – Io33) cosθ

 (Io33 p)2     ,  (38.26) 

which yields the two solutions 

  Ω  ≈ Ω1 =  
mgL
Io33 p   ,  (38.27a) 

  Ω  ≈ Ω2 =  
Io33 p

(Io11 – Io33) cosθ   .  (38.27b) 

Notice that for large values of the spin p, the value of Ω1 is much smaller than Ω2. Since 

tops which have large spin are usually observed to have slow precession rates we may 

conclude that the solution (38.26) with the negative sign is the one usually observed.  
However, it is important to emphasize that the above observation does not replace 

theoretical analysis of the stability of the solutions (38.26).  For example, if it could be 

shown that the solution with a positive sign is unstable to perturbations then we could 
conclude that it is unlikely to be observed during steady precession of the top. 
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 e1'' e2'' e3'' 

Ω  •
θ 

•
ψ sinθ 

•
ψ cosθ 

–x 0 0 L 

–v = Ω × –x L •
ψ sinθ – L 

•
θ 0 

δ–v/δt L ••ψ sinθ + L •
ψ  

•
θ cosθ – L 

••
θ  0 

Ω  × –v L •
ψ  

•
θ cosθ L •

ψ2 sinθ cosθ – L 
•
θ2 – L •

ψ2 sin2θ  

–a 
L ••ψ sinθ  

+ 2L •
ψ  

•
θ cosθ 

– L 
••
θ  

+ L •
ψ2 sinθ cosθ 

– L 
•
θ2 – L •

ψ2 sin2θ 

Ho Io11 
•
θ Io11 •

ψ sinθ Io33 ( •
ψ cosθ + 

•
φ) 

δHo/δt Io11 
••
θ  

Io11 ••ψ sinθ 

+ Io11 •
ψ 

•
θ cosθ 

Io33 (••ψ cosθ  

– •
ψ  

•
θsinθ + 

••
φ) 

Ω  × Ho 
Io33( •

ψ cosθ+ 
•
φ ) •
ψ sinθ 

– Io11 •
ψ2 sinθ cosθ 

– Io33 ( •
ψ  cosθ + 

•
φ) 

•
θ 

+ Io11 
•
θ •
ψ cosθ 

Io11 •
ψ 

•
θ sinθ 

– Io11 •
ψ 

•
θ sinθ 

•H o 

Io11 
••
θ  

– Io11 •
ψ2 sinθ cosθ 

+ Io33 •
ψ2 sinθ cosθ 

+ Io33  
•
φ •
ψ sinθ 

Io11 ••ψ sinθ 

+ 2 Io11 •
ψ 

•
θ cosθ 

– Io33 ( •
ψ cosθ + 

•
φ) 

•
θ 

 

Io33 (••ψ cosθ  

– •
ψ  

•
θ sinθ + 

••
φ) 

 

Table 38.1 
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39. Euler Equations Of Motion 
 Recall that the balances of linear momentum and angular momentum are vector 
equations which can be referred to any coordinate system.  However, if we refer these 

equations to base vectors ei' which remain parallel to the principal axes of inertia of the 

body then the component equations of angular momentum simplify considerably.  These 

simplified equations are called the Euler equations of motion of a rigid body.  In 

particular, let the body rotate with angular velocity ω so that the base vectors ei' attached 

to the body also rotate with angular velocity ω 

  •ei' = ω  × ei'   . (39.1) 

Referring the balance of linear momentum to the base vectors ei' we may write 

  m –a1'  = F1'    ,   m –a2'  = F2'   , m –a3'  = F3'   .  (39.2a,b,c) 

 Since the vectors ei' are parallel to the principal directions of inertia the components 

–Iij'  of the inertia tensor –I about the center of mass may be written in the simple 

diagonalized form 

  –Iij'   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

–I11' 0 0
0 –I22' 0
0 0 –I33'

   ,  (39.3) 

so the angular momentum –H about the center of mass becomes 

  –H = –Iij'  ωj' ei' = (–I11'  ω1' ) e1'  + (–I22'  ω2' ) e2'   + (–I33'  ω3' ) e3'    .   (39.4) 

Thus, using Table 39.1 the balance of angular momentum yields the equations 

  –M1'  = –I11'  •
ω1'  + (–I33'  – –I22' ) ω2'  ω3'   ,  (39.5a) 

  –M2'  = –I22'  •
ω2'  + (–I11'  – –I33' ) ω1'  ω3'   ,  (39.5b) 

  –M3'  = –I33'  •
ω3'  + (–I22'  – –I11' ) ω1'  ω2'   ,  (39.5c) 

for the components –Mi' of the moment –M  about the center of mass.  
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 e1'  e2'  e3'  

ω ω1'  ω2'  ω3'  

–H 
–I11'  ω1'  

–I22'  ω2'  
–I33'  ω3'  

δ
–H/δt 

–I11'  •
ω1'  

–I22'  •
ω2'  

–I33'  •
ω3'  

ω × –H (–I33'  – –I22' ) ω2'  ω3'  (–I11'  – –I33' ) ω1'  ω3'  (–I22'  – –I11' ) ω1'  ω2'  

•–H 

–I11'  •
ω1'  + (–I33'  – –I22' ) ω2'  

ω3'  

