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1. Introduction

Sir Issac Newton (1642-1727) was the first to discover the correct laws of motion of
particles. Since then much work has been done to verify the validity of these laws and to
generalize them for deformable media. The study of rigid body dynamics is concerned
with developing and analyzing the equations of motion of: a single particle, a system of
particles, a rigid body, and a system of rigid bodies.

To analyze the motion of a particle it is necessary to first develop kinematical
expressions for the position, velocity and acceleration of the particle. Then, it is
necessary to consider the kinetic equations of motions which characterize the influence of
the forces applied to the particle on its motion. Thus, the analysis of both kinematics and
kinetics are necessary for a complete formulation of a specific problem. Since the
analysis of the motion of a single particle is simpler than that of a rigid body, most
courses in dynamics develop the material in the following order. The kinematics and
kinetics of motion of a single particle are discussed for the simplest case of motion in a
straight line. Then, the equations are generalized to motion in a plane followed by
motion in three-dimensional space. Next, the kinematics and kinetics of motion of a
system of particle is developed. The analysis of rigid body motion starts with analysis in
a plane and then is concluded with analysis in three-dimensional space. This approach
has the advantage that mathematical complexity increases gradually and that physical
concepts are presented in their simplest forms. However, it has the disadvantage that the
more complicated mathematical tools required to analyze general three-dimensional
motion are presented near the end of the course when there is often not sufficient time to
fully absorb the material.

This course in dynamics presents the material in a different order from that in a
standard presentation. The course is loosely separated into two parts. Part 1 includes
sections 2-15 which develop the analysis of kinematics in three-dimensions and Part 2
includes sections 16-39 which introduce the kinetic equations of motion to analyze forces
and energies of systems of rigid bodies. This approach has the advantage that the more
complicated mathematical tools of analyzing motion in rotating coordinate systems is
developed in Part 1. Since the analysis of the kinetics of particles and rigid bodies

necessarily requires the determination of acceleration, the more complicated



mathematical tools for analyzing motion in three-dimensions are used in almost all
example problems in Part 2. This ensures that these mathematical tools are fully
absorbed. Moreover, it ensures that at the end of the course each student can confidently

formulate even the most complicated dynamics problems in three-dimensions.



2. Vector Algebra and Indicial Notation

In mechanics it is necessary to use vectors and vector equations to express physical
laws. To conveniently express the component forms of these vector equations it is
desirable to use a language called indicial notation which develops simple rules
governing manipulations of the components of these vector equations. For the purposes
of describing this language we introduce a set of right-handed orthonormal base vectors

denoted by (ey,e,,e3), such that

e e =1,ec°e=1,e°e=1, (2.1a,b,c)
e °e,=0,e°e3=0,e,°e;=0, (2.1d,e,f)
e Xxe, =€ , e3xe =€ , e xe;=e , (2.1g,h,1)

where e, * e, denotes the dot product between the two vectors, and e; x e, denotes the
cross product between the two vectors. In this text we will use a bold faced symbol like a

to indicate a vector quantity and in the written form we will use a wavy line under the

symbol like a to indicate the same vector quantity a.

VECTOR ALGEBRA

Rules of Vector Addition and Multiplication by a Scalar: Let a, b, and ¢ be vectors

and a and 3 be scalars. Then the commutative and associative laws of vector addition are
(see Fig. 2.1)

a+b=D>b+a (commutative law) , (2.1a)

at+(b+c)=(a+b)+c (associative law) , (2.1b)

Furthermore, the associative laws of scalar multiplication may be summarized as

a(Pa)=(ap)a=p(aa)=a(af), (2.2a)
(atP)a=aa+Pa, (2.2b)
oa(@at+b)=aat+ab . (2.2¢)



Fig. 2.1

Components of a Vector: An arbitrary vector a in Euclidean three-dimensional space

may be expressed in terms of its components {a;,a,,a;} relative to the fixed base vectors
{e|,e,,e5} such that
a=aj e ta,e,taje; . (2.3)

Scalar (Dot) Product: Magnitude and Direction of a Vector: The scalar (or dot)

product between two vectors a and b is defined by
a*b=(a;e ta,e,+a;e;)*(b;e +bye,+bsey)
=a;b; +a,b, tasbsy , 2.4)
where {b;,b,,b;} are the components of b relative to the base vectors {e,e,e;}. It

follows that the magnitude a and the unit direction e, of vector a may be defined by

a=|a|= (aca)l2=(af+a3+a})!?, (2.5a)
a a a
a 1 2 3
eazazaelJr ae2+ ae3,ea-ea=1, (2.5b,¢)

a=ae_. (2.6)
The scalar product a * b may also be written in the more physical form
a*b=abcosO , (2.7a)
a*b=a(bee)=a(bcosd) ,a*b=b(a-e )=b(acos0), (2.7b,¢)
where 0 is the angle between a and b (see Fig. 2.2). The representation (2.7b) expresses

a * b as the magnitude of a times the projection of b in the direction of a, whereas the



representation (2.7c) expresses a ¢ b as the magnitude of b times the projection of a in the
direction of b. Furthermore, we note that the scalar product is commutative so that

a*b=b-a . (2.8)

b
acos 0
0 ~
o \‘
- = a a
b cos 6

Fig. 2.2
Also, it follows that the components of a may be calculated by using the scalar product
by
aj=ace; ,a,=ac%e ,a;=ace; . (2.9a,b,c)
Defining {0,,0,,05} as the angles between the vector a and the base vectors {e;,e,,e;},

respectively, the components of the direction vector e, in (2.5b) may be represented by

(see Fig. 2.3)

a BH a3
. =cost, , a =cos0, , a =cos0y . (2.10a,b,c)
A
€3
a
e3
92
e
2
e1
€
Fig. 2.3



Vector (Cross) Product: The vector product between the two vectors a and b may be

calculated directly using the expressions (2.1gh,i) or may be calculated using the

determinant of a matrix of the form

€ € &
axb=| 3 2 a3 s (2.11a)
bl b2 b3
= (ayb; —azb,y) e, — (a;by —azb;) e, +(a;by, —ayby) 5. (2.11b)

The vector product a x b may also be written in the more physical form
axb=(absinf)n , nen=1, (2.12a,b)
where 0 is the angle between a and b and n is the unit vector that is normal to the plane
of the vectors a and b and is defined by the right-hand rule (see Fig. 2.4). It follows that
since n is defined by the right-hand rule the vector product is not commutative because
axb=-bxa . (2.13)
Furthermore, from Fig. 2.4 we realize that the vector product a x b yields the area of the
parallelogram formed by the vectors a and b times the unit normal vector n. Thus, the

vector product of a vector with itself vanishes (a x a = 0).

n’ b b
[
| b sin O
0 AL
aV a g

Fig. 2.4

~

Scalar Triple Product: The scalar triple product between the three vectors a,b,c may

be expressed in the following equivalent forms
a; a, ay
asbxc=ceaxb=becxa=| Db by b3 . (2.14)
€1 € €3
Physically, the scalar triple product may be interpreted as giving the volume of the
parallelepiped formed by the vectors a,b,¢ (see Fig. 2.5) since
axbec=(absinB)nec, (2.15)



where (a b sin 0) is the area of the base of the parallelepiped and n ¢ ¢ is the height of the
parallelepiped.

Fig. 2.5
Note that the order of the scalar and vector product may be interchanged without
changing the value of the scalar triple product. This can also be seen by realizing that the
volume of the parallelepiped in Fig. 2.5 can be obtained by expressing the scalar triple
product in terms of the vector product of an two of the three vectors a,b,¢ whose normal
n (according to the right-hand rule) points toward the interior of the parallelepiped.

Vector Triple Product: The vector triple product between the three vectors a,b,c may

be expanded in the form

ax(bxc)=(asc)b—(a*b)c . (2.16)
It is important to emphasize that since the vector product between two vectors generates
another vector it is essential to include parentheses in the definition (2.16). Also note that
the vector a x (b x ¢) is perpendicular to the vector (b x ¢). But the vector (b x ¢) is
perpendicular to the plane formed by b and ¢. This means that the vector a x (b x ¢)
must lie in the plane of b and ¢, which is consistent with the result (2.16). Furthermore,

the vector a x (b x ¢) must also be perpendicular to a, which is consistent with the result

(2.16).
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INDICIAL NOTATION

Quantities written in indicial notation will have a finite number of indices attached to
them. Since the number of indices can be zero a quantity with no index can also be
considered to be written in index notation. The language of indicial notation is quite
simple because only two types of indices may appear in any term. Either the index is a
free index or it is a repeated index. Also, we will define a simple summation convention
which applies only to repeated indices. These two types of indices and the summation
convention are defined as follows.

Free Indices: Indices that appear only once in a given term are known as free indices.
For our purposes each of these free indices will take the values (1,2,3). For example, i is
a free index in each of the following expressions

(X1,%Xy,%3)=%; (1IF1,2,3) , (2.17a)
(e;.e,,e3)=¢ (i=1,2,3) . (2.17b)
Notice that the free index 1 in (2.17) refers to the group of three quantities defined by 1

taking the values 1,2,3.

Repeated Indices: Indices that appear twice in a given term are known as repeated

indices. For example i and j are free indices and m and n are repeated indices in the
following expressions

ab.c T d , A

i°j“m mn"-n

, A B. . (2.18a,b,c)

immjnn imn —jmn
It is important to emphasize that in the language of indicial notation an index can never

appear more than twice in any term.

Einstein Summation Convention: When an index appears as a repeated index in a

term, that index is understood to take on the values (1,2,3) and the resulting terms are
summed. Thus, for example,

X; € =X € TX,e tXx3€;5 . (2.19)
Because of this summation convention, repeated indices are also known as dummy
indices since their replacement by any other letter not appearing as a free index and also
not appearing as another repeated index does not change the meaning of the term in
which they occur. For examples,

x;e;,=x.e , ab c =ab.oc . (2.20a,b)

] 7] 2 71 mTm 171 7]

11



It is important to emphasize that the same free indices must appear in each term in an
equation so that for example the free index i in (2.20b) must appear on each side of the
equation.

Kronecker Delta: The Kronecker delta symbol Sij is defined by

{1 ifi=]
0 ifi=j

Sij=ei.e,=

J (2.21)

Since the Kronecker delta 51j vanishes unless i=j it exhibits the following exchange

property
Sijxj=(81j X ,82jxj,53jxj)=(xl , Xy, X3) =X, . (2.22)
Notice that the Kronecker symbol may be removed by replacing the repeated index j in
(2.22) by the free index i.
Recalling that an arbitrary vector a in Euclidean 3-Space may be expressed as a linear

combination of the base vectors € such that

a=ae , (2.23)

171

it follows that the components a; of a can be calculated using the Kronecker delta

a,=ec*a=e-°(a, e )=(ee )a =05 a =a . (2.24)
Notice that when the expression (2.23) for a was substituted into (2.24) it was necessary
to change the repeated index i in (2.23) to another letter (m) because the letter i already
appeared in (2.24) as a free index. It also follows that the Kronecker delta may be used to

calculate the dot product between two vectors a and b with components a; and b;,
respectively by

a*b=(ae)- (bj ej) =a (e ej) bj =a, 51j bj =a;b; . (2.25)

Contraction: Contraction is the process of identifying two free indices in a given

expression together with the implied summation convention. For example we may

contract on the free indices 1,j in Sij to obtain

Note that contraction on the set of 9=32 quantities Tij can be performed by multiplying

12



Matrix Multiplication: In order to connect the summation convention with standard

matrix multiplication consider two vectors with components a;,b;, and three square

matrices with components A...B Cij and define

ij?

ij?
imBmj - (2.28a,b)
Since the first index of Aij indicates the row and the second index indicates the column, it
can easily be seen that the summation on the index j in (2.28a) yields the same result of

the multiplication of the matrix Aij with the column vector a; to obtain the column vector
b,. Similarly, since the second index of A, in (2.28b) is summed with the first index of
ij it is easy to see that Cij is the matrix that is obtained by multiplying the matrix A;
with the matrix ij.

Transpose: Let Aij be the components of a matrix A. Then the components of the

transpose AT of A are given by
(AT =Af=A;; . (2.29)
In the above we have considered terms that have no free indices like in equations
(2.19), (2.20a), (2.23), (2.25)-(2.27); that have one free index like in equations (2.22),
(2.24), (2.28a); and that have two free indices like in equations (2.18), (2.21), (2.28b),
(2.29). Obviously, it is possible to write terms that have any number of free indices. In
general, a term is said to be of order zero if it has no free index, of order one if it has one
free index and of order n if it has n free indices. Usually in mechanics terms with indices
are components of quantities called tensors, which are generalizations of vectors. In
particular, when a and b are vectors the quantity a b in (2.25) is called a scalar or zero

order tensor (or a tensor of order zero). Also, the quantities a; in (2.24) are the

components of the vector a, which is also called a first order tensor (or a tensor of order

one). In this course we will consider tensors up to order three.

13



Permutation Symbol: The permutation symbol &k is defined by

+1 for (i,j,k) equal to an even permutation of (1,2,3),

(1,),k) =(1,2,3), (3,1,2), (2,3,1)

Eijk =€ X € * €= -1 for (i,j,k) equal to an odd permutation of (1,2,3),
(1,j,k) =(1,3,2), (2,1,3),(3,2,1)
0 whenever any of the indices (i,j,k) are, repeated more than

once (i.e 1=}, or i=k, or j=k, or i=j=k)
(2.30)

It can be shown that the nine vectors e; x e; can be expressed in terms of the permutation

symbol using the expression
€ X € = & € . (231)
Thus, the vector product between the two vectors a and b may be expressed in the form
axb=a e x bj € = & 3 bj € - (2.32)
For convenience we summarize the expanded and short forms of a number of vector

quantities in Table 2.1.

14



Short Form

Quantity Expanded Form

Rectangular Cartesian X[ XXy x; (i=1,2,3)

Coordinates

Rectangular Cartesian ep.e)es e,

Base Vectors

Position Vector X=Xje tXy€) TX3€5 X &
aj=ace ,a,=ace,

Components of Vector a a,=a-e
ay=a-e;

Vector a a=a e tae,tase; a=a; e

Scalar Product asb=ab; +tab,+azb; [acb=ab,

Vector Product

axb=(ab;—asb,) e
+(azb; —ajbs) e,
t(ajby —ayb)) e;

_00 0
V¢_8x1 e1+8x2e2 2
Gradient of a Scalar ¢ E Vo= ox; e
+ e
Ox5 3
Oa; Oa, Oag Oa;
Divergence of a Vector a V-azaT o o, V-aza?
1 2 3

Curl of a Vector a

6a3 8a2
Vxa= gz—gz’ €

aal 83.3
Homa) @

83.2 aal
Ha o) ©

Vxa=gioay S

Table 2.1

15




3. Vector Calculus
In dynamics most vectors will be considered to be functions of time t and many of the
equations in dynamics will be differential equations that need to be integrated.
Consequently, it is important to learn how to differentiate and integrate vector functions.
Differentiation: To this end, we define the time derivative of the vector function a(t)
by the same limiting process that derivatives of scalar functions are defined

da o limit a(t+At) —a(t) 31
d ~ 2 T At>0 At : G.D

In (3.1) and throughout the text we use the notation da/dt and a superposed (*) to denote
time differentiation. It is important to note that both the magnitude and direction of a

vector can change with time (see Fig. 3.1).

a(t+At) —a(t)

a(t)
Fig.3.1

The standard rules of differentiation of scalar functions apply to vector functions except

that the commutative law does not apply to the vector product between two vectors. It

follows that if a and b are vector functions of time and « is a scalar function of time that

%(a+b) :% +% , (3.2a)
%(aa) :(é—(: a+a% , (3.2b)
Ly =L i P (3.2¢)
%(axb)Z%berax% . (3.2d)

Vector of Constant Magnitude: Since we usually refer vectors to base vectors that

have unit length it is desirable to consider the derivative of a general vector a of constant

magnitude. Thus, let

16



a «a=constant . (3.3)

Taking the derivative of (3.3) we have

a°a+a-a=2a°z.1=O, 3.4)

which means that a is perpendicular to a (see Fig. 3.2) so that the vector a can only

rotate.

a

Fig. 3.2

Indefinite Integral of a Vector: The indefinite integral of the vector function f{(t) is

denoted by

jt f(t) dr, (3.5)

where the lower limit of integration is understood to be any arbitrary fixed value and t is
merely a variable of integration. It follows that (3.5) denotes all functions whose

derivative is f, so that
drt
dt f(t) dt =A1(t) . (3.6)

Definite Integral of a Vector: The definite integral of a vector function f(t) from time

t, to time t is denoted by

[t ar . 37
to

Integral of a Vector Differential Equation: Consider the vector differential equation

given by

dF
o =T (3.8)

Integrating (3.8) using the indefinite integral (3.5) we deduce that

F(t) = ft f(t)dt+C , (3.9)

17



where C is an arbitrary constant vector. Now in order to determine the function F(t)

uniquely we need to specify the initial value of F [say F(ty)]. Thus, with the help of this

initial condition we may determine the value of C in (3.9) by the equation
to
F(ty) :_[ f(t)dt+ C . (3.10)

Now substituting (3.10) into (3.9) we deduce that
t
F(t) = F(ty) + It f(t) dt , (3.11)
0

where we have used the fact that

ftt f(t) dt = ft f(t) dt — fto f(t) dt . (3.12)
0

Finally, we note that the integral of the sum of two vector functions a,b is equal to the

sum of the integrals of the functions

J@svydi=Jadt+ bt (3.13)

18



4. Position, Velocity, Acceleration
Let x(t) be the position vector relative to a fixed origin of a point that moves in space

along a curve C (see Fig. 4.1). The average velocity v, over the time period [t,t+At] is

avg
defined by

At) —
Vave = x(t+ tA)t x(t) ’ @.1)

and the velocity (instantaneous velocity) v is defined as the derivative of the position

vector

. limit t+At) — x(t
V()= x(t) = imit  x( ) — x(t)

T At—>0 At (4-2)

X(t+At)—x(t)

Fig. 4.1

Note from Fig. 4.1 that in the limit that At approaches zero the vector x(t+At)—x(t)
becomes tangent to the curve C so the instantaneous velocity v is always tangent to the
path traversed by the point. Furthermore, the acceleration a of a point is defined as the

derivative of the velocity so that

limit  v(t+At) — v(t) oo
=X

A=V = At—0 At

(4.3)

The displacement of a point from the position x(t;) at time t; to its position x(t,) at

time t, may be obtained by integrating the velocity v

t
X(t,) —x(t)) = ,[ t? v(t)drt . 4.4)

19



Also, the distance traveled along the path traversed by the point is an increasing function

of t so the distance traveled from time t; to time t, is calculated by integrating the

magnitude of the velocity v and is denoted by D,

D, =fi T lv(t) | dt . (4.5)

20



5. Tangential and Normal Coordinates
Consider a space curve that is parameterized by the arclength s so that the position
vector x(s) may be expressed in terms of its Rectangular Cartesian coordinates
X(s) = x(s) e; +X5(s) e, + X3(S) ey = xi(s)e; , (5.1
where the arclength s is determined by integrating the element of arclength ds which is
given by
(ds)?2 =dx « dx , (5.2)
Recalling that dx is tangent to the space curve (see Fig. 5.1) we may define the unit

tangent vector e, by

dx

€ = ds (5.3)
The vector e, can easily be shown to be a unit vector by using (5.2)
dx dx dxedx
et . et = g . g = (ds)2 =1. (54)

e,(stAs)

Fig. 5.1

Notice from Fig. 5.1 that the tangent vector e, may change its direction as the curve is
traversed. Recalling that e, is a unit vector of constant length its derivative with respect

to s must be perpendicular to it so that we may write

det
s —Kep=

1 de,
>0 , (5.5a,b)

21



where « is the curvature and p is the radius of curvature of the space curve. Note that

since K is nonnegative the vector e points towards the inside of the space curve (see Fig.