–I22'  •
ω2'  + (–I11'  – –I33' ) ω1'  

ω3'  

–I33'  •
ω3'  + (–I22'  – –I11' ) ω1'  

ω2'  
 

Table 39.1 

 

 
 

 

 
 

Fig. 39.1 
 Now consider the problem of a flipping coin which is a cylindrical disk of radius R, 

thickness h and mass m (see Fig. 39.1).  Initially the center of mass of the coin is located 

at position –x0, it has velocity –v0, and the coin has angular velocity ω0 so that 

  –x(0) = –x0  ,   –v(0) = –v0  ,  ω(0) = ω0  . (39.6a,b,c) 

The coin then flips in space and its motion is influenced only by the force of gravity 
which acts in the negative e3 direction (see the free-body diagram in Fig. 39.2) so that the 

resultant force F acting on the coin is 
  F = – mg e3  .  (39.7) 

Notice that since the force of gravity acts in a fixed direction it is most convenient to 

solve the balance of linear momentum in terms of the fixed base vectors ei.  It follows 

from (39.7) that the balance of linear momentum becomes 

e2'  

h 

R e1'  

e3'  
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  m 
••–x  = – mg e3  .  (39.8) 

Integrating (39.8) subject to the initial conditions (39.6) we deduce that 

  –x(t) = –x0 +  –v0t – 
1
2 g t2 e3  ,  (39.9) 

which shows that the center of mass of the coin moves in a plane parallel to the  –v 0–e3 

plane. 

 
 

 

 
 

 
Fig. 39.2 

 Taking e3'  to be parallel to the axis of revolution of the coin, the components –Iij'  of the 

inertia tensor –I about the center of mass of the coin are 

  –Iij'  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞I1 0 0

0 I1 0
0 0 I3

   ,  I1 = 
1
2 mR2 [1

2 + 
h2

6R2] ,  I3 = 
1
2 mR2  . (39.10) 

Since the coin is free from moments ( –Mi' = 0), the Euler equations (39.5) reduce to 

  I1
•
ω1'  + (I3–I1) ω2'  ω3'  = 0  , (39.11a) 

  I1 •
ω2'  –  (I3–I1) ω1'  ω3'  = 0  , (39.11b) 

  •
ω3'  = 0  . (39.11c) 

Integrating (39.11c) subject to the initial condition (39.6c) we have 

  ω3'  = ω03'   = ω0  • e3' (0) = constant  , (39.12) 

where we emphasize that the components ω0i'   are the components of the vector ω0  in the 

direction of the base vectors ei'(0) at time t=0 so that 

e1 
e2 

e3 

mg 
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  ω0i'  = ω0  • ei'(0)  .  (39.13) 

Now the equations (39.11a,b) may be rewritten in the simpler forms 

  •
ω1'  +  λ ω2'  = 0  ,  •

ω2'  –  λ ω1'  = 0  ,  (39.14a,b) 

where the constant λ is defined by 

  λ = 
(I3–I1)

I1
  ω03'   .  (39.15) 

Differentiating (39.14a) and substituting (39.14b) into the result we deduce that 

  ••
ω1'  + λ •

ω2'  = ••ω1'  + λ2 ω1'  = 0  .  (39.16) 

Thus, the solution of (39.16) and hence (39.14b) may be written in the forms 

  ω1'  = ω01'  cos(λt) – ω02'  sin(λt)  ,   ω2'  = ω01'  sin(λt) + ω02'  cos(λt),  (39.17a,b) 

where the constants have been determined by satisfying the initial conditions (39.13).   

 Next, it is convenient to introduce the base vectors ei'' such that 

  e1'' = cos(λt) e1'   + sin(λt) e2'   , e2'' = – sin(λt) e1'   + cos(λt) e2'   , e3'' = e3'   , 

  •ei'' = λ × ei'' ,  λ = ω + λ e3'' = ω01'  e1'' + ω02'  e2'' + 
I3
I1

 ω03'  e3''  . (39.18) 

However, since the components of λ are constants 

  
•
λ  = 

δλ
δt  + λ × λ  = 0  , (39.19) 

λ  is a constant vector which can be written in the form 

 λ  = •
ψ  e  , •

ψ = α |λ |  ,  e = 
αλ
|λ |    ,   α = 1 for ω03'  > 0  and α = – 1  for ω03'  < 0 , (39.20) 

It then follows that the motion of the coin can be described like a spinning top with the 

rate of precession •
ψ about the fixed e axis, with spin rate (–λ)  (relative to the ei'' axes) 

about e3'', and with constant angle of nutation θ given by 

  cosθ = e3''  • e  . (39.21) 

Moreover, using the fact that the components of –I relative to ei'  and ei''  are the same it 

follows that the angular momentum about the center of mass  
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  –H = –Iij'' ω j'' ei'' = I1[ω01'  e1'' + ω02'  e2''] + I3 [ω03'  e3'']  , 

  –H =  I1[λ  –  
I3
I1

 ω03'  e3''] + I3 [ω03'  e3'']  = I1 λ , (39.22) 

is a constant vector.  This is consistent with the fact that –M vanishes. 

 

 

 
 

 
 

 

 
 

 
Fig. 39.3 
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•
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e – λ 
e3''  