5.1).

To help understand the curvature consider the special case of a planar curve for which
X(s) =x,(s) e; +x5(s) €, .

Furthermore, let Ay be the angle between the tangent vector e,(s) at s and the tangent

vector e(s+As) at s+As (see Fig. 5.2). It follows from geometry that the vector e (s+As)

may be expressed in terms of the base vectors e(s) and e (s) at s such that

e,(s+As) = cosAy e (s) + sinAy e (s) . (5.7)
e (stAs)
? / e (sAs)
e (s) e (s) ‘ ;
Ay
e (s) e (s)
Fig. 5.2

Recalling the definition of the derivative we have

de;  limit  €(STAs) —e(s)

ds ~As—0 As ’
limit cosAy — 1 sinAy
= As 5 0 K As j e(s)+ ( As j en(s)} . (5.8b)
But using the Taylor series expansions of cosAy and sinAy
Aw)2 Aw)3
cosAy = 1 — K—EEL + ..., sinAy = Ay —g—\é{L +..., (5.9a,b)
we may rewrite (5.8b) in the form
de, limit [ (Ay)? Ay dy
ds " As—0 { YA O (As) en(s)} L OX (5.10)

Thus, comparing the result (5.10) with the definition (5.5) we have

22



1 _dy _
o~ ds ds=pdy . (5.11a,b)
Note that the relationship (5.11b) is consistent with the relationship that connects the

arclength of a circle with the radius of the circle and the angular displacement (see Fig.

5.3).

ds

/

Fig. 5.3

Note also from Fig. 5.4 that for planar curves it is easy to find e (to within a plus or
minus sign) by the formula
e, =teyxe , (5.12)

since e; x e, is a vector that lies in the e;—e, plane and is normal to the space curve.

e (s)

Fig. 5.4
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For some problems it is convenient to use tangential and normal coordinates to
describe motion of a particle moving in space. Within this context, the position vector x
depends on time parametrically through the specification of s(t) so that

x =x(s(t)) . (5.13)
Thus, with the help of (5.3) and (5.5a) we may use the chain rule of differentiation to

calculate the velocity v and acceleration a in the forms

a=\.7=set+set= setsi s = set e . (5.14b)

It follows that the tangential and normal components of the velocity and acceleration

become
Vi=Vee = s the component of the velocity tangent to the curve defining
the path of motion
v,=vee =0 the velocity is always tangent to the path of motion
a=ace= s the component of acceleration tangent to the curve
§2
a,=ace, = F the component of the acceleration normal to the path of

motion and directed towards the center of curvature of the

path

Note that even if the speed is constant [s = constant, s = 0] the acceleration does not

vanish when the path is curved (p # o) because the velocity changes direction.
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Summary of Tangential and Normal Coordinates

Position vector

arclength

tangent vector

curvature

radius of curvature

normal vector

velocity

acceleration

x(s(t)

(ds)? = dx « dx

dx
€~ ds
det
K= | ds
1
P~k
det
e =P
. $2

a= set+—e
p
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6. Rectilinear Motion
For rectilinear motion (motion in a straight line) the radius of curvature p becomes

infinite so that the tangent vector e, becomes constant.

de,
prow, o =0. (6.1a,b)

Thus, we may chose our coordinate system so that e, is in the positive e; direction and

deduce that the position, velocity and acceleration are characterized by the scalars s,v,a,

respectively, such that

X=seq, (6.2a)
vV=ve , V= ; , (6.2b,c)
a=ae , a=\./ =.s. . (6.2d,e)

In what follows we consider four cases where the acceleration a is specified by
different functional forms. For each case we develop equations that express the velocity

v and the position s in terms of the initial position s; and velocity v, at the initial time t;
s(t))=s; , v(t)=v; . (6.3a,b)
Case 1: a = constant

For the case when the acceleration a is constant we may integrate the differential

equations (6.2c,e) to obtain

dv J’t
gt =8 = VO=C +] adr=C rat-t), (6.42)
1
ds jt _ 1 2
i UL SN R TGN (LD

Now using the initial conditions (6.3) we deduce that

v(t)=v; ta(t—ty) , (6.52)

s(t)zsl+vl(t—t1)+% a(t—t)?> . (6.5b)

Case 2: a=af(t)
For the case when the acceleration is a general function of time we can only express

the velocity v and position s in terms of integrals that need to be evaluated
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v(t) = vy + J.tt a(t)dr , (6.6a)
1

s(t) =sq + Itt v(t) dt . (6.6b)
1

Case 3: a=a(v)
The case when the acceleration is a function of velocity occurs often when damping

or air drag are modeled. For this case the differential equation (6.2¢) yields

dv dv
at =a(v) = ﬁ =dt . (6.7a,b)
Thus, with the help of the initial condition (6.3b) we may obtain an equation for v(t) of
the form
(t)_dv t
—~ =) di=(t-t)) . 6.8
IVVI a(V) Itl T=( 1) (6.8)

Then s(t) can be determined by the solution (6.6b).
Alternatively, sometimes it is of interest to find v(s) directly. For this case v is

thought of as a function of s and the chain rule of differentiation is used to deduce that

d dvs) - d
a(v) = 3. [v(s(®)] =%§2 s =v %Sﬂ . (6.9)

Thus, the velocity v(s) can be determined by evaluating the integral

[v©) vdv

S
v a(V) =,[SldS=(s—s1). (6.10)

Finally, using (6.10) the differential equation (6.2¢c) yields

ds ds
at =v(s) = @ =dt , (6.11a,b)
which may be integrated to obtain an equation for s(t) of the form
s() ds [t
e =(t—ty) . A2
I s (6.12)

Case 4: a=af(s)

The case when the acceleration is a function of position occurs often when springs are

modeled. For this case we may multiply the differential equation (6.2¢) by ; =v to obtain
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o dv dv .
st~ Var =a(s)s , (6.13)
which may be integrated using the initial conditions (6.3) to obtain
v(s 1 S
f ()VdV=— [v(s)? —vi] = f a(S) ds . (6.14)
v 2 5
Thus, v(s) becomes
S 172
v(s)=i[v%+2fs a(S)ds | . (6.15)
1

Then, using (6.12) it is possible to determine s(t).
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7. Polar Coordinates
By way of introduction to the description of general planar motion in terms of polar
coordinates let us first consider circular planar motion. For this case the position vector
may be expressed in the form
X=X; e TX,€ , (7.1)
where the rectangular Cartesian coordinates x{,x, may be expressed in terms of the radius

r of the circle and the angle 0 by (see Fig. 7.1)

Xy =rcosh , x,=rsind . (7.2a,b)

Fig. 7.1

Thus, the position vector may be expressed in the form
x =r(cosb e; +sinbe,)=re_, (7.3)
where e_ is the unit vector in the direction of the point of interest
e, =e(0)=cosOe tsinbe, , e ce=1. (7.4a,b)

Furthermore, we define the unit vector ey by

de
eg(0) = d_E)r =—sin0 e +cosbe, , egeeg=1, (7.5a,b)

which points in the direction of increasing 0 (see Fig. 7.1). Also, note that e, and eq are

orthogonal vectors

e.ceg=0, (7.6)

and that the derivative of ey with respect to 0 is related to e, by the expression
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deg
I (7.7)

It follows from (5.2) and the above definitions that for constant radius r the increment

of arclength ds is related to the angle increment d6 by

dx dx
2 . — == = 2 — . 2
(ds)==dx * dx 10 " do (dO)” = (reg)  (rey) (dO)~, (7.82)
(ds)2=r%(d0)? , ds=rd9 . (7.8b,c)
Furthermore, recall from (5.3) that the tangent vector is given by
dx dx dO 1
& =i ZEEZ(ree);Zee . (7.9)

Thus, for circular motion e is tangent to the path. Also, using (5.5) we may determine

that the normal vector e, and the radius of curvature p are given by

de, de
t 0 do 1 1
p=r,e,=—e . (7.10b,c)

For general planar motion the position vector is a function of time parametrically
through the polar coordinates {r,0} and may be expressed in terms of the polar base

vectors e, and ey by
x=x(t)=re(0) , r=1(t) , 0=0(t) . (7.11a,b,c)

It is important to emphasize that unlike for rectangular Cartesian coordinates the position
vector in polar coordinates is not equal to the sum of the coordinates times their

associated base vectors. This is because the base vectors e, and ey are functions of the
angular coordinate 0, so that e, already is directed towards the point of interest. Now,

differentiation of (7.1a) yields

VZ).;Z;eerrer. (7.12)
Using the definition (7.5a) we may deduce that

. der . .

&= 40 0 =0eqy, (7.13)

so the velocity becomes
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Vz;er+r9eezvrer+veee. (7.14)
Recalling from (5.14a) that the velocity is always tangent to the particle path the tangent

vector ¢ may be determined by the equation

v.e tvge
\4 T 60
T IS BN (7.15)
v (VE+vg)
This shows that for the general planar case e is not tangent to the path of motion. Next,

differentiation of (7.14) yields the acceleration in the form

a={'=.r.er+;e.:r+;6e9+r6e6+r6é6, (7.16a)
—Te +r0eytrOeytr0e,—r02e, (7.16b)
=(T-10%) e +(r0+210)e (7.16¢)

“ - 1 d(26
=(r—r62)er+;%eeZarer+aee6 , (7.16d)

The physical interpretation of the velocity components in (7.14) and the acceleration

components in (7.16¢) may be summarized as follows

re, velocity due to changing length of the position vector

r é €q velocity due to changing direction of the position vector

T [ acceleration due to changing radial velocity

—r éz Centripetal acceleration: acceleration due to changing ey direction
r 6 €q acceleration due to changing angular speed é

2r0ey  Corriolis acceleration due to motion in a rotating coordinate system
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8. Cylindrical Polar Coordinates
For cylindrical polar coordinates the position vector x of a point is defined in terms of
the three coordinates {r,0,x5} (see Fig. 8.1)
x=re(0) +x5e;, (8.1)
and all vectors are expressed in terms of the right-handed orthonormal set of base vectors

{e..eq.e;} defined by

de,
e(0) =cosO e, +sinbe, , 0 "% > (8.2a,b)
deg
eg(0) = —sinO e; + cosO e, , TR (8.2¢,d)
dey
e;=e; , E =0 . (8.2¢,1)

Since {e.eq.e;} are a right-handed orthonormal set of base vectors they satisfy the

relations
ece=1,e°e=1,e°e=1, (8.3a,b,c)
ece=0,e-e5=0,e°e5=0, (8.3d,e.f)
e Xxey=e; , e3xe =€, egxey=e. . (8.3g,h,1)

Fig. 8.1

Using the results of the previous section and the fact that e; is a constant vector the

velocity and acceleration may be calculated and the results are summarized below.
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Summary of Cylindrical Polar Coordinates

coordinates r, 0, X5
base vectors e, €, €3
de, deg
derivatives of base vectors —— =e - =—e
do 6 > do r
position vector x=re(0) +x5e;
velocity v=re +r0ey+x;e;

oo ° ld 2. oo
a=(r-10%)e + d(r-9)

acceleration - di ©e +X3€
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9. Relative Motion

¥,

B e

Fig. 9.1

By way of introduction to the topic of relative motion consider the example shown in
Fig. 9.1 of a cylinder rolling on a flat surface with point A moving in a slot that rotates
with the cylinder. It is quite difficult to describe the motion of point A relative to the

fixed origin O directly by writing the position vector x(t) relative to e; and e,. However,

it is possible to describe this complicated motion by separating the description into
smaller simpler parts. In separating the description of motion it is often convenient to use
moving and rotating coordinate axes. It is important to emphasize that depending on how
we separate the motion we can either simplify or complicate the kinematic description.
Since this separation is not unique we will have to develop experience solving many
problems in order to learn the advantages and disadvantages of different separations of
motion.

With reference to Fig. 9.2 we can describe the general motion of point A in terms of
its position X, velocity v, and acceleration a, relative to the fixed origin O by separating
the motion into the sum of the motion of point B, with position vector X and the motion

of A relative to B, with the position vector p. Thus, we have

x=X+p ,x=x, , X=xp, (9.1a,b,c)
V:).(‘f'[.) ,V:VA,).(:VB, (9.1d,e,f)
a=§+; ,aZaA,iz:aB. (9.1g,h,1)
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In (9.1) the subscripts A or B are used to denote quantities characterizing the motion of

the points A and B. Also, the position vector p, velocity p , and acceleration p, describe
the relative motion of point A relative to point B. Sometimes it is convenient to express

these vectors in alternative forms that emphasize their relative nature

P=XppB=Xp—Xg » (9.2a)
P =VAB=VA—VB > (9.2b)
p=a,pg=a,—ag, (9.2¢)

where the notation x 5 5 denotes the position of A relative to B.

ABSOLUTE AND RELATIVE MOTION

Motion relative to a fixed point in space is called absolute motion whereas motion

relative to a moving point is called relative motion. Thus, with reference to Fig. 9.2, the

quantities X,, V,, a, are called the absolute position, velocity, and acceleration,
respectively, and the quantities X, /5, V5 g, a5,p are called the relative position, velocity,

and acceleration, respectively.
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10. Rotating Coordinate Axes and Angular Velocity
In the description of relative motion it is often convenient to use a rotating coordinate

system like the one shown in Fig. 9.1. Here and throughout the text we let e, be a fixed
right-handed orthonormal set of coordinate axes and let e; be another right-handed

orthonormal set of coordinate axes that is allowed to rotate in space. By way of

introduction let us first consider the simple case where e; rotates about a fixed axis e3,

which for convenience is identified with e5 (see Fig. 10.1). Thus we take

e] =cosO e, +sinOe, , (10.1a)
e, =—sin0 e; +cosO e, , (10.1b)
e} =e; . (10.1c)
e2 A
€
€]
0(t)
€1
Fig. 10.1

Since e are fixed their derivatives vanish (éi =0) so differentiation of (10.1) yields

¢} =0 (—sinde, +cosdey) = Oej (10.2a)
éé =0 (—cosb e; —sin0e,)=—0e , (10.2b)
e} =0 . (10.2¢)

Now from Fig. 10.1 we observe that the angle 0 characterizes the rotation of the e} axes

L]

about the fixed e} axis so that O characterizes the angular velocity. In this regard it is

important to emphasize that the origin of the rotating coordinate axes e} can move without
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changing the description (10.2). Furthermore, by introducing the angular velocity vector

® defined by

o=0e;, (10.3)

we can conveniently rewrite equations (10.2) in the compact form

c=oxel (10.4)

1
which explicitly states that @ is the angular velocity of the e} coordinate axes.
In the above we have proved equation (10.4) for the special case of rotation about a
fixed axis in space. However, it can be shown that (10.4) holds even if the angular
velocity @(t) is a function of times whose magnitude and direction change. To prove this

we recall that since ! form an orthonormal set of axes they satisfy the conditions

¢ e =3 . (10.5)

In view of the fact that (10.5) is symmetric in the indices (i,j) these equations represent

six constraints on the nine scalar quantities that characterize the three vectors e;. Thus,
the coordinate axes e} have only three degrees of freedom, which correspond to three

independent rotations. To show that (10.4) is consistent with the constraints (10.5) we

differentiate (10.5) to obtain

¢leeltelee=0 . (10.6)

Next, substitution of (10.4) into (10.6) yields

ei.qi—keioej:(mxei)oej+ei0((‘0Xej):mo(eixej)‘i‘m'(ejXei) )

=c0°[e;><ej+ej><ei]=0. (10.7)

This means that the differential equations (10.4) satisfy the differential form (10.6) of the

constraint (10.5) so that the vectors e; calculated by integrating (10.4) for arbitrary @ will
remain an orthonormal set of vectors. Thus, the components ®; = @ ¢ e} of the angular

velocity @ represent the rates of rotation of the rotating coordinate axes about the each of

the axes e, respectively. Finally, we represent @ in terms of its magnitude ® and

direction e o
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O=me e ce =1, (10.8a,b)

o’ () ()
and note that the sign convention is chosen so that positive values of ® indicate counter-
clockwise rotation about the positive e, axes.
As an example we can reconsider the cylindrical polar coordinate axes shown in Fig.
10.2 and take
e|=e. , e =ey ,e3=ey . (10.9a,b,c)

Noting that the angular velocity o is given by

0=0e; , (10.10)

the derivatives of the vectors e_eg,e; may be calculated using the formula (10.4) to obtain

érzmxerZGee , (10.11a)
cp=wxeg=-0e, (10.11b)
e;=@xe;=0. (10.11¢)

De

€3
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11. General Differential Operator

Returning to our discussion of relative motion we note that vectors can be referred to
any complete set of base vectors. Thus, with reference to Fig. 9.2 the vector p, which
describes the position of point A relative to point B, may be represented in terms of the

base vectors €] and its components p; relative to €; such that

P=Dje€ . (11.1)
Since in dynamics we are interested in the time rate of change of vectors it is important to
emphasize that whenever we introduce a set of base vectors like e; we must also define
the angular velocity @ with which the base vectors are rotating. To emphasize this we
write
=®X e (11.2)
which explicitly indicates that o is the angular velocity of the base vectors ej. This is
particularly important when we use more than one set of rotating base vectors so that
more than one angular velocity is used.

Now, differentiation of (11.1) and use of (11.2) yields
p =pjej+pje, (11.3a)
p =pjej+ox(pje). (11.3b)
Thus, the derivative of p naturally separates into two parts

f)=%$+co><p, (11.4)

where the operator 6( )/t is defined as the frame derivative by

o .
SoDie (11.5)

The physical interpretation of these terms may be explained as follows:
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Sp e, The frame derivative of p is the rate of change of the

st Pif vector p measured relative to e; assuming that ej do not
rotate.

OXp The rate of change of the vector p due to the rotation of

the coordinate axes €.

The differential operator (11.4) is sometimes called the general operator because it is

valid even if the coordinate system is rotating. It is important to emphasize that the
angular velocity o that appears in (11.4) characterizes the rate of rotation of the same
coordinate system in which p is represented. For example, if we were to consider a

second coordinate system with base vectors e;' which rotate with angular velocity Q

er=Qxel (11.6)
Then the general operator (11.4) would take the form

op
ot

op

p= QXD = piel . (11.7a,b)

Recalling that the vector product @ x p may be calculated using the determinant
e] e, e3
@xp=| O 0 O3 (11.8)
P Py P3
it is very convenient to calculate the derivative of a vector referred to a rotating

coordinate system by writing the following table.
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e € e3
[0 0)'1 oaé oaé
p pi P) P3
§E * 1 * 1 ° 1
St P1 |9} P3

® X P ®3P3~ ©3P; ~®1P3F ©3P] ®1P2 = ©2P]
p pi Ps P3
+ 0y p3— 037 — O] p3 T O3P] topy;—0)pg

Using the general operator (11.4) we can calculate the derivative of any vector. For

example we can calculate the relative acceleration p in the form

;:%EJF(DXI.), (11.9a)
t
*_05rdp 3p
p_Bt[8t+mXp]+mx[6t+wxP] s (llgb)
 3%p  da 3p
p_6t2+5t xp+2(o><8t +ox(@xp) . (11.9¢)

However, using the general operator (11.4) the angular acceleration (:) is given by

.S _ S
® =5 +tOxX0= S5t (11.10)

so the relative acceleration (11.9¢) becomes

o §2 . S
p=§g+m xp+2m><g‘t2+(ox((oxp). (11.11)
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The physical interpretation of these terms may be explained as follows:

3p The acceleration as measured relative to e assuming that
S5t e; do not rotate.
@ XPp The acceleration due to the angular acceleration @ of the

coordinate axes €.

op
20x% The Corriolis acceleration
o x (0 x p) The Centripetal acceleration
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12. Spherical Polar Coordinates

For spherical polar coordinates the position vector x of a point is defined in terms of
the three coordinates {R,0,¢} (see Fig. 12.1)

x=Rer(0,9) , (12.1)

and all vectors are expressed in terms of the right-handed orthonormal set of base vectors

{eR,ee,e¢} defined in terms of the cylindrical polar base vectors {e_.eq,e5}by

er(0,0) = cosp e . +sind e5 , (12.2a)
eg(0) =—sinb e + cosO e, , (12.2b)
e¢(6,¢) =—sind e .+ cosf e; , (12.2¢)

Since {eR,ee,e¢} are a right-handed orthonormal set of base vectors they satisfy the

relations
egceg=1, egceg=1 ,e¢-e¢=1 , (12.3a,b,c)
eR-eGZO,eR-ed):O,ee-e(b:O, (12.3d,e.f)
eR X €y =€y , €y X eR =€y , €gxe;=ep . (12.3g,h,1)

In order to calculate derivatives of vectors expressed in spherical coordinates it is
necessary to calculate derivatives of the base vectors. This can be done directly by

deriving the formulas

6e—R = ae—R = 12.4a,b
P =cosd ey , 26 =€ > (12.4a,b)
oeqy ' oeqy
20 =—cosf ep + sing €y % =0, (12.4c,d)
oe oe
=0 _ = _
ae = — Sln(b ee ) a(l) - eR > (12'4e’f)

and using the chain rule of differentiation. Alternatively we may take

ej=ep , e)=ey ,€3= €y (12.5a,b,c)

and write the angular velocity o in the form (see Fig. 12.1)

0=0e;— ¢ e . (12.6)
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Fig. 12.1

Notice that in (12.6) 0 represents the angular velocity about the e; axis and (I) represents

the angular velocity about the (—eg) axis. Furthermore, using (12.2) we can express the

vector e in terms of the spherical base vectors such that
ey = sing ep + coso €

so the angular velocity @ becomes

0)=6sin¢eR—(I)ee+Ocos¢e¢ .

Now the rate of change of the base vectors may be calculated by
éRza)xeRzecosq)eeﬁL&)ed) ,
éezmx ee=—ecos¢eR+9sin¢e¢ ,

éd):coxed):—(I)eR—Gsind)ee .

(12.7)

(12.8)

(12.9a)

(12.9b)

(12.9¢)

Using the procedure described in the last section we can calculate the velocity and

acceleration in spherical coordinates and the results are summarized in the following

table.
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Spherical Polar Coordinates

e e
R €y ¢
(O] I . "
0 sind s 0 cosd
X R 0 0
Ox
ox . 0
ot R 0
® xX 0 R 0 cosd RcI)
\% ° L4 o
R R 0 cosd R¢
I.{Gcosd)
ov o Rd
St R + R 6 cosd
_R 0§ sind R
_R.z e ® .
® XV . ¢ —R ¢ 0 sind R 62 cos¢ sind
_ 2 2 o o o o
R 6% cos"¢ +R 6 cosd +R ¢
R. R 0 cosd Ra;
a _Rd)z o ® .
. +2 R 0 cosd + R 02 sin¢ cosd
7Rez 2 ° o o o
cos9 _2R 0§ sind +2R ¢
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13. General Rigid Body Motion

e Fig. 13.1

A body is said to be rigid if the distance between any two points remains constant.

Letting A and B be two points on the rigid body (see Fig. 13.1) we have

| XA/B ]2=XA/B°XNB=constant . (13.1)
It follows that the angle O between any two material lines on the rigid body remains
constant (see Fig. 13.2) so that we can attach a coordinate system e; to the body that will

remain orthonormal. This coordinate system is called a body coordinate system. Since

the coordinate system e! is attached to the body its angular velocity @

¢=0xel (13.2)

1 2
is the same as the angular velocity of the rigid body. Now with reference to Fig. 13.1 it is

apparent that a rigid body has 6 degrees of freedom: 3 translational degrees of freedom

characterized by xg ; and 3 rotational degrees of freedom characterized by @.

The relative velocity between two points A and B on a rigid body may be determined

by referring the relative position vector to the body coordinate system

XAB=P=Dj€ . (13.3)
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Fig. 13.2

Then, use of the general operator (11.4) and the expression (13.2) we have

)
VAB=P =3 TOxp. (13.4)
However, since A and B lie on the rigid body and e} is a body coordinate system the

coordinates p; are constant so that op/5t vanishes

ox
op _TAB -
and (13.4) reduces to
VAB=®XXpR - (13.6)

Note that this means that the relative velocity v, is perpendicular to the relative
position vector X, 5 so that
Vap*Xap=0 . (13.7)
Also, note that the result (13.7) is consistent with the basic definition of a rigid body
because it can be obtained by differentiating (13.1).
Furthermore, it follows from (13.6) that the velocity of a general point A may be
expressed in the form
VAT VR TOXX,p - (13.8)
Then, the acceleration of point A can be determined by differentiating (13.8) and using

(13.6) to obtain
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aA=aB+(;)xxA/B+co><(mxxA/B) . (13.9)

Next, we develop a formula to determine the angular velocity o of a rigid body using
the velocity of three points A,B,C on the rigid body. Specifically, using (13.6) the

relative velocity v~ /5 becomes
Ve = ® X XoR > (13.10)
so that v, 5 and v are both perpendicular to the angular velocity ®. This means that
the vector v, g X v g is parallel to ®. Consequently, with the help of (13.10) we have
VaB X Vo = VAB X (@ X Xc/p) - (13.11)
However, the vector triple product may be expanded with the help of (2.16) to obtain
VaB *Ves = (Va * XeB) @~ (Vap * @) Xcyp - (13.12)

Since v, is perpendicular to @ we can solve (13.12) for @ whenever (v, 5 * X /) does

not vanish
Vaim XV
A/B C/B
0= .. - (13.13)
VaB * Xc/B
Moreover, it is noted that
VaB* X = (@ XXy p) * Xo g =@ * (Xp X Xcp) - (13.14)

Thus, in order for (v, g * Xc/p) to be nonzero @ cannot lie in the plane of X, 5 and X/,
and (x,,g X Xc/g) cannot vanish, which means that the points A,B,C cannot lie on the
same line.
If @ lies in the plane of X )5 and x5 and (x5 X X/p) does not vanish then
0=AXx,g+Bxcp , (13.15)
However,
VAB = ®XXpB =~ BXppXXcp 5 Vo T @ X Xcg = AXpp X Xcp 5 (13.16)
which yields

[VC/B * (Xp/B X X/B) [VA/B * (Xa/B X X¢/B)

Xa/B % X8l Xa/B % Xc/Bl
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Fig. 13.3

If we only have knowledge of the velocity of two points A and B on a rigid body
(such as the velocity of the end points of a rigid bar; Fig. 13.3) then we cannot determine
all components of the angular velocity. In particular we cannot determine the component

of the angular velocity in the direction of the relative position vector x, 5. Letting L be

the length of the vector x, 5 and e, 5 be the unit vector directed from B to A

xap=Leyp - eapeap=1 (13.18a,b)

and taking the vector product of (13.6) with x, 5 we may deduce that
XA/B X VaB = XaB X (@ X Xzp) =(Xpp * Xap) @ (Xop* @) Xpp
=L? [0 (exp° @) el - (13.19)

Thus, the normal component @, of the angular velocity @ of the bar is given by

XA/B * VA/B
O, =0 (®°eyp)erp= T . (13.20)
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14. Instantaneous Screw Motion Of A Rigid Body

axis of rotation

Fig. 14.1
In this section we show that the general motion of a rigid body can be described by
the motion of a screw with the rigid body rotating about an axis in space and translating
parallel to this axis. This screw motion is considered to be instantaneous in the sense that
the axis of rotation and velocity of translation can change with time.
For convenience we express the angular velocity ® of the rigid body in terms of its
magnitude o and direction e by

O=ne e *e =1, (14.1a,b)

o (O] (O]
and recall from (13.8) that the velocity of a general point A on a rigid body may be

expressed in terms of the velocity vy of another point on the rigid body by the formula
VA=Vt @ xXX,p - (14.2)
Taking the inner product of (14.2) with the vector e ; we may deduce that

Vpoce,=Vgee, . (14.3)

50



This means that all points have the same component of velocity in the e direction. In
other words, the body is advancing in the e, direction with uniform velocity.
Furthermore, since v, is not necessarily parallel to e we realize that the body is also
rotating about some axis parallel to e . To find this axis of rotation, let X locate an

arbitrary point on this axis of rotation and note from (14.3) that all points on this axis

have the same absolute velocity which is parallel to e so that
ve=(vgee,) e, . (14.4)
However, since all points C are attached to the same rigid body we may write
Ve=Vg T @ XX - (14.5)
Using the fact that @ is parallel to v it follows that
0=@XVe=@xX Vg +@x (& Xc/R)
O=oxvgt(@*Xcp)® —(®°0)Xcp (14.6)
so that the relative position vector X3 may be written in the form

® X Vg (@ Xc/p) ®

+ , 14.7
®? ®? ( 3)

XeB ™

WXV
B
XC/B: XD/B +Sew . XD/B: 0)2 ,XC/D:SC(D , S:XC/B ’Cm. (147b,C,d,e)

Notice that the vector xp 3 is perpendicular to e, so it locates the point D on the axis of

rotation that is closest to the point B (see Fig. 14.1). Also, the scalar s in (14.7¢c)
determines the location of an arbitrary point on the axis of rotation as measured from the
point D.

In summary, the rigid body is instantaneously rotating with angular velocity o about

the axis DC at the same time that it is advancing in the direction e with uniform velocity
(Vg * e,,) so the motion can be described as motion of a screw.

For the simpler case of planar motion in the e;—e, plane the angular velocity o is in
the constant e; direction

O=0e; , (14.8)
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the velocity vy is in the e;—e, plane so the velocity v~ of points on the axis of rotation
vanishes. Thus, the intersection of the axis of rotation with the x;=0 plane is the

instantaneous center of rotation and is given by (14.7b) with s=0

(DXVB e3XVB

XB” T2 T e (14.9)

The formula (14.9) indicates that the instantaneous center of rotation is located along a

line perpendicular to the velocity vy and a distance |vg| / |@| from point B (see Fig. 14.2).

It is important to note that ® in (14.8) can be positive or negative so the sign of ®

controls the direction of X in (14.9). Furthermore, since v vanishes the velocity of an
arbitrary point B on the rigid body is perpendicular to the relative position vector Xg)

because

VE= Ve T @ X Xg,c=® X Xg/c - (14.10)

C <— axis of rotation

Fig. 14.2
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15. Contact of Bodies

Time t = t

MH
XP"/MII
Body B"

Fig. 15.1
In this section we study the conditions that describe contact and sliding of two bodies.
To this end, consider two bodies B' and B" that are both translating and rotating in space.
Let e} be a body coordinate system attached to B' which rotates with angular velocity @'

so that

C=oxel (15.1)

In what follows it is necessary to distinguish between the locations and velocities of

various points. For example, let M' be the material point on body B' that at time t; was
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closest to body B" and let M" be the material point on body B" that at time t; was closest

to body B'. Also, let P' be the point in space that lies on the surface of body B' (but is not
a material point) that is always closest to B". Similarly, let P" be the point in space that
lies on the surface of body B" (but is not a material point) that is always closest to B'. In
general, as bodies B' and B" move the points P' and P" traverse different material points
on the surfaces of bodies B' and B", respectively. Furthermore, since P' and P" are the
points of closest contact between the two bodies, the tangent planes to the bodies B' and
B" are parallel at the points P' and P", and the vector n that is directed from P' towards P"
is normal to these tangent planes (see Fig. 15.1).

Here we are interested in conditions that determine whether the bodies are in contact
and whether they will remain in contact or tend to separate. To this end, we note that if

the vector xp,pn vanishes then the two bodies are instantaneously in contact, whereas if
the vector Xp,pn is nonzero then the bodies are separated. In any case, the normal
component vppr * 1 of the relative velocity between the two points P' and P" determines
whether the two bodies maintain contact (Vp,pn ® n = 0), are separating (Vp,pn * n < 0), or
are approaching each other when they are separated (vpypr * m > 0). In general, since P'

and P" move on the surface of the bodies B' and B", respectively, it is rather difficult to
determine their velocities. However, we will show presently that the normal component

vp' * n of the velocity of point P' is equal to the normal component v, * n of the velocity

of the material point M' on body B' that instantaneously coincides with P'. Thus, the
conditions of contact can be reformulated in terms of the velocities of the material points
M' and M", which are easily calculated.
The motion of P' relative to the material point M' can be described by the vector
Xpyw = Xpywr)i € (15.2)

so the velocity of P' relative to M' may be expressed in the form

SXPY/MI
VPV/MV = T + ®' X XP'/M' . (1533.)
SXP'/M' °
S = Gppaiel - (15.3b)
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Notice that since P' moves on the surface of body B' it follows that the vector (15.3b) is

instantaneously tangent to the surface of B' so that

8XP|/M|
o en=0, (15.4a)
Ve * M= (@' X Xppp) oM. (15.4b)

This means that in the limit that t approaches t; (and xp. approaches zero), the normal

component of the velocity of the point P' of closest contact with the body B" is the same
as the normal component of the material point M' which instantaneously coincides with P’
so that
Ve *N=0, vpen=vypen for xppp=0 . (15.6a,b)
Consequently, using a similar result for the velocity of P" relative to M"
Ve *N=0, Vpuenm=vymen for Xpum=0 . (15.7a,b)
it may be seen that
Vpypr * M= Vyppe o for Xponp = Xpopn =0 (15.8)
Thus, we can use the instantaneous velocities vy and vy v to make the following physical

interpretation of the relative velocity vy

VM * M= Normal component of the relative velocity which
measures the rate of approach (positive value) or

separation (negative value) of the bodies B' and B".

Vvom — (Vv M) 0= The slip velocity of the material point M' on body B'
relative to the material point M" on the body B".
It follows that if the two bodies B' and B" are in contact at some point in time they will
remain in contact if the relative velocity vy of the contact points M' and M" has
vanishing normal component. Furthermore, if vy, vanishes then the bodies remain in
contact and do not slip.
As an example consider a cylinder of radius r which rotates with angular velocity ®

about the ey axis and whose center B translates with velocity v in the negative e,

direction (see Fig. 15.2). At time t; the material point M' attached to the cylinder is in
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contact with a stationary horizontal plane at the material point M". It follows that the

velocity vy vanishes so that the velocity of point M' relative to point M" is given by
VM = YM =V T O X X\pg=—Vve t(oe)x(-1e,) , (15.9a)
VM = (or—v) e . (15.9b)
Since the relative velocity vy has vanishing normal component (vy;\r * €, = 0) the

cylinder remains in contact with the horizontal plane. Furthermore, if or > v then point

M'is sliding in the positive e, direction relative to the fixed point M" and if wr < v then
M' is sliding in the negative e, direction relative to M". Finally, if wr = v then the

relative velocity vy, vanishes and the cylinder rolls without slipping.

€2 I Time t=1t; ’\“)
(¢ v

P'(ty)
M"

P'(t) P'(ty)
M"

Fig. 15.2
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16. Kinetics of a Particle

In the previous sections we have devoted most of our attention to the study of
kinematics of particles and rigid bodies by learning how to analyze position, velocity and
acceleration. Such kinematical quantities are considered to be primitive quantities
because they can be measured directly. In this section we introduce the notion of force
which is a kinetical vector quantity that usually is measured indirectly. In particular, the
magnitude of a force is often measured by comparing it to the weight of an object or by
using the displacement of a spring, which itself has been calibrated by measuring the
weights of standard objects.

Obviously, the direction of a force matters because when we push an object in one
direction it tends to move in that direction, whereas when we push it in the opposite
direction it tends to move in the opposite direction. In fact, for rectilinear motion it can
be shown that the acceleration is in the same direction as the force. To see if this
observation remains true for more general motions we can consider the motion of a ball
on a smooth (frictionless) horizontal plane that is confined to move in a circle by a string
that is attached to a weight (Fig. 16.1). The first thing that we can observe is that the
acceleration vector rotates and is always pointed towards the center of the circle.
Specifically, the acceleration vector a always points in the same direction as the force
vector F which is applied to the ball by the string. Mathematically this means that F is
parallel to a

F||a. (16.1)
By keeping the weight constant and changing the radius of the circular path we can
observe that the angular velocity of the ball changes in such a way that it preserves the
magnitude of the acceleration. Furthermore, by using the same ball but taking different
weights we can determine that the magnitude of the force F applied by the string on the
ball (which is equal to the weight applied) always remains proportional to the magnitude

of the acceleration. Thus, for different forces {F, , F, , F5 } and associated accelerations
{a;,a,,a;} wehave

[Fi I K[ | F;

lay | B |a, | B |a3| -

m , (16.2)
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where the constant of proportionality m is a property of the ball which is called the mass

of the ball.

i

NEWTONS LAWS OF MOTION
Sir Issac Newton (1642-1727) was the first to discover the correct laws of motion of
particles which are summarized as the following three laws of motion:
Law I: A particle remains at rest or continues to move in a straight line
with uniform velocity if there is no unbalanced force acting on it.
F=0 = v=constant . (16.3)
Law II: The resultant force F acting on a particle is equal to the rate of

change of linear momentum.

d(mv

F=""4

(16.4)

Law III: The forces of action and reaction between interacting bodies are
equal in magnitude and opposite in direction (Fig. 16.2).

(F 5 /g 1s the force applied by body B on body A)
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CONSERVATION OF MASS
For our purposes we will only consider bodies that have constant mass so we may
write the law of conservation of mass in the form

%—T —m =0 . (16.6)

BALANCE OF LINEAR MOMENTUM

Newton's second law of motion is referred to in modern terms as the balance of linear
momentum. In words it states that the rate of change of linear momentum (mv) is equal
to the total external force F applied to the body. In view of the conservation of mass
(16.6) the balance of linear momentum can be written in the form

d d
§ —mgq —ma=F. (16.7)

It is important to emphasize that the velocity v and the acceleration a in the balance of
linear momentum must be absolute not relative quantities so they must be measured
relative to a fixed point.

Since the balance of linear momentum is a vector equation it may be expressed with
respect to any convenient set of base vectors. For example, if we consider two sets of

rectangular Cartesian base vectors e; and e;' we may write the following scalar equations
F,=ma, (¢,*F=me,a), (16.82)

Fi=ma; (el*F=me/°a). (16.8b)
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Similarly, if we refer the vectors to the cylindrical polar base vectors {e_, eg, e} or the
spherical polar base vectors {ep , €q, e¢} we may write
F,=ma, , Fg=may , F;=ma, , (16.9)

or

FR=maR,F9=ma9,F¢=ma¢. (16.10)

FREE BODY DIAGRAM

In order to correctly translate a physical problem into a mathematical problem in
dynamics it is essential to carefully draw a free-body diagram which isolates the body of
interest and includes all external forces acting on the body (Fig. 16.3). In this regard we
should emphasize that the force F appearing in the balance of linear momentum is the

resultant force which is the sum of all external forces acting on the body.

P

£\

Fig. 16.3

In the above we have focused attention on Newton's second law of motion which we
call the balance of linear momentum. This is because the balance of linear momentum
actually contains Newton's first and third laws as special cases. It is obvious from the
balance of linear momentum (16.7) that when the resultant force F vanishes the velocity

of the particle is constant because
F=O:>a=\.1=O:> v = constant . (16.11)
Thus, we have proved Newton's first law.

To prove Newton's third law from the balance of linear momentum we return to Fig.

16.2 and note that F, and F are the external forces applied to the macroparticle which is

composed of the two particles A and B. Assuming that the particles are small enough
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and remain in contact it follows from continuity that they both move with the same
acceleration a

a,=ag=a . (16.12)

Letting m, be the mass of particle A and my be the mass of particle B, the balance of

linear momentum applied to the macroparticle of total mass m ,+ mg yields the equation

F, +Fg=(my+mg)a . (16.13)

Alternatively, we can consider the free body diagrams of the particles A and B separately

and denote F,  as the internal force (contact force) applied by particle B on particle A,
and denote Fg,, as the internal force applied by particle A on particle B. Then the

balances of linear momentum of each of the particles may be written in the forms

Fy,+Fypg=mypa, Fg+Fg,,=mga . (16.14a,b)
Next, we add equations (16.14a,b) and subtract (16.13) from the result to deduce that
F,pt+Fga=0, (16.15)

which proves Newton's third law. The main theoretical point associated with this proof is
the basic assumption that the conservation of mass and the balance of linear momentum
are valid for any arbitrary part of a body (which in this case includes both the

macroparticle and the two particles, separately).

D'ALEMBERT'S PRINCIPLE
In order to extend the principle of virtual work for static problems to dynamical
problems d'Alembert (1717-1783) introduced the notion of the "force of inertia" I,
defined in terms of the mass of a particle and its absolute acceleration by
I =—-ma . (16.16)
Using this definition the balance of linear momentum (16.7) can be rewritten in the form
F+1I=0. (16.17)
This changes the balance of linear momentum into a principle that states that every body
is in a state of "dynamical equilibrium". In our opinion, the introduction of the concept
of an inertial force confuses the concept of force since acceleration is a kinematical
quantity that can be measured independently of the concept of force and mass is an

intrinsic property of the body that is independent of the particular motion of the body.
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Furthermore, the introduction of the concept of "dynamical equilibrium" does not
simplify the formulation of the balance of linear momentum because it still requires the
calculation of the absolute acceleration a. Also, since the balance of linear momentum
and the principle of "dynamical equilibrium" (16.17) are mathematically identical, any
mathematical operation performed on equation (16.17) can be performed on equation

(16.7) to obtain the same result.

TWO MAIN PROBLEMS IN DYNAMICS
There are two main problems in the study of dynamics which can be summarized as
follows:
Problem I: Given the motion and mass of a particle, determine the
resultant force necessary to create this motion. This problem is relatively
simple because we just need to differentiate the motion to determine the
absolute acceleration and then use the balance of linear momentum to
determine the resultant force.
Problem II: Given the resultant force acting on a particle and its mass,
determine the motion of the particle. This problem is much more difficult
than problem I because we need to integrate the equations of motion.
Because of the analytical difficulty with integrating the set of nonlinear equations of
motion that usually result in dynamical problems we will focus most of our attention to

either problem I or to the formulation (but not solution) of problem II.
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17. Vibrations

In this section we consider the physically important problem of both free and forced
vibration of a damped spring-mass system. To this end, let us first consider the simple
problem of free vibrations of the undamped spring-mass system shown in Fig. 17.1. The
spring has a free length L and spring constant k and the body has mass m. Friction is

neglected but gravity is included.

e A x(t)
2
lg
e1 L
AAAY I;Z;II}?I;I;I;Z
k,L BUBEES

k(x—L) [

Fig. 17.1

Recalling that the force in a spring is equal to the spring constant k times the change
in its length relative to its force-free length L, we may use the free body diagram of the

mass m in Fig. 17.1 to write the resultant external force F in the form
F=-k(x-L)e;+t[N-mg]e, , (17.1)
where N is the contact force that the horizontal plate applies to the mass and mg is the
force of gravity. Notice that the origin of the coordinate system has been chosen
conveniently so that x is the current length of the spring and the position of the mass.
Furthermore, since the mass is only allowed to move in the horizontal direction its

acceleration is given by

a=x e . (17.2)
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Thus, the balance of linear momentum yields the following vector equation

—k(x—L)e1+[N—mg]e2=m.x.e1 , (17.3)

which gives the following scalar equations

mx +k(x-1)=0, N=mg . (17.4a,b)
The first of these equations is a differential equation to determine the position x of the
mass and the second merely states that the contact force is equal to the force of gravity.

Noting that L is constant, equation (17.4a) may be rewritten in the form

d? k

2 *-D +o(x-L)=0, oan2=a , (17.5a,b)

where the constant w_ is called the natural frequency and it has the units of inverse time.

The general solution of (17.5a) may be written in terms of sines and cosines and takes the
form

x—L=A;sin(o,t) + A, cos(m,t) , (17.6)

where A, and A, are constants of integration to be determined by the initial conditions

x(0)=x, » x(0) =v, . (17.7a,)

However, for ease of interpretation it is more convenient to rewrite (17.6) as

A Ay
x-L=A[7% sin(o)+ 5 cos(ot)] , A=(Af +A)2 (17.8ab)

and recall the trigonometric relation
sin(w,t +¢) = sin(w,t) cosd + cos(m,t) sing , (17.9)
to deduce that the general solution of (17.5) may be expressed in the alternative form
x —L=Asin(ot+¢) . (17.10)
In (17.10) it is easy to see that A is the amplitude of the vibration and ¢ is the phase
angle. These constants (A,¢) are determined by the initial conditions (17.7) which yield

the equations

Xg—L=Asing , vjp=A o, cosd . (17.11a,b)
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Furthermore, using the fact that sin?d + cos?¢ = 1 we can determine the value of the

_ AR
A=|(xg-L)*+ | . (17.12)

n

amplitude A by

Then the phase angle ¢, which is restricted to the range [0 < ¢ < 2x], is uniquely
determined by the two equations (17.11a,b). The general solution (17.10)-(17.12)

indicates that the spring-mass system vibrates freely with the natural frequency ®, and

the amplitude of the vibration is determined by the initial conditions. Notice from

(17.5b) that o, decreases as the body becomes more "massive" and thus has more

inertia. Also, o increases as the spring becomes stiffer with a larger spring constant.

x(t)

Fig. 17.2
Next we consider the more complicated but also more realistic case of forced

vibration of a damped spring-mass system (Fig. 17.2). For this case we include a dashpot

damper that creates a force c(x — s) that resists the relative motion between the two ends
of the dashpot. This resisting force is modeled as a linear function of the relative
velocity, with the damping coefficient ¢ being a property of the dashpot. Furthermore,

for this case the base of the spring and dashpot is forced to move with the motion
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described by s(t). Also, since the current length of the spring is given by (x — s) the

resultant force applied to the mass becomes

F=[-k(x—-s—L) —c(x —5)] e, +[N-mge, . (17.13)
Since x is the position of the mass m measured relative to a fixed wall, the absolute

acceleration of the mass is still given by (17.2) so the vector equation representing the

balance of linear momentum is given by

[k(x—s—L) —c(x —s)]e; +[N-mgle,=m X e, , (17.14)

and the two scalar equation become
mx +k(x-s—L) +c(x —5)=0 , N=mg . (17.15a,b)
By dividing (17.15a) by the mass m and using the definition (17.5b) for the natural

frequency w, we may rewrite (17.15a) in the form

o0 c o o0

w+5w+m w=—8§ ,w=x-s—L, (17.16a,b)

=31}

where the quantity w denotes the extension of the spring from its stress-free length L.
Integration of (17.16a) requires the specification of the function s(t) and the initial
conditions (17.7).

In order to understand the influence of damping we first consider the case of free
damped vibrations for which the base is held constant so that s(t) vanishes and the

balance of linear momentum (17.16a) reduces to

(1] C °

WH+—w +o: w=0 . (17.17)
m

n

By using the transformation

w(t) = exp(— %) &) , (17.18)
together with the results
W = exp(- ) [E 50 &1 (17.19)
) () . 2
W= exp(- 3o ) [E ~ & +(ﬁ) £ . (17.19b)

we can transform (17.17) into the simpler form
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£+ (1-C)E=0 , c=2mlo (17.20)

n b
where C is a non-dimensional damping parameter. Now, the initial conditions (17.7) with

the definitions (17.16b) and (17.18) to deduce that

w(0) =x5—s(0) —L , W(0)=v,—5(0) , (17.21a,b)

E0)=w(0) , £(0) = W(0)+ Lo, w(0) , (17.21¢,d)
Noting that (17.20) is similar to (17.5a) we obtain three types of solutions which are

differentiated by the relative value of the damping coefficient C.

Underdamped (§ <1)
w(t) = exp(- o t) A sin(o't+¢) , (17.22a)

o = \1-C2, (17.22b)

A= 1E0) + (e (17.220)
sing = % £(0), cosd = Ai)* £(0) . (17.22d,¢)
Critically Damped (€ = 1)
w(t) = exp(— 1) [£(0) + £(0) ] , (17.23)
Overdamped (§ > 1)
w(t) = exp(- Lo t) A sinh(e't+¢) , (17.24a)

o' =0, \NC-1, (17.24b)

A=z 2oz, (17.240)
sinh¢ = % £(0), coshd = A;* £(0) . (17.24d,¢)

In deriving the solution (17.24a) we have followed similar procedures used to derive the

solution (17.10) and have used the hyperbolic identities
sinh(m't + ¢) = sinh(®"t) coshd + cosh(w™t) sinh¢ , (17.25a)
cosh?¢ — sinh?p =1 . (17.25b)
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Notice that because of the presence of the exponential terms in (17.22a),(17.23a) and
(17.23a) each of these solutions yields the same equilibrium solution of vanishing w for
long times (large values of t). More specifically, (17.22a) is called an underdamped
solution because it exhibits oscillations that damp to zero; solution (17.23a) is called
critically damped because the damping coefficient { attains its critical value (C=1, the
minimum value necessary to damp to zero without any oscillation); and solution (17.24a)
is called overdamped because  attains a value larger than its critical value. This response

for v = 0 is shown in Fig. 17.3 for different values of the damping coefficient C.
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S -0.5 =0.1}
=t IV E=1.0
S0 " -6720

00 50 100 150 200

o)nt
Fig. 17.4

The above solution indicates that when damping is present ({ >0) the homogeneous
solutions of (17.16a) damp out so that after a reasonably long time the only solution that
remains is the particular solution. As a special case let us consider the problem where the

base vibrates with frequency ® and amplitude s, such that
s(t) = s sin(wt) , (17.26)

so that (17.16a) reduces to

o0 C o

Wt w 2w = So o? sin(ot) . (17.27)

n

Now, the particular solution Wy, of (17.27) may be written in the form

wp(t) = A sin(ot + ¢) , (17.28)
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where the amplitude A and phase angle ¢ are to be determined. Substituting (17.28) into
(17.27) we obtain

A [(mﬁ — ®2) sin(ot + ¢) + 2Cw, o cos(ot + ¢)] = sooaz sin(ot) (17.29a)

A [((’0121 — ®?) {sin(ot) cos(d) + cos(wt) sin(d)}

+ 200,00 {cos(mt) cos(d) — sin(wt) sin(dp)}] = s, o? sin(ot) , (17.29b)
(o% 20w,
AT — D cos(¢) — == sin(§)}sin(wt)
corzl 20w,
+ {(@ — 1) sin(¢p) + o cos(¢)}cos(mt) ] = 8¢ sin(ot) . (17.29¢)

It follows that the term cos(wt) can be eliminated by appropriately specifying the phase
angle ¢ so the solution becomes
A=3,G(0,C0) , (17.30a)
1

G0nG0) = o2 P (2o 22’
ERES]
w ()]

20w, (03121 ]
sing = — "o G(o,,C.0) , cosd= E - 1] G(o,,Co) , (17.30c,d)

(17.30b)

where G(w,,C,m) is called the amplification function because it determines how much the
amplitude A of the response w is amplified relative to the forcing amplitude s,,.

From a physical point of view we are often more interested in the absolute motion of
the mass instead of its motion relative to the base which is described by w. Thus, using
(17.16b), (17.28) and (17.30) the solution for the position x of the mass becomes

x(t) = L + s sin(wt) + G(0,,C,0) s, sin(ot + ¢) . (17.31)
This solution can be written in the simpler form
x(t) = L + s, g(o,,C,0) sin(wt + D) , (17.32)
where the amplification function g and the phase angle ® associated with the absolute
motion of the mass are determined by the equations

gcos® =1+Gecosp , gsind =Gsing . (17.33)
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Now using the results (17.30b,c,d) we may deduce that

g2 =(1+ G cosh)? + (G sind)?> = 1 + 2G cosd + G2 , (17.34a)
B 2 Tlir
1+ 4(;2[2)
('011
g= 3 . (17.34b)

(-2 2]

The main physical implications of this solution can be observed by considering the
following limiting cases:

Limit o << O,

grl, ®=0, x(t)=L+5s(t), (17.35a)
Limit o = o
1 1
8~ 3¢ \J1+4¢2 , ®~ — tan’] (2_C)’ (17.35b)
Limit 0 >> o,
T
gzO,CDz—E , X(t)= L , (17.35¢)

This means that for very low forcing frequencies (w<<w, ) the mass moves with the base;
for very high forcing frequencies (0>>w,) the mass is isolated from the base vibration

because it does not move at all. Furthermore, for very low and very high forcing
frequency the limiting solution is independent of the value of damping. In contrast, when

the forcing frequency o equals the natural frequency ®,, the amplitude of the vibration is

totally controlled by the value of damping and increases as the damping coefficient
decreases. More specifically, if the damping coefficient vanishes ({ = 0) then the
response amplitude becomes infinite. For this reason it is essential to design a
mechanical system to have natural frequencies different from any expected forcing
frequency. This response can be seen graphically in Fig. 17.4 which plots the

amplification function g.
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18. Mechanical Power, Work and Energy (Particle)
In this section we consider notions of work and energy in particle mechanics. To this

end we first define the mechanical power P

P=F-v, (18.1)

of a force F acting on a particle with absolute velocity v. The mechanical power P is the

rate of work done by the force F on the particle. Letting U=U, ; be the work done on the
particle by the force F during the time interval t € [t;,t,] we may calculate U, by the

integral

t 5}
U=Uy, =] Pdt=] Fevdi. (18.2)
t t

In order to better understand the meaning of mechanical power let us consider the
simple case when P is constant so that the work U, is given by

U=U,, =P, -1t . (18.3)

It follows form (18.3) that in order to do a given amount of work (U,,; = constant) we

need a short time if the mechanical power P is large and a long time if P is small. For this
reason it is convenient to measure the strength of motors by the mechanical power that

they can supply.

Fig. 18.1

Sometimes it is convenient to think of F ¢ v as the projection of the force in the

direction of the velocity
P=Fey=F+s ¢=F,s . (18.4)

For example, when considering a particle moving in a stationary slot (Fig. 18.1) the

direction e, of the velocity is known to be tangent to the slot path. For this case equation

(18.4) means that the component of the force normal to the slot does no work. However,
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when the slot is not stationary then (18.4) still holds but e is no longer tangent to the path

of the slot so the component of the force normal to the slot does work on the particle.
R

Fig. 18.2
Sometimes it is convenient to think of F ¢ v as the projection of the velocity in the
direction of the force. For example, when considering the force of gravity acting between
two particles of masses M and m (Fig. 18.2) the direction of the force F is known
P=Fev=Fp(eg°vV) . (18.4)
If the force F is the total resultant force applied to a particle of mass m then the
balance of linear momentum (16.7) may be used to rewrite the mechanical power in the

form

d (1l .
P=F~v=ma-v=a(§mv-vj=T, (18.5)

where the kinetic energy T is defined by
1
TZE mvev. (18.6)
Now, substitution of (18.5) into (18.2) yields
b
£

which states that the work done by the resultant force applied to a particle is equal to the
change in kinetic energy of the particle. In order to emphasize that U in (18.7) is the
work done by the resultant force let us consider the example of a motor lifting a mass m
from position 1 to position 2 in a gravitational field (Fig. 18.3). Assuming that at the

beginning and end of the process the mass is at rest it follows that the kinetic energies T
and T, vanish so that the work U also vanishes. In order to explain how the work U can

vanish when we lift a weight we note that the resultant force F is composed of the force
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due to gravity and the force due to the motor. Since the work done by F vanishes we may

conclude that work done by the motor (which is positive) exactly balances the work done

ﬁooa
NN

]

by gravity (which is negative).

Position2: v=0| m

Position 1: v=0

Fig. 18.3
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19. Conservative Force Fields
The resultant force F that acts on a particle may be composed of two types of forces:
conservative forces which are denoted by F, and nonconservative forces which are
denoted by F
F=F_ +F, . (19.1)
It follows that the mechanical power P of the force F also separates into the mechanical
power P_ associated with the conservative forces and the mechanical power P
associated with the nonconservative forces
P=Fev=P . +P,.,P.=F v, 6 P =F_ °v. (19.2a,b,c)
Conservative forces are of interest because they have special properties that allow the

mechanical power P to be integrated easily.

Fig. 19.1

In general a force may be a vector function of position x and time t. However, if the
force is a function of position x only (independent of time)
F.=F (x) , (19.3)
then the work done by F_ can be expressed as an integral over position instead of time

t

2 X
U2/1 :J. FC.th :J. FC°dX . (194)
4 X
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For a general function F the work done traversing path C; from x, to X, is different from
that traversing path C, (see Fig. 19.1). However, if the work done by F_ is path

independent
X7 X7
I FC-dx=_[ F edx , (19.5)
Clle C22X1

then F_ is called a conservative force field. It follows from (19.5) that the work done by

a conservative force F_ depends only on the end points of integration so the integral over
an arbitrary closed path vanishes

$ F -dx =0 . (19.6)

It can be shown that F_ is a conservative force field with (19.6) holding for any closed
path if and only if there exists a potential V(x) which is a function of position only such

that

oV v

= —a i (19.7a,b)

where F; and x; are the components of F_ and x, relative to the fixed Cartesian base

vectors e;. Now, substitution of (19.7) into (19.4) yields

X> X ov X
U2/1=J F, * dx =J [—ax-dx]:f [~ dV]
X1 Xq X1
U2/1=—[V(x2)—V(x1)] =—(V2—V1) . (19.8)

This means that the work done on the particle by a conservative force equals minus the
change in potential energy.

Notice from (19.7a) that since a potential function exists for a conservative force F,
the conservative force field satisfied the vector equation

VxF,=Vx(=VV)=0 . (19.9)

It follows that if V x F_ = 0 and F is independent of time then F_ is a conservative force

field and a potential V(x) exists that is independent of time which is related to F_ by

equation (19.7a). These conditions can be used to check if a given force field is
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conservative or not. Tables 19.1 and 19.2 summarize useful vector formulas in
cylindrical polar coordinates and spherical polar coordinates, respectively.
Notice from (19.2b) and (19.7a) that the mechanical power of a conservative force is

equal to minus the rate of change of the potential

ov .
—o X =V, (19.10)

PC=FC.V=

because the potential V is independent of time. In order to understand why a

conservative force field must be independent of time we note that if a force field F,(x,t)
is a function of position and time and yet satisfies the equation

VxF, (x,0)=0, (19.11)
then a potential function V (x,t) of position and time exits such that

oV

nc

ox

F (x)=-VV_(xt)=— (19.12)

However, for this case the mechanical power P, associated with F, is not equal to the

total derivative of the potential because

oV
P =F ey=——r

ne nc T 0Ox

ov

nc

ot

‘X =V, + (19.13)

This means that F, is not a conservative force field because the work done traversing a

given path depends on the speed at which the path is traversed.

In the following we consider examples of four common conservative force fields and
one common nonconservative field.
CONSTANT FORCE FIELD

Let F, = b where b is a constant vector. Since F_ is independent of time and

independent of space it satisfies equation (19.9) so we know that F_ is a conservative

force field. The functional form for the potential Vy is obtained by integrating

oV,
Fc:7VVb s 6_X1:7FC1:7b1 , (19.14a,b)
to obtain

where V) is a constant of integration.
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GRAVITATIONAL FORCE BETWEEN TWO MASSES

R
RO
M Ll A
eR Fg
Fig. 19.2

The gravitational force acting between two masses M and m is a central force that
acts along the line connecting the center of mass of the two masses. Taking the origin of

a spherical coordinate system at the center of mass of the body with mass M, the force Fg

acting on mass m may be represented in the form

KMm
RZ2

F,=Fyep . Fup=FrR)=- (19.16a,b)

where K is a universal constant of gravitation. Denoting mg to be the magnitude of the

gravitation force at the surface (R=R)) of mass M we have

KMm gR3

|FgR(R0)|= R2 =mg , K=71 , (19.17a,b)

so that (19.16b) may be rewritten in the form

Ry\2
FgR: -mg|( L) - (19.18)
Now, since Fg is independent of time and is a central force field it follows from Table
19.2 that equation (19.9) is satisfied so that Fg is a conservative force field that is related

to a potential Vg by the equation

ov
— _ 2
F,=Fr(R) eg=— 72" e - (19.19)

Using (19.18) we have
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mR2

V =V, _[ FgR(i)de’;—V +IOO 2 dg , (19.20a)
ng%
Vg=Voo— R (19.20b)

where V _ is the value of the gravitational potential Vg at R=o0. It follows that the change

in potential energy is given by
11
Vg =V ngO (Rl R_2) >0 for R,>R; . (19.21)
This means that the gravitational potential increases as the distance between the masses

Increases.

GRAVITATION CLOSE TO THE EARTH

R= RO+ x3
- —)
‘R €5 3 m
Fig. 19.3

For the gravitational force field close to the surface of the earth the height x5 above the
surface of the earth is quite small relative to the radius R, of the earth so that the position

R of the mass m may be approximated by

X3
R=R,+x;=R, (1 +R0] : (19.22a)
1 1 1 X3
=z = o R0(1R0] , (19.22b)
Roll1+7
0 R,

so that the gravitational potential (19.20b) may be approximated by
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X

3
Vg =V, —mgR, (1 — R_O) =(V,—mgR) + mgx; , (19.23a)

Vg =Vy+tmgx; , Vo=V, —mgR, , (19.23b,¢)
where V,, is the value of the gravitational potential at the surface of the earth. Notice

again that the gravitational potential increases as the distance between the mass m and the

surface of the earth increases (x5 increases). At the surface of the earth the force of

gravity g per unit mass (often called the acceleration of gravity) is approximately 9.81

m/s2.

ELASTIC POTENTIAL OF A SPRING

R
=
YA o
m
—0O
F
(5]
m
Fig. 194

Consider a spring whose free length is L and whose elastic force acting on the mass m is
given by

F,=FRrR) ey . (19.24)
Since F is independent of time and is a central force field it is a conservative force field
with the potential V, given by

R
Ve - VO - IL FeR(a) dé ) (1925)

where V) is the constant value of V, when the spring is force free with R=L. For a linear

spring we have
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1
Fr=-kR-L), V,=Vy+ 5 k(R-L) . (19.26a,b)

NONCONSERVATIVE FORCE FIELD

e2“ x(t)
lg
e1 ST
AN m ......
k,L |
............. M

Fig. 19.5

An important example of a nonconservative force field is the force Fy due to sliding

friction. Consider the mass m sliding on a flat plane with friction coefficient p shown in
Fig. 19.4. The force of friction always opposes the direction in which the mass tends to

slide on the plane so Fcan be expressed in terms of the slip velocity v of the mass by

FfZ—MNﬁ for v#£0 , (19.27)

where N is the magnitude of the normal force applied by the plane on the mass. In order
to show that the friction force F is nonconservative we calculate the mechanical power
P due to Fg

Vev
V]

Thus the rate of work done by friction on the mass when it slides is always negative so

Pe=Fpev=—uN <0 for v£0 . (19.28)

energy is always dissipated and the force of friction is nonconservative.
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Table 19.1: Cylindrical Polar Coordinates
x=re(0)+x5e;
F=F e +Fyey+F;es

ov 1oV ov

VV=§ er-f-r 0 e9+a—X3 €3

o Tt o0 o

L e L e g L e 12

\Y% F—l
r

AV 16V 106*V 82V
2y ¢y LoV 10V OV
ViVTa Tt +r2592+ax§

Table 19.2: Spherical Polar Coordinates
x =R ep(0,0)

F:FReR+Feee+F¢e¢

vy Ny L NV 1V
R R Rcosp 90 @R oy %
1 O(R?Fp) | OF, | O(F, cosd)

V.F:Rz O0R JrRcosd) 00 +Rcos¢ F3l)

1 {GF(I) d(Fqy coscl))} 1[6F_R O(RF )} N

VxF=

Rcoshl 00~ a6 | RTR| G0 R
1 {G(RFG cosd) 6FR}
"Reosd| R o0 %
V2V = = Q(Rzﬁ_V)Jr 12V 1 i( ¢5_V)
R2 OR\" OR/) " RZcos?hp 902 R2cosd O cO5% a9
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20. Energy Equation For A Particle
With the help of (18.2) and (18.7) it follows that we can write an energy equation for
a particle in the form
b
U2/1=J. Fevdt =(T,-T)) , (20.1)
f
where T and T, are values of the kinetic energy T at the times t; and t,, respectively,

and U,,; is the work done by all forces acting on the particle. In view of the simple

relationship (19.10) between the mechanical power and the time rate of change of the
potential associated with a conservative force field it is convenient to separate the total

force F into known conservative force fields F o associated with gravity, F, associated

with elastic springs, and the remainder F such that

F=Fg+Fe+F ,F'VZ—Vg—Ve+F'V, (20.2a,b)

where Vg is the gravitational potential given by (19.20b) or (19.23.b), and V_ is the

elastic potential given by (19.26b). Defining the work U »/1 done by the force F
)
U, = | Fevar, (20.3)
f
we may rewrite (10.1) in the convenient form

Uy =(Ty =T+ (Vgy = V) + (Vg = Vo) = (B~ E)) (20.4)

where the total energy E is equal to the sum of the kinetic energy and the potential

energies which are not included in the work done by F

E=T+V,+V, . (20.5)

Equation (20.5) states that the work done by F on the particle is equal to the change in

total energy E. In particular, notice that if all forces acting on the particle are

conservative then I_Jz ;1 vanishes and the total energy E remains constant.
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When [_JZ ;1 vanishes or the mechanical power F « v is a simple expression which can

be integrated with respect to time, the energy equation (20.4) can be a very convenient
equation to use in obtaining the solution of a particular problem. However, we must
emphasize that the energy equation (20.4) is merely a scalar integral of the vectorial
equations of motion (16.7) and therefore it does not include additional information about
the motion of a particle. In this sense the energy equation may be used to replace one of
the three scalar equations associated with the balance of linear momentum (16.7) but we
must remember that by itself, the energy equation can only provide a single piece of

information about the motion of the particle.
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21. Linear And Angular Momentum Of A Particle
BALANCE OF LINEAR MOMENTUM
For a single particle it is sometimes convenient to introduce a definition of the linear
momentum G of the particle
G=mv, (21.1)

and rewrite the balance of linear momentum (16.7) in the form

G =F . (21.2)
In words equation (21.2) states that the rate of change of linear momentum is equal to the
total force acting on the particle. It should be recalled that the velocity v that appears in

the definition (21.1) is the absolute velocity which is measured relative to a fixed point in

space.

BALANCE OF ANGULAR MOMENTUM THEOREM
Although the balance of linear momentum (21.2) characterizes the complete motion
of a particle it is sometimes desirable to introduce the notion of the angular momentum

H,, of the particle relative to the fixed origin O of a coordinate system by the expression
H,=xxG, (21.3)

where x(t) is the position of the particle relative to the point O. Now differentiating

(21.3) with respect to time and using (21.1) and (21.2) we may deduce that

HOZ).(xG+xx(.}=vxmv+xxF:xxF, (21.4)
which means that

H =M, , (21.5)
where M is the moment of the force F applied about the fixed point O
M,=xxF . (21.6)

In words, the balance of angular momentum (21.5) states that the rate of change of
angular momentum about a fixed point is equal to the resultant moment about the same
fixed point. It is important to emphasize that for a single particle the balance of angular
momentum (21.5) is a theorem which has been proved using the balance of linear

momentum. In this sense, the balance of angular momentum does not introduce new
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information about the motion of the particle which is not contained in the balance of

linear momentum.

Fig. 21.1

By way of example let us prove that the angular momentum is conserved for a
particle that is moving under the action of a central force field only. To this end assume
that the earth is fixed in space and that the position of a satellite relative to the center O of
the earth is denoted by x = R ep. Also, let the force of gravity F applied by the earth on
the satellite of mass m be given by F = Fy ep. It follows that the moment about O of the
force F is given by

M,=Rey xFpep=0 . (21.7)
Using the balance of angular momentum (21.5) we may deduce that the rate of change of
angular momentum vanishes so that H is a constant vector ¢
H,=c . (21.8)
However, since

H,=xxmv=c, (21.9)

it follows that x is always perpendicular to the constant vector ¢ (x L ¢) so the particle

always moves in the plane which is perpendicular to the constant vector c.
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22. Conservation Of Momentum (?)
Sometimes it is easy to observe that one or more components of linear momentum G

or angular momentum H are conserved (remain constant). When this happens part of

the equations of motion of a particle integrate simply so it is convenient to use the
integrated equations instead of the differential equations. For example, it follows from
the balances of linear momentum (21.2) and angular momentum (21.5) that both linear

and angular momentum are conserved if the force F vanishes

F=0 = G =constant , (22.1a)
F=0 = M,=0 = H_ = constant . (22.1b)

In view of the simplicity of the equations (22.1a,b) it is reasonable to consider what
might happen if only one component of force or moment vanish. In particular, let us
consider the case where the component of the force F in the b direction vanishes. It

follows from (21.2) that

b*eF=0 = G+b=0. (22.2)
The question then arises as to what can be said about the component of linear momentum
in the same direction b that the force component vanishes. To answer this question let us

differentiate the component b * G to obtain

db.G hd L] L] L]
% = PG =b+G+b-G=b-G. (22.3)

Equation (22.3) shows that in general the component of linear momentum G in the

direction b is not constant (conserved) even though the component of force F in the same

direction vanishes. However, if the direction b is constant so that l.) vanishes then the
component of linear momentum in the direction b will be conserved. This means that a
component of linear or angular momentum is conserved whenever a component of force
or moment vanishes in a fixed direction b.

By way of example let us consider the motion of a particle of mass m which moves
under the action of a force F which in cylindrical polar coordinates is expressed in the
form

(22.4)
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From the point of view of linear momentum it follows from (22.4) that

eg*G =0,e°G =0 . (22.5a,b)
Since e is not a constant vector we do not expect the component eg ¢ G to be constant

whereas we do expect the component e; * G to be constant. More specifically, we have

x=rer+x3e3,Vz;er+r9ee+;<3e3, (22.6a,b)
G=m(re+r0ey+xse;) (22.6¢)
G= m[(r—re2)e 210 +r0)eytxse; ] (22.6d)

Using (22.5) it follows that

cG=0=210+r0= o:;a(rze)—o, (22.7a)
e3-é=o:>§3=o:>%(£3):o. (22.7b)

Consequently,
r2é = constant , ).(3 = constant . (22.8a,b)

This means that eg + G = mr is not necessarily constant whereas e; « G = mx; is

constant. However, the result (22.8a) indicates that something is conserved.
To determine the physical meaning of (22.8a) let us consider the balance of angular
momentum. It follows from (22.4) that
M =xxF=(re +x5e;)xF e =x3F ¢y . (22.9)
Thus there is no moment in the e . and e; directions so we expect the component of

angular momentum in the e; direction to be preserved. To see this consider
H =xxmv=(re +xye;)xm(r e +r0ey+x;e;), (22.10a)

Ho=m[ —rOxye +(rx;-rx;) e+ (12 0)e; ] . (22.10b)

Using (22.9) and (22.10b) we have
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e;*M, =0 = ey H = constant = 120 = constant , (22.11)
which shows that the result (22.8b) indicates that angular momentum about the e; axis is

conserved.
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23. Impulse And Momentum
In view of the simplicity of the balance of linear momentum (21.2) and the balance of

angular momentum (21.5) it follows that the changes in momentum from time t; to time

t, can be determined by integrating these balance laws over time. In particular, it is

A
convenient to define F as the impulsive force due to F
t
A 2
F =I Fdt , (23.1)
f
and use the balance of linear momentum (21.2) to deduce that
)
VAN [ )
F=,[ Gdt =G, -G, . (23.2)
B!
This states that the impulsive force is equal to the change in linear momentum.

A
Similarly, we can define M as the impulsive moment due to M

b
i, =
M, = M, dt , (23.3)
£
and use the balance of angular momentum (21.5) to deduce that
b
A J‘ . B
M, = t H,dt =H,-H_ . (23.4)
1

This states that the impulsive moment about a fixed point is equal to the change in
angular momentum about the same fixed point.
By way of example consider the one-dimensional problem of the impact of two

masses m, and mg. Before impact mass m, moves with constant velocity v, towards
mass mpg and mass mpg is stationary. After impact we assume that both masses move

together with common velocity v (see Fig. 23.1). Neglecting friction, the only forces
acting on the two masses are gravity, and the contact force between themselves and the

floor. Let F, p be the force applied by mass mp on mass m, and let Fg,, be the force
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applied by mass m, on mass mg. Since by Newton's third law these forces must be equal

in magnitude and opposite in direction we have

Fyp=—Fe; , Fgs=Fe;, (23.5a,b)
where F is the magnitude of the force Fg,,. The free body diagrams of each of the

masses are shown in Fig. 23.2.

Before Impact After Impact
A
2| A% w=0 VN
—_— —_—
m
A m B m mB
e ; e e e = 1
“
Fig. 23.1

From these free body diagrams it follows that the total force F, applied to mass m,

may be written in the form
Fy=—Fe +(Ny—myg)e, . (23.6)

Similarly, the total force Fy applied to mass my may be written in the form

Fg=Fe; +(Ng—mpg)e, . (23.7)
e NA NB
m, l=— F F — mB
V
¢
1 & mAg mBg
Fig. 23.2

Assuming that the impact occurs over the time interval [t;,t,] we may apply equation

(23.2) to each of the masses and deduce that

A
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A
Fy=Gp, - Gg =mgve, , (23.8b)

A
Next we consider the determination of the impulsive force F,. By definition

AN t2
FAzf [-Fe, +(Ny—m, @) e, |dt . (23.9)
£

During the impact the forces N, and m,g remain bounded but the force F may become

quite large. As a simple approximation we can assume that the impact occurs over an

infinitesimally short time so the impulse due to N, and m g vanish but the impulse due

to F does not so that

t
A limit IZ
Fa=t,>1, t [-Fe;+(Ny-myug) e, | dt
1
t
limit fz A
:_t2—>t1 t Fe dt=-Fe, . (23.10)
1
A
Similarly the impulsive force Fg becomes
t
A limit JZ A
FBZ,[2_>,[1 t Fe dt=Fe, . (23.11)

1

Now, substitution of the results (23.10) and (23.11) into the equations (23.8a,b) we may
deduce that

A A
F=-my(v-vy ,F=mgv. (23.12a,b)
A
Solving these equations for vand F we have
m, A m, my
V= (mA n mBJ Vo, F= (mA n mB] Vo - (23.13a,b)
Notice that if a heavy mass m=m, collides with a light mass mg=m_ , with m| <<m,
A
then v — vy and F — m| v,. On the other hand, if a light mass m=m|_collides with a

AN AN
heavy mass mg=my, then v — 0 and F — m v(;. For either case F has the same value.
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In the above analysis we have considered the dynamics of each mass separately.
However, sometimes it is of interest to consider the properties of the system of two
masses. To this end, let G be the sum of the linear momentum of each of the masses so
that before impact we have

G=G;=my vye , (23.14)
and after impact we have
M
G=G,=(my v+tmgv)e =(my +mg) [m} Vpe =myvye . (23.15)
This means that the total linear momentum of the system of two masses did not change
during the impact. We can also consider what happens to the total kinetic energy T,

which is the sum of the kinetic energies of the two masses. Before impact we have

1
T=T; =5 my vy, (23.16)
whereas after impact we have
1 1 M 1
— i 24— 2 | —=  |= 2

so that kinetic energy is lost during the impact

T, T = |—2— | 2y (23.18)
2 1 mA+mB 2-AY0 : :

In a more complete analysis it could be shown that kinetic energy is converted into heat

during the dissipative process which causes the two masses to stick together after impact.
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24. Kinetics Of Systems Of Particles

F.\‘O"/ fi

]
m. f..

Fig. 24.1
Consider a set of N particles and let a typical particle, called the i'th particle have

mass m;, and position x;, relative to a fixed origin. Furthermore, let F; be the external
force (external to the system) applied to the i'th particle and let fij be the internal force

applied by the j'th particle on the i1'th particle. Then the balance of linear momentum for
the i'th particle may be expressed in the form

N

. d
Gi=g (mv) = F; +'21 f; =12...N (no sum oni) . 24.1)
J:

In the above it is assumed that f;; vanishes (i.e. the i'th particle does not apply an internal
force on itself). Notice that the N vector equations of motion (24.1) are sufficient to
determine the motion of all the N particles in the system. Sometimes it is convenient to
determine what can be said about the system as a whole. To this end, let us define F to
be the total external force applied to the system, f to be the total internal force, and G to

be the total linear momentum of the system

N N N N
G: z (;1 5 F: z F‘1 5 f:Z Z fl_] . (24.2a,b,c)
i=1 i=1 i=1j=1

It follows by summing the equations (24.1) that we may write

G=F+f, (24.3)
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which is a single vector equation characterizing the balance of linear momentum of the
system of particles.
A vector equation representing the balance of angular momentum of the system of

particles can be obtained by defining the total moment M of external forces about the
fixed point O, the total moment m of internal forces about O, and the total angular

momentum H about O

N
H,= 2 x;xG; , (24.4a)
1=1
N N N
MO = z Xi X Fl 5 mo :Z Z Xi X fl_] 5 (24.4b,C)
1=1 1=1j=1

Now, taking the cross product of each of equations (24.1) with the position vector x; and

summing the resulting equations we may deduce that

H,=M_+m, . (24.5)
Before continuing let us reconsider the quantities f and m . In particular by changing

the indices for the summations we have

N N
=22 =22t (24.6a)

N N N N
m = > x; x f; = DI x; x £ (24.6b)

i=1j=1 j=1i=1

Now, interchanging the order of the summations we may deduce that

N N N N

i=1j=1 i=1j=1

N N N N
mOZZinxfijZZijxi}i . (24.7b)

i=1j=1 i=1j=1

By expressing f and m as the averages of the two representations in (24.7a,b) we may

write
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N N
1
f=> ZZ( e (24.82)
1=1j=1
N N
|
mOZE'Zrzl(X x £+ % x £). (24.8b)
i=lj=

Now, in view of Newton's third law, the force fij applied by the mass m; on the mass m, is

equal in magnitude and opposite in direction to the force f ; applied by the mass m; on the

mass m; so that

fo=_f. (24.9)

N
2 (x;

1 i xj) X fij . (24.10a,b)
J:

._.
Il
-

Using the result (24.10a) together with equation (24.3) we obtain the equation

G=F, 24.11)
which states that the resultant external force applied to the system of particles is equal to
the rate of change of linear momentum of the system. Since equation (24.11) is identical
to the balance of linear momentum (21.2) of a single particle it is sometimes convenient

to think of the system of particles as a single particle with total mass m located at the

center of mass X, such that

N
mx= 2 mx; . (24.12a,b)

Notice that the location of the center of mass of the system is defined as the mass-

weighted average of the position of the particles. Furthermore, the linear momentum G

and rate of change of linear momentum G may be expressed in terms of the velocity v = x

and acceleration a = v of the center of mass of the system

N

G=2 mv,=mV , Z ~ma . (24.13a,b)
i=1 i=1
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Thus, the balance of linear momentum may be written in the form

é=%(mV)=m5=F . (24.14)

Equation (24.14) is sometimes called the Principle of Motion of the Center of Mass. In

words it states that relative to an inertial frame of reference the mass center of a system of
particles moves as though the system were a single particle of mass equal to the total
mass of the system moving under the action of the total external force applied to the
system. It is important to note that (24.14) is only a single vector equation so it can only
provide limited information about the motion of the system of N particles.

Notice that even with the help of Newton's third law (24.9) the internal moment m

does not necessarily vanish (24.10b). Nevertheless, it is of interest to consider three

cases when the internal moment m vanishes:
Case I: A simple system of particles with the internal forces fij which are central forces

that act along the line of centers of the masses so that
fij = f(Xij) (x; - xj) . Xj= (x; — xj)  (x;— xj) , (nosumoniyj) (24.15ab)

where Xji is the square of the distance between the masses m; and m; and the function

f(xij) characterizes the force acting between the masses m; and m.

Case II: Forces perpendicular to the line of centers of the masses (like friction) are
allowed but the masses are assumed to be in contact so that for some values of i and j we
have

Case III: The trivial case when there are no internal forces

For each of these cases the internal moment m vanishes and the balance of angular
momentum of the system of particles (24.5) reduces to
H, =M, , (24.18)

which is identical to the balance of angular momentum (21.5) of a single particle.
However, in contrast with the angular momentum equation for a single particle which

was derived as a theorem, the balance of angular momentum (24.18) contains
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independent information about the system of particles. For example it gives information

about the rotation of the system of particles about its center of mass.
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25. Alternative Formulation of the Balance Laws

Fig. 25.1

It is often convenient to formulate the balances of linear and angular momentum
relative to an arbitrary moving point B. To this end, let X denote the location of point B

relative to a fixed origin O and let p; be the location of mass m; relative to B. It follows

that the position r;, velocity v; and acceleration a; of the mass m, are given by

xi=X+pi,Vi=).(+[.)i,ai=X+pi. (25.1a,b,c)
The objective here is to use the balance laws (24.11) and (24.18) to obtain alternative
forms expressed in terms of quantities referred to the moving point B.
Recalling the definition (24.2a) of the linear momentum of the system of particles we
may write

N N

G:Zmi"i: mi().(+f)i):m().(+f)), (25.2)
i=1 i=1

where m is the total mass of the system and p denotes the location of the center of mass

of the system relative to the point B

mp= 4 mp; . (25.3)

™Mz

I
[

1

Thus, the absolute position of the center of mass x and velocity of the center of mass v

become
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X=X+p,v=X+p . (25.4a,b)
It follows that the balance of linear momentum may be written in the alternative form

m(X+p)=F . (25.5)
It is important to notice that the acceleration which appears in (25.5) is the absolute

acceleration and not the acceleration p of the center of mass of the system relative to the
moving point B. In this sense, the form of the balance of linear momentum is changed
when it is referred to a moving point instead of a fixed point. Also notice that when the

point B moves with constant velocity the balance of linear momentum reduces to

mp=F for X = constant (25.6)

This means that the balance of linear momentum remains invariant (unchanged in form)

to a superposed constant velocity X.
To develop the alternative form of the balance of angular momentum we substitute
(25.1) into the definition (24.2a) and obtain the expressions

N N N

HOZ,ZI(X+pi)XmiVi:XX ‘21 m; v, + Zl p; xm; v, ,
1= i= 1=

N
H =Xxmv + Z] p;xm; (X+p,),
1:

N N
H =Xxmyv + .Zlmipi X XJr‘Z1 p; xm; p; ,
i= i=

H = Xxmyv +m§><).(+HB, (25.7)
where the relative angular momentum Hpy about the point B is defined by replacing the

absolute position x; and velocity v; in (24.4a) by the relative position p; and relative

velocity p; so that

N

Hy = Zl p, x m, p . (25.8)
1:
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Furthermore, the derivative of H may be expressed in the form

H =Xxmv +Xxma +mp xX+mpxX+Hg,
H =Xxma + mpxX+Hg+ Xxm(v-p),
I:IOZXXF+ m§x§+I:IB+ ).(xm).(,

H,=XxF+ mpxX+Hjg , (25.9)

where use has been made of (24.14) and (25.4b). Now, substituting (25.1) into (24.4b)

the expression for the moment M about the origin becomes

N N N
M = 2 (X+p)xF; =Xx| LF;| + 2 p,xF, ,
1=1 1=1 =1
M, =X xF+Mjg , (25.10)

where the moment Mg, of the external forces about the point B is defined by

N

M = Zl p. x F, . (25.11)
1:

In words, equation (25.10) states that the moment about the origin is equal to the sum of
the moment of the resultant force F as if it were applied at the point B, and the moment

Mg, of the external forces about the point B. Finally, substitution of (25.9) and (25.11)
into (24.18) yields the balance of angular momentum in the alternative form
Hy +mpxX=Mp . (25.12)

Notice that for a general moving point B the balance of angular momentum changes

form. However, for the special case when p x X vanishes, the balance of angular

momentum remains invariant with

Hg =My for pxX=0. (25.13)

This happens for the following three cases.

Case I: The point B moves with constant velocity

X = constant , (25.14)
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so the balance of angular momentum remains invariant to a superposed constant velocity.

Case II: The point B is the center of mass of the system

p=0, (25.15)
and the balance of angular momentum may be written in the form

H=M |, (25.16)
where for convenience we have denoted the value of Hy by H and the value of Mg by
M, so that H is the relative angular momentum about the center of mass and M is the
moment due to external forces about the center of mass. It is important to emphasize that

equation (25.16) holds even when the center of mass accelerates.

Case III: The point B accelerates towards or away from the center of mass

X|p . (25.17)
Before closing this section it is convenient to use the result (25.7) and consider the

special case when B is taken to be the center of mass with
X=X, p=0, Hz=H, (25.18a,b,c)
to derive the result that
H = (xxmv)+ H . (25.19)
This means that the angular momentum about the origin O is equal to the sum of the

angular momentum of the center of mass (x x m v) about O and the angular momentum

H of the system about the center of mass.
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26. Impulse And Momentum (System Of Particles)

In view of the simplicity of the balance of linear momentum (24.11) and the two

forms of the balance of angular momentum (24.18) and (25.16) it follows that changes in

momentum from time t; to time t, can be determined by integrating these balance laws.

A

A A —
In particular we can define the impulsive force F and impulsive moments M and M such

that
t
R 2
FZI Fdt ,
t

)
o
M, =] M_dt ,
t
A2
M=] M.
t

so that integration of these balance laws yields the equations

t
t
A '[20
MOZ Hodt H02 Hol ,
t
A2, _
M=) Hdt-H,-H,
t
1
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27. Mechanical Power And Kinetic Energy (System Of Particles)
In order to discuss the energy equation for a system of particles we first define the

mechanical power P; and the kinetic energy T; associated with mass m; by the formulas

N
1
P-[Fi-i- ZfijJ V., Tizzmi V;*V; . (nosumoni) (27.1a,b)

Recalling the balance of linear momentum (24.1) for each mass it follows that the

mechanical power is equal to the rate of change of kinetic energy of the mass m; so that

P.=T , (27.2)

It now is convenient to define the total mechanical power P and the total kinetic energy T

of the system of particles by

(27.3a,b)

so that

P=T . (27.4)
Notice that this is the same result as that obtained for a single particle (18.5). It follows
that when some of the external forces applied to the system of particles are conservative
forces then we can write an energy equation for the system of particles. In particular if
we separate the external effects of gravity and springs we can write an energy equation of

the type (20.4) for the system of particles
62/1 :(TZ_TI) +(Vg2_vgl)+(ve2_ve]) . (275)

By representing the motion of each mass relative to the center of mass x of the system
of particles
X, =X+p,, ,=v+p, , (27.6a,b)
we may rewrite the kinetic energy in the form

N 1 N |
! :'zl 2mi Vit v :'zl Sm(vEp) e (Vip) ,
i= -
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1 L e . .
5 m; [(V cv)+2(v ‘Pi)"‘(Pi‘Pi)]»

—
Il
™Mz

1 N N N
=5 zlm (Vev) + v e ) m1 p1 + Z 5 m, (p1 pl) . (27.7)
1= 1=
But since the motion has been referred to the center of mass we have
N N N
i= 1= 1=

so that (27.7) reduces to

N
1 _ _ 1 ° °
“m( eVt 2 mp ) (27.8)
1:

In words, equation (27.8) states that the kinetic energy of the system of particles is equal
to the sum of the kinetic energy of center of mass of the system and the kinetic energy of
the motion of the masses relative to the center of mass. This split of kinetic energy is
sometimes used in atomic theories which relate the second term in (27.8) with the
temperature of the system.

Next it is desirable to reconsider the expression for total mechanical power P and in

particular consider the role of the internal forces fij- To this end, we use Newton's third

law (24.9) and follow the arguments of section 24 to obtain

N N i N N
2 Xfievi=5 2 X fie(vi-v) (27.9)
e T Y
i=1 j=1 =1 j=1
so that the total mechanical power P becomes
N N
pP= ZF-v+—Z Zf “(vi—v) - (27.10)
=1 1 1j=1

Notice that in general the internal forces do work and thus contribute to the total

mechanical power. For the special case of central forces fij given by (24.15) the

expression (27.10) further reduces to
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N NN
P=2 Fovi+ 7 2 2 flxp)xg, (27.11)
i=1 i=1 j=1

where the time derivative Xjj of the relative distance squared between the masses m; and

m; is given by
X = 2 (x; - xj) *(vi— Vj) . (27.12)
Since the function f(Xij) depends only on the relative distance between the two masses m,

and m; a potential function \V(Xij) exists such that

dy(x;)
_y 2

Thus, (27.11) can be rewritten in the simpler form

N N N
P=2 Fev.— 2 X2 wix;) - (27.14)
i=1 i=1 j=1

These results show that the internal forces do work and thus contribute to the change in
kinetic energy of the system of particles.

For the special case of a system of particles which are rigidly connected with no
external moments (i.e. a special rigid body) the relative distance between any two masses

remains constant so that

x;=0 (27.15)

and the internal forces do no work. Consequently, only the external forces contribute to
the mechanical power so that

N

P=2 F, * v, forarigid body . (27.16)
i=1

Finally, we emphasize that the velocity which appears in the expression (27.16) is the

velocity of the particular point of application of the force F.
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28. Impact of two particles
The objective of this section is to develop a simple empirical model for analyzing the

impact of two particles. To this end, consider the case of two particles of masses m, and
mp which at time t; just before impact are moving with absolute velocities v, ; and v,

respectively. Also, the particles are assumed to collide at a single point at which the unit
outward normal to particle A is denoted by n (see Fig. 28.1). The impact process occurs

during the time period [t;,t,] and at time t, just after impact the particles have absolute
velocities v, and vg,, respectively. Also, the impact occurs in the plane characterized

by the vectors {v, Vg1}-

Just before impact t=t;

Vv
Al : Vg1
ma Mg

Common normal n and tangent t vectors at impact

t

mp

Just after impact t=t,

VB2
Va2
ma mp

Fig. 28.1 Two particles just before (t=t;) and just after (t=t,) impact. During the impact

process the velocities of the particles change abruptly.

Given the state of the two masses just before impact

{my,vap,mp,vg }, (28.1)
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the objective is to determine the velocities
{Var,Vpo ) » (28.2)
just after impact.

During the impact process a number of very complicated interactions occur between
the two particles which can cause energy to be dissipated. In particular, the particles can
deform elastically, or plastically and friction can act, with or without slip. Analyzing the
details of these interactions is beyond the scope of particle dynamics. Consequently, for
simplicity, it is assumed that the impact process occurs over a very short time so that the

impact process can be modeled as an abrupt change in momentum of each particle. This

A
means that it is only necessary to consider the impulse F of the force F(t) applied by

particle B on particle A during the impact process

)
AN
F :_[ F(t) dt . (28.3)
f
Now, by integrating the balance of linear momentum associated with each of the

particles it can be shown that

A

AN
where use has been made of Newton's third law which states that (—F) is the force applied

by particle A on particle B (see Fig. 28.2). Thus, the velocities v, and vy, are

determined by the equations

L lAT L ii\‘ (28.5a,b)
Van =Var Tt , Vpn =Vpi— . .Ja,
A2 Al 'm A B2 B1 my
This means that the complicated phenomena occurring during impact can be modeled by

A
proposing an equation for the impulse F.

o ! V e

Fig. 28.2 Impulse acting during the impact process.
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Simple analysis for smooth particles (Coefficient of restitution)

In the simple analysis, the two particles are treated as a system of two particles which
is not influenced by external forces during the impact period. This means that the linear
momentum of the system remains constant

G| =my Vo T Mg Vg =My Voo T Vpy =G, . (28.6)
Moreover, in the simple analysis it is common to introduce an empirical constant e called
the coefficient of restitution which specifies the ratio of the separation velocities to the

approach velocities of the masses

n- (V) —Va2)  separation velocity
“ne(vy;—Vvg;) approach velocity

e (28.7)

This empirical constant attempts to model the net effect of the complicated interactions
during impact.
Next, taking the normal component of the linear momentum equation (28.6) it follows
that
my (Vpy*m) +my (Vgy*m) =my (Vo *n) +mg(vgy *n) . (28.8)
Also, rewriting the (28.7) in the form
—(Vpp*m)t(vgyem)=e(vp;*n)—e(vg;*n) , (28.9)
these equations can be solved to obtain

my —emg mg(1+e)
(Vayem)="_"—"—— (Vp;*m)+————(vg; *n) ,
A2 m A+mB Al m A+mB Bl

my (1+e) mpg— € my

(Vgp e m) = —mA+mB (Vapem)+ —mA+mB (Vgy*m) . (28.10)

For smooth particles, the impulsive force lAT has no component in the tangential
direction t

Fet=0, (28.11)

so that from (28.4) it follows that the component of linear momentum in the tangential

direction is preserved for each of the particles

(Var ) =(Vp ), (vgret)=(vgy°t) . (28.12)
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Thus, with the help of (28.5a) it can be shown that for this case, the impulse i?\‘ is given by
A *
F=m"(l+e) [~ (vo; —Vvgy) *n]n . (28.13)
where m” is the effective mass
maMmp

*

m (28.14)

m A+mB ’

Now, the total kinetic energy T, before impact and T, after impact are given by
1 2 214 L 2 2
Ty=7my [(vap s m>H(vy, 2]+ 5 Mg [(vgy * m)>+(vg; 7] |

1 1
Ty=5my [(vay e mPH(vay « 0]+ Fmp [(vgy e mP+(vgy + 2], (28.15)

so with the help of the results for smooth particles it can be shown that the loss of kinetic

energy during impact becomes
1 2
T)-Ty=(l-¢)5m" [(vo;—vg)+n] . (28.16)

Note, that energy is preserved if e=1

T,-T,=0 fore=1, (28.17)

and that the maximum energy is lost if e=0
1, 2
T -Ty=5m"[(vy;—vg)*n] >0 for e=0 . (28.18)

Moreover, since energy cannot be created during the impact, the value of e is taken in the
range

0<e<l1 . (28.19)
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More general analysis for nonsmooth particles

In a more general analysis for nonsmooth particles it is of interest to analyze physical

A
restrictions on an equation for F. To this end, it is convenient to define the relative
velocities of the particles just before and just after the impact event by the formulas
AV =V —Vg] » AVy=Vs—Vp, . (28.20a,b)

Thus, using (28.5) it can be shown that

A
:F (28.21)

1
Av,=Av, +—
Vo) T AV m

where m” is the effective mass (28.14).

Now, in order to analyze implications of these physical restrictions it is convenient to
AN
write F in terms of its magnitude f and its direction f such that

F=ff, f>0, fef=1. (28.22ab,¢)
It will be shown presently that it is also convenient to express the magnitude f of the

impulse in terms of another parameter 1 through the formula
f=m" (1+n) (- f* Avy) . (28.23)
Thus, the equation (28.21) becomes
AV, =Av| + (14m) (- f=Av ) f . (28.24)
Moreover, by taking the dot product of (28.24) with f it can be shown that

- (f+Avy) - fe(vgyvar)
N7 (feav)  fe(vavp)

(28.25)

Physically, this means that n is the ratio of the component of the relative velocity of

separation (—Av,=Vg,—V,,) in the direction of impulse f to the component of the relative
velocity of approach (Av;=v,—vg) in the direction of f. Also, it is noted that impact
will not occur unless the component of the approach velocity Av; in the normal direction

n is positive

Avy*n= (Vy,~vg) *n>0 . (28.26)
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bmax £ pyipg

Fig. 28.3 Wedge region satisfying the restrictions (28.27) on the direction f of the

A
impulse F acting on particle A during the impact process.

N
Next, it is assumed that the direction f of the impulse F must satisfy the following

seven physical restrictions:
(P1) The impulse lAT must have a component that resists the relative velocity Av,
feAv, <0, (28.27a)
(P2) The impulse lAT must have a component that resists penetration and aids

separation of the two particles

fen<o0, (28.27b)

AN
(P3) The tangential component of the impulse F is a passive force that resists relative

slip at the beginning of the impact so that

[Av, —(Av;*n)n]-f<0 , (28.27¢)
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AN
(P4) The tangential component of the impulse F is a passive force that resists relative

slip at the end of the impact so that
[Av, —(Av,*m)n] < £f<0 . (28.27d)

(P5) The two particles have a tendency to separate after the impact event

AV, +n<0 (28.27¢)

(P6) For Coulomb friction the magnitude of the tangential component of IAT is not
greater than p times the magnitude of its normal component
|[f—(fen)n|<p|fen], (28.279)
(P7) The dissipation of kinetic energy of the two particle system during the impact
event is nonnegative
T,-T,=0 . (28.27g)
Fig. 28.3 shows that the restrictions (28.27a,b,c) require the impulse direction f to lie in a
wedge region. However, it will be seen below that the conditions (28.27d,e) are more
difficult to satisfy in general.

Now, consider the expressions for energy T, before impact and T, after impact

1 1

T1=§mAVA1°VA1+§mBVB1°VB1 , (28.28a)
1 1
TZZEI’I]AVA2°VA2+§H’IBVB2°VB2 . (28.28b)

However, with the help of (28.23) the equations (28.5) can be rewritten in the forms

m*(1+r|)(—f -Avl)]

Var=Vart m f, (28.29a)
m(1+n)(f *Av,)
Vg = Vg1 — | my 1f. (28.29b)

Thus, the kinetic energy after impact can be expressed in the form

T, =T, +m (I+n)(f* Av))(f* v,y ) — m (1+n)(f * Av))(f * vg)

1 m" () (£ Av) 2 1 m (L) (£ Av)) o
+5my ]+ 1, (28.30a)

- m
my 2B mp
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* 1.1 1 " 2
Ty =T, —m'(l+n)(f * Av})* + 5 [m—A+m—B] [m*(1+n)(—f = Av))] , (28.30b)

1
T, =T, —m (1+n)(-f « Av{)? + 3 m”(1+n)2(f * Av)? | (28.30c)

1
T,=T, —Em* (1-m?) (£ Av))? (28.30d)
so that the restriction (28.27f) on the energy dissipation reduces to
1
T,-T, =5m* (1-m?) (£+ Av))2 >0 , (28.31)

which can easily be satisfied by limiting the value of n by
n2<1. (28.32)

Moreover, in view of the physical interpretation (28.25) of 1 it does not seem reasonable
to allow m to be negative so 1 is restricted to the range

0<n<Il. (28.33)
In particular, note that the maximum energy dissipation (for fixed f) occurs when n=0
and the energy is conserved if n=1. For this reason the collision is called elastic if n=1
and kinetic energy is preserved. Also, note that if f is taken in the special direction which
is parallel to Av, then it can be shown that

Av 1

Av,=—-mAv, for f=—7"—",
2 nAavy Av,|

(28.34a,b)

which indicates that the relative velocity Av, remains parallel to Av,, its direction is

changed and its magnitude is reduced by the value of 1.

SMOOTH PARTICLES
For the special case of smooth particles with no friction acting during the impact
process the direction of impulse must be normal to the surface of impact so that
f=-—n . (28.35)
It then follows that (28.24) and (28.25) reduce to
Avy=Av; —(I+n) (n*Av ) n ,
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~ (n * Av,) _n- (VB2 Va2)
"~ Cn- Av))  me(Vpovg))

(28.36)

and the restrictions (28.27a,b,c,d,f) are automatically satisfied. Thus, 1 is seen to be a

generalization of the coefficient of restitution e defined in (28.7).

NONSMOOTH PARTICLES

For the more general case of nonsmooth particles with friction acting it is reasonable
to specify the direction of impulse f to lie in the plane of the relative velocity Av, and the
normal n. To this end, let t be a unit vector in the contact plane (t * t=1, t « n=0) with a

nonnegative component in the Av, direction such that (see Fig. 28.3)

Av, = Av, [c0s6 n + sind t] , Avi>0,0<0 Sg . (28.37a,b,c)
Also, define the direction f by the friction angle ¢ such that
f=—[coson+singt] . (28.38)

Now, substitution of the expressions (28.37a) and (28.38) into the restrictions (28.27a-f)

yields the expressions

(P1) feAv)=—Av) cos(¢-8)<0 = ~5+08<¢<5+6 , (28.39a,b)
(P2) f-n=—cos¢§O:>—§§¢§§, (28.39¢,d)
(P3) [Av, —(Avy*nm)n] e f=—Av,sin@sing<0 = 0<p<m,  (28.3%,f)
(P4) [AV, —(Av, e n) n] « f=—F(0,0) Av, sinp <0 , (28.39g)

F,(0,¢,n) = sinb — (1+n) cos(¢-0) sin¢ , (28.39h)
(P53) Avy e n=—Av, F,(0,0)<0 , (28.39i)

F,5(0,0,n) = (1+1) cos(¢—0) cosd — cosO , (28.39j)
(P6) sing <pcoshp = tandp<p . (28.39k,))

Now, assuming that 0 is restricted to the range

0<0<> , (28.40)

SRE
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the restrictions (28.39a,c,e) are satisfied whenever ¢ lies in the range
T
0<¢p<3, (28.41)

and the restrictions (28.39g) and (28.39i) require the functions F; and F, to be

nonnegative

F{(0,6m)>0 ,F,0,6) >0 . (28.42)
However, it can be seen that at the boundary ¢=n/2 these functions are negative
F1(8,5.1) = sin — (1+1) sind = 1 sind <0 , F,(8,5.1)=—cosd <0 , (28.43)

so that the conditions (28.42¢,i) are violated. Moreover, let ¢;, ¢, and ¢; be positive

values of ¢ less than /2 which define the boundaries of the restrictions (28.42g,1,1), such

that
F1(0,61m) =0, F5(0,6,,n)=0 , tang;=p. (28.44)
It then follows that
0 <5 . =7 (28.45)
Moreover, with the help of (28.39h) it can be shown that
F,(0,0,n)=-msin0 <0 , (28.46)

so that ¢,can be further restricted
;<0 . (28.47)

Next, using (28.39h) and (28.39j) it can be shown that

sin® :
F,(0,0,,1m) = [ﬁ] cosd; — cos® = [cotd; — cotd] sind >0 , (28.48)

so that the maximum value ¢_ . of ¢ is controlled by either the condition (28.39g) that

max
the impulsive force resists slip at the end of the impact or the Coulomb friction condition

(28.391). This means that the range of ¢ should be limited to
0<¢< b= Min(dy,03) - (28.49)
Fig. 28.4 plots the value of tan¢; which indicates the minimum value of the friction

coefficient for which ¢, controls the maximum value of ¢. From this plot is can be seen
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that for say u=0.2 the restriction (28.39g) associated with ¢; controls the maximum value

Oax Of the friction angle ¢ for small values of 0, whereas for values of 0 greater than

about 23 deg (for n=1.0) the angle ¢; associated with the friction criterion (28.39k)

controls ¢, ...

1.0 :
0.8 : g
4
& 0.6 s s
§ N
041 L 1=0.0 |
02 .~ 1=0.5 |
A ——— i
0.0 300 600  90.0
0 (deg)

Fig. 28.4 Plots of the value tan¢; as function of the angle 0 of the approach velocity for

three different values of the coefficient of restitution n.
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29. Equations Of Motion Of A Rigid Body

Fig. 29.1

To describe the dynamics of rigid bodies we define the mass m, linear momentum G,

angular momentum H (about the origin). Motivated by the definitions of m, G, H for a

system of particles we replace the summation process by integration over the body of an

elemental mass dm and write

m=_[dm , (29.1a)
GZIvdm , (29.1b)
HOZI x xvdm , (29.1¢)

where v is the linear momentum per unit mass, and x x v is the angular momentum (about
the origin) per unit mass. In rigid body dynamics we define two types of external forces
that act on the body: (1) body forces per unit mass denoted by the vector b (like the force
of gravity), and (2) concentrated forces F; acting at the points x; (see Fig. 29.1). Then the

resultant external force F applied to the rigid body is given by

N
sz bdm+ X F, . (29.2)
i=1

Similarly, the resultant moment M (about the origin) is given by
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N M

M0=Ixxbdm+2xixFi+ZMi, (29.3)
i=1 i=1

where M. (i=1,2,...,M) are M moments applied to the rigid body at various points.

We now assume that the equations of motion of a rigid body have the same form as
those for a single particle and a simple system of particles so we postulate the

conservation of mass

m =0, (29.4)
the balance of linear momentum
G=F, (29.5)
and the balance of angular momentum
H,=M, . (29.6)

Notice that these balance laws are postulated instead of being derived directly from the
dynamics of a system of particles, and they are consistent with the dynamics of a system

of particles if the internal forces are such that they apply no net moment m to the body.

Ultimately the validity of these assumptions can only be verified by comparing
theoretical predictions with results of experiments. In this regard, we note that numerous
experiments have proven these equations of motion of a rigid body to be quite accurate
for nonrelativistic velocities. In fact, the generalizations (29.4)-(29.6) hold even for
continuous deformable media like fluids and elastic solids.

It is important to emphasize that since a rigid body has six degrees of freedom (three
translational characterized by the position vector of a point on the body, and three
rotational characterized by the angular velocity vector) both the balances of linear
momentum and angular momentum must be used to determine the position of a point on
the body and its angular orientation in space. This should be contrasted with the fact that
the balance of angular momentum of a single particle was derived as a theorem using the
balance of linear momentum, so the balance of angular momentum contains no
information that is not already contained in the balance of linear momentum.

In our study of dynamics of rigid bodies we will confine attention to values of b

which are constant (like the case of a constant gravitational field, e.g. b = — g e5). For
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this case the body force F and the moment My of the body force may be expressed in

the simple forms

Fb=jbdm=mb,Mb0=jxxbdm=§xmb, (29.7)

where x denotes the location of the center of mass of the body
m§=dem ) (29.8)
The results (29.7) indicates that when b is constant the body force F is merely the total

mass of the body m times b and the body force Fy acts at the center of mass of the body.

This proves that the gravitational force acts through the center of mass of the body.

Fig. 29.2

Sometimes it is convenient to refer the equations of motion to a moving point. To
this end we let X be the position vector from the fixed origin to an arbitrary moving point

B and let p be the vector from B to any material point in the body (see Fig. 29.2) so that
x=X+p,x=X+p, x,=X+p, , (29.9a,b,c)
where p is the location of the center of mass of the body relative to B. Using (29.1b) and

differentiating (29.8) we may deduce that the linear momentum of a rigid body is the

mass of the body times the absolute velocity of its center of mass

G=mV . (29.10)
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Now, with the help of (29.9) and (29.10) the balance of linear momentum (29.5) may be
written in the alternative form

mX+p)=F . (29.11)
This is identical to equation (25.5) for a system of particles so it follows that the balance

of linear momentum of a rigid body remains invariant (unchanged in form) to a

superposed constant velocity X [see equation (25.6)].
To develop the alternative form of the balance of angular momentum we substitute

(29.9a) into the definition (29.1c) and obtain the expressions

HOZ_[ (X+p)xvdm=Xx_[ vdm+_[ pxvdm ,
HOZXme-i-I px().(—kf))dm ,
H =Xxmv+ _[ pdmx).(+ _[ px[.)dm ,

H =Xxmv+mpxX+Hg, (29.12)

where Hy is the relative angular momentum about the point B
Hy = [ pxpdm . (29.13)
Furthermore, following the development of (25.9) we may differentiate (29.12) to obtain
H =XxF+mpxX+Hg . (29.14)

Now, substituting (29.9a,c) into (29.3), the expression for the moment M about the

origin becomes

N M
M= [ (X+p)xbam+ X +p)xF+ X M,

=1 =1
N N M

MO=X><[I bdm+ 2F] + | pxbdm+ S xF+ 2 M,
1=1 . 1=1
=1
M, =XxF+Mg , (29.15)

where the moment My of the external forces about the point B is defined by
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N M

MBZIpxbdm+ZpixFi+ZMi. (29.16)
: i=1
=1

Furthermore, if b is constant then (29.16) reduces to

N M

Mg = I pdmxb +Zpi XFi+,lei’
. 1=
1=1

N M
MB=§xmb+ZpixFi+‘lei, (29.17)

. 1=

=1

which shows that b acts through the center of mass. Finally, substitution of (29.14) and

(29.15) into (29.6) yields the balance of angular momentum in the alternative form

Hy +mpxX=Mj . (29.18)

Notice that for a general moving point B the balance of angular momentum changes

form. However, for the special case when p x X vanishes, the balance of angular

momentum remains invariant with

H, =My for pxX=0. (29.19)

This happens for the following three cases.

Case I: The point B moves with constant velocity

X = constant , (29.20)
so the balance of angular momentum remains invariant to a superposed constant velocity.
Case II: The point B is the center of mass of the system

p=0, (29.21)

and the balance of angular momentum may be written in the form

H=M (29.22)

2

where for convenience we have denoted the value of Hy by H and the value of Mg by

M, so that H is the relative angular momentum about the center of mass and M is the
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moment due to external forces about the center of mass. It is important to emphasize that
equation (29.22) holds even when the center of mass accelerates.

Case III: The point B accelerates towards or away from the center of mass

X|Ip . (29.23)
Before closing this section it is convenient to use the result (29.12) and consider the

special case when B is taken to be the center of mass with

X=x,p=0, (29.24a,b)
HB=}_I=_[ (x—-x)x(v—-v)dm , (29.24¢)

to derive the result that
H, = xxmv)+ H . (29.25)

This means that the angular momentum about the origin O is equal to the sum of the

angular momentum of the center of mass (x x m v) about O and the angular momentum

H of the rigid body about its center of mass. Also, using (29.13) and the fact the p

locates the center of mass relative to B it follows that

Hy=J b+ ®-»Ix P+ G -p)dm,
Hy=[pxpam+] pxG-pam+[p-pxpdm+] @-p)x-p)dm,
Hy=px (| dmlp+px] G-p)dm+]p-p)dmxp+] ®-p)x@-p)dm,

Hy=pxmp+px0+0xp+) (p—p)x (h—p)dm,

Hy=pxmp+ H, H=] (p—p)x (p—p) dm, (29.26)

which is similar to (29.25).
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30. Inertia Tensor

Fig. 30.1

By way of introduction to the concept of the inertia tensor of a rigid body consider the
case of a rigid body which is connected by a frictionless joint at the fixed point O and

rotates with angular velocity @ = ® €5 due to the moment M, = M e5 (see Fig. 30.1).

For simplicity, let the mass m of the rigid body be concentrated at a distance r from the
point O. Letting x be the vector from O to the concentrated mass we may use polar

coordinates to write

X=re, . (30.1)

T
Since the mass is concentrated at a point, the integral in (29.1c) for the angular

momentum Hj about O may be simply evaluated to obtain

Ho=xxmvzrerxm(rwee)=(mr2)we3=H0e3, (30.2)

where v = x is the velocity of the mass and H, is the component of H | in the e5 direction.

Since the mass m and the distance r are constant we have
H =H e;=(mr)we, , (30.3)
so that the balance of angular momentum (29.6) yields the equations
H =H e;=(mr’)oe;=M e;=M, . (30.4)
For this simple case we can define I to be the moment of inertia of the rigid body about
the e axis

I =mr? , (30.5)
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and write the angular momentum H | in the form
H =1, o, (30.6)

and the balance of angular momentum in the scalar form

H,=M, . (30.7)
e2 o
- 2
I, = mk
Fig 30.2

Formulas of the type (30.6) and (30.7) hold for special cases of a rigid body rotating

about the e5 axis even when the mass is not concentrated (see Fig. 30.2). For this case we

sometimes use the analogy of a concentrated mass (30.5) and define the radius of

gyration k by the formulas

I
_ 2 — (2112
[, =mk- , k—(m) . (30.8)
Thus the radius of gyration k is the radius at which the mass of the body would have to be
concentrated in order to obtain the correct value of the moment of inertia I, for rotation

about the origin.

To describe three-dimensional motion of a rigid body we must generalize the scalar
equation (30.6) to a vector equation. It will be shown presently that the appropriate
vector equation can be written in the form

H -1 o. (30.9)
where @ is the angular velocity vector of the rigid body and I is the inertia tensor of the

rigid body about the material point O. The inertia tensor I is a second order tensor that
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operates on the vector @ to give the vector Hj. Writing (30.9) in the component form
relative to the basis e;

Hy; e =l 0;¢;, Hy =l o, (30.10a,b)

oi  “oij 7

we may observe that the (i,j)) components Ioij of I, may be identified as a square matrix

so that (30.10) merely represents a matrix Ioij multiplying a vector ®; to obtain another
vector H;. More generally the angular momentum H about the center of mass can be

written in terms of the inertia I about the center of mass

H=1o. (30.12a)
If B is an arbitrary material point attached to the body then the angular momentum

Hg can also be expressed in terms of the inertia Iz about B in a form similar to (30.12),

such that

where p is the vector from the point B to any point in the body. Since B is a material

point and the vector p connects two material points on the rigid body it follows that

p=oxp, (30.14)
so that (30.13) may be written in the form

Hy=Jpx@xp)dm=][(p+p)o—(p+o)pldm. (30.15)

It is important to note that the angular velocity @(t) is a function of time only so it is not
affected by the integration over the mass of the body and therefore ® can be factored out
of the integral. This can be done by defining the tensor product ® such that for any

vectors a,b,c, the quantity (a ® b) is a second order tensor and d = (a ® b) ¢ is a vector

having the properties
d=(a®b)c=a(bec)=(bec)a , (30.16a)
d; = (a; by) ¢; = a; (b ¢;) = (b ¢j) a; - (30.16b)
Thus, we may write
pro)p=pR®po,o=lo, (30.17a,b)
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where I denotes the unit tensor and should not be confused with inertia tensors which are

denoted by the same symbol with either an over bar I or a subscript Iz. Now

substituting (30.17) into (30.15) we may deduce that
Hy=lo , IBZI[(p-p)I—(p®p)] dm . (30.18a,b)

Notice that the inertia tensor I is a property of the body and is independent of the

motion of the body. It follows that it is most convenient to calculate the components of

I; relative to a body coordinate system e;' which rotates with the body

e=oxe . (30.19)
Letting p; = ¢; * p be the coordinates of the body coordinate system, P' be the region of
space occupied by the body, dV = (dp; dp, dp;) be the element of volume, and p(p;) be

the positive mass density (mass per unit volume), we may write

Ip = IP, pllp-pI-(p®p)]dv , (30.20a)

1855 =)o 0 [0y Py 85— (P} D1 AV (30.200)

where the Kronecker delta Bij are the components of the unit tensor I and Iéij are the
components of Iy relative to the basis e;. Notice that since we have chosen a body

coordinate system the limits of integration in (30.20b) are independent of time
(independent of the motion of the body).

In view of either of the representations (30.20a,b) it can be seen that the inertia tensor
I; is a symmetric tensor (i.e. its transpose Ig is equal to itself)
T — —

and it is a positive definite tensor. By positive definite we mean that for an arbitrary

nonzero constant vector a the scalar product a * I a is positive
a-IBaZaiIBij aj>0 for a£0 . (30.22)

This can be proved by substituting (30.20a) into (30.22) to obtain

atlga=l ol p)@ra)-(p-ap-a)av>0. (30.23)
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which is positive since the constant vector a can only be equal to p at at most one point in
the body.

In order to discuss the physical meaning of the inertia tensor Iy it is convenient to
consider the expanded forms of the components (30.20b). In particular the diagonal

components may be written in the forms

1= P L2+ (321 av (30.242)
Ig22 = IP, pL(P* + (P37 dV . (30.24b)
Igas = J p P LD+ ()1 dV (30.24¢)

and the off-diagonal components may be written as

Ig12 = —IP.p[pi Pyl dV (30.25a)
Ig13= —jP.p[pi p3ldv, (30.25a)
Ig23 = —IP.p[pﬁ p3ldv, (30.252)

Physically the integrands of the diagonal components of inertia can be interpreted as the

square of the distance of the material point from the coordinate axes e;.

It is also convenient to expand equation (30.12¢) for the angular momentum to obtain

Hp; = Igj; 01 + Igjp @3 + Igj3 3 , (30.26a)
Hp, Ig1r Ig12 Ig13 ) (@1
Hpy | =| Ig1o T2z Igos || @2 . (30.26b)
Hp Ig13 Igos I3z / \o;

Notice from (30.26b) that in general the inertia tensor has six independent
components and the angular momentum vector has a different direction from the angular
velocity vector. This means that if you rotate the body about a given direction then in
general you will get angular momentum components in the direction of rotation and in

the plane normal to the rotation. From a physical point of view it makes sense to ask the
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question whether there are special directions in which you can rotate the body and only

get angular momentum in the direction of rotation. For this case we would have

Hy=lgo=1o , Hg;= Iéij mj =loj, (30.27a,b)
where I is a scalar to be determined. Rewriting (30.27) we have
(Ig-1DHe=0, (Iéij -1 8ij) oaj =0, (30.28a,b)
or in expanded form
g1 gy Igiz Y\ (o1

Iggp  Igpp T Igps ;)

0
=0 . (30.29)
Igi3 Igpz I3zl : 0

e

Thus, we have reduced the problem to a standard eigenvalue problem. Since the tensor

Iéij is real and symmetric there exists three eigenvalues I which are determined by the
characteristic equation

and three associated eigenvectors which are determined by solving (30.29) for the
associated directions of ®;. These eigenvectors can be ordered to form a right-handed
orthonormal set of vectors which we denote by €;'. Then letting Ifgij be the components of

I; relative to ej' we have

i 0 0
gi=| 0 B2 O |, (30.31)
0 0 Ips3

with I3, Igho, Ig53 being positive constants, since for example
Ig11 = j pP [(p3)? + (p3)?] dV . (30.32)

Sometimes the eigenvalues are called principal values and the eigenvectors are called

principal directions of the tensor I

In general the components Iéij relative to ej, and I]'B'ij relative to ej' of the tensor Iy
must satisfy tensor transformation rules in order for I to be independent of our choice of
the coordinate system. In particular, let Aij be the transformation tensor (direction

cosines) characterizing the relationship between the orientations of €; and e;' such that
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e, el=A.el. (30.33a,b,c)

= ”.! !':
Ai'_ei € - € Aijj’ i i Y]

y |
Notice that by definition the first index of Aij always refers to the double primed system
and the second index always refers to the single primed system. It follows that Aij is an

orthogonal tensor because

—al' ¢ o' — ' e " — — T
8 =€l ® €' = Ay e * Ajy € = Ay Ay S = Ay A = A AL . (30340)
—alep! — "o "_ — — T
8= €l* el = A e Ay et = A Ay 8 = A A= AT A (30340)
Recalling that the components of I satisfy the equations
= Ige , If—el+Igel (30.352,b)
we may use (30.33) to derive the transformation relations
"o ' _ ' T
IBij - Aim Ian Ajn o Aim Ian Anj ’ (30.36b)
Ig11 Ig12 Ig1s Al Ap Aps Ig11 Ig12 Ig1s Al Ay Ay
Igho Ignp Ighs | =| Agp Agy Aps Ig1o Igoo Igos A Ay Ag
Ig13 Ignz Ip33 Azl Az Asgg Ig13 Ig23 Ipss Az Az Agg
(30.36¢)
and
[ " _ AT "
IBij - Ami Ian Anj o Ai m Ian Anj > (30.37b)
Ig11 Ig12 Igis A Ay Az ((Ig11 g2 1813 (A1l Az Az
Ig1o Igoo Igos | =| A Axy Asp || Ig12 Igoo Ignz || Azl Ay Ags
Ig13 Igos Igss Ay Axz Asz J\ g3 Ighs Igs1 / \ Az Asy Asg
(30.37¢)
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Fig. 30.3

In order to understand the physical meaning of the off-diagonal terms of the inertia
tensor consider the case of a body with two concentrated masses M, which rotates with

constant angular velocity o about the e,' axes (see Fig. 30.3). Letting e;' be the base

vectors of a body coordinate system and letting @ be the angular velocity of the body we

have
cd=oxe , 0=we] . (30.38a,b)
Then referred to the basis ej, the components <')ij of the inertia tensor about the fixed
origin become
011~ J p (P2 + (p3)*] dm =2 M L2 cos® ot , (30.39)
022 = IP, [(P)? + (p3)*] dm =2 M L?sin” ot , (30.39b)
lo33 = IP, [(P)? + (p3)*] dm =2 M L2, (30.39¢)

Is1o= - J.P, [p; p5] dm =—M (L sin a)(L cos o)

—M (- L sin a)(- L cos @) =—M L? sin 20 , (30.39d)

Ip13= IP, [pj p3]dm =0, (30.39)
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loo3 =~ I pr P2 p3]dm =0, (30.39f)

since the masses are located in the p; = 0 plane. Substituting (30.38b) and (30.39) into
(30.10) the angular momentum H; may be written in the form
H, = Lojj of € = I5j; © €= (lgq @) €1+ (Igp; @) €3+ (Igg; @) €3
H,=2ML?cos’ o)  ej -~ (M L? sin20) @ e} . (30.40)
Notice first that the off-diagonal term 1),, causes the angular momentum H to have a
term in the e) direction even though the body is only rotating about the e; direction.

Recalling that H is expressed in terms of the rotating basis ej, the rate of change of

angular momentum becomes

_ _ 2 o 2
H,=o xH,=-(ML”sin2a) o” e3 , (30.41)

since o is constant. Thus the balance of angular momentum (29.6) yields an expression

for the moment M applied to the body of the form

M, =1}, o e =— (M L? sin 2a) o? e} . (30.42)
Notice from (30.42) that if the angle o vanishes then e; are principal axes of inertia so

the off-diagonal terms of the inertia tensor vanish and there is no moment required to

rotate the body with constant angular velocity about the principal e; axes. This means

that in general there is no moment required to rotate a body with constant angular
velocity about any of its principal directions. Notice also, that if 0 < o < /2 then the

moment M is directed along the negative e axes which is consistent with the physical
notion that if masses were allowed to rotate freely in the ej—e; plane then the angle o

would tend to zero.
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Fig. 30.4

Since we can always choose a body coordinate system in which the inertia tensor is
diagonalized it is of interest to reconsider the previous example and examine what

simplification and complications occur when we refer all tensors to the vectors e} which

are oriented along the principal directions of the body (see Fig. 30.4). For this case the

base vectors ej' also rotate with angular velocity @ such that

o
ef'=mx ¢

i, @=o(cosoe]+sinaes) . (30.43a,b)

Since ¢;' are principal axes of inertia the components 0] of the inertia tensor referred to

ei' become

noo_Tn 2 — — — —

o117 lo33 =2M L7, 15r =151 = 1513 =153 =0 . (30.44a,b)
Recalling that any vector or tensor can be referred to any coordinate system, the angular

momentum vector H may be written in the form
H, = 135 of ¢f = (g1 01) €] + (Igh 03) € + (1333 03) €5
H =}y 0)e] =2CM L?) (o cos a) e . (30.45)

Since o is constant we have

_ _ 2 o 2 n
H,=oxH =-(ML”sin2a) o e3 , (30.46)
which gives the same moment M as in (30.42). Notice that here the components I(')ij of

the inertia tensor are simple but the components of the angular velocity o referred to e;'
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are more complicated. Since both choices of the coordinate system yield rather simple

analyses the particular choice becomes merely a matter of preference.
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31. Transfer Theorem For The Inertia Tensor

n PN
'
e3 .

(¢

Y

N -

Fig. 31.1

If a body is composed of N parts P|' (I=1,2,...,N) (see Fig. 31.1), then by the additive
property of integration we obtain the additive property of the inertia tensor referred to an
arbitrary point B in the body

'=P{UPJULLLUPY (31.1a)
Ig= Ig+,Ig+.. T\ , (31.1b)
where I is the inertia tensor of the whole body relative to B and [I; is the inertia tensor

of the part P} of body relative to B

Iy :jP pl(p-p)I-p®p]dV , (31.2a)

g = JPI pl(pep) 1-pSpldV . (31.2b)

Furthermore letting IfBij be the components of Iy and II]'31j be the components of I
relative to the body base vectors e; we have
It is important to emphasize that the components of tensors can only be added if they are

referred to the same base vectors.
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Fig. 31.2

Sometimes a body is composed of simple parts such as the body shown in Fig. 31.2.
Since the each of the parts is a simple geometric shape it is usually possible to find the
principal values of inertia about the part's center of mass in tables found in dynamics
books. However since the centers of mass and principal directions of the parts do not
necessarily coincide the components found in the tables cannot be added directly. It is
necessary to calculate the inertia tensor of each part relative to the common point B and
also transform the components to a common coordinate system before we can use the
formula (31.3). In the previous section we discussed the transformation of components

of a tensor from the primed system e} to the double primed system e! [see equations
(30.37) and (30.37)] so here we can focus on the transfer theorem which allows us to
calculate the inertia tensor relative to an arbitrary point B attached to the body, given the

inertia tensor I of the body relative to its center of mass.

To this end let: B be an arbitrary point attached rigidly to the body; 5 be the position
vector of the center of mass cm relative to B; p be the position vector of an arbitrary point
in the body relative to B; and & be the position vector of an arbitrary point in the body

relative to the center of mass so that (see Fig. 31.3)
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Fig. 31.3

p=p+E& . (31.4)

Using the formula (31.2a) for I, and the representation (31.4) we may write
=) plp+8) G+OI - (pBOp+EIV .
=) Pl p+2p-E+E-8) 1 (pEp+poE+EOP- EBH) AV |
=l pte-o1-tegav+ | ole-p1-peplav
+ ] plap-81- et +Eop)av . (315)

However, since & is measured from the center of mass of the body

prgdvzo, (31.6)

and B is independent of the integration equation (31.5) reduces to
Ig=m[(p-p)I-p®p]+1 , (31.7)

where 1 is the inertia tensor relative to the center of mass. This is the transfer theorem

for the inertia tensor. Now, if we refer all tensors to the base vectors e; we may write the

component form of (31.7) as
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I]'3ij - Tl'J +m [(py, Py Sij - P} Ej] ) (31.8a)
and the expanded form as

g =17 +m[E3)?+ Py, (31.9a)
Ihyy =1y +m[()?+ (7 , (31.9b)
Ii33 =155 +m[(@)?+(Py)?] . (31.9¢)
Ig=1)5 —m[p]p3] . (31.9d)
Ig3=15 —m[pjp3l . (31.9)
I3 =15 —m[pipj] . (31.9)

Notice that even if e; are parallel to the principal directions of inertia about the center of

mass (i.e. TI'J is a diagonal tensor) they may no longer be parallel to the principal
directions of inertia relative to the point B (i.e. 11'31j may not be a diagonal tensor).

Finally, we emphasize that although equation (31.7) holds even if the point B is not

rigidly attached to the body the resulting tensor I cannot be used in the expression

Hy = I o for the angular momentum of the body since then p will not be a vector of

constant length rotating with angular velocity @ (i.e. p # ® x p).

Alternatively, recalling (29.26) and (30.17) and taking B to be a material point
attached to the body it follows that

HBZI_)xm§+}_I=l_)xm(a)x§)+f(o,
Hy=m[p-po-pp-o)]+lo,
Hy=m[(p*p)I-p®plo+Ila,

Hy=Izo, Ig=m[(p+p)I-p®p]+1, (31.10)

which is the same result as (31.7).
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32. Planar Motion

Fig. 32.1

GENERAL PLANAR MOTION

For general planar motion of a rigid body relative to the plane e;—e, we require all
points in the rigid body to move in planes parallel to the plane e;—e,. Mathematically
this means the velocity of every point in the e; direction vanishes

e;°v=0. (32.1)
Letting: p be the position of an arbitrary point in the body relative to the center of mass;

v be the velocity of the center of mass; and ® be the angular velocity of the rigid body,

the condition (32.1) requires
e;°(v+toxp)=e;*v +(e3xm)p=0, (32.2)
for every point p. It follows that for planar motion we require
e;°v=0,ex0=0, (32.3a,b)
which means that the center of mass moves in the e;—e, plane and the body only rotates
about the e5 direction so the angular velocity becomes
O=wey . (32.4)

Since the center of mass only moves in the plane it follows that it has no acceleration

in the ey direction so from the balance of linear momentum we may deduce that the force

F is also planar with

F=F e +Fye, ,a =a ;e taye, . (32.5a,b)
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Thus, for planar motion the balance of linear momentum reduces to the two scalar
equations
ma =F ,ma,=F, . (32.6a,b)

We can also refer the vectors to the rotating body coordinate system e} defined by

é{zcoxe' 0O=0e;=0e; , (32.7a,b)

10
and write the balance of linear momentum in the form

m a;=F; , ma,=F; . (32.8a,b)
Letting TI'J be the components of the inertia tensor I relative to the center of mass we

may express the angular momentum H relative to the center of mass in the form

'S R 1 ) (PN ] Vot T Vot T [N

H=To=1}0e =150e/+;oe;+;50e}. (32.9)

Thus, the rate of change of angular momentum becomes

H=""+oxH="_+oe;xH . (32.10)

= =lioe . (32.11)

Expanding the cross product in (32.10) we deduce that

H= (1501 0?) e] + (50 + 1,5 0?) e} + (I35 0) €} . (32.12)

Thus, the component form of the balance of angular momentum (29.22) may be written

as
T50- 1L 0?=M] , (32.13a)
Ts0+ 15 02 =M (32.13b)
T35 0=M; . (32.13¢)
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It 1s important to emphasize that since the body is rotating about an axis which is not
parallel to a principal axis of inertia the off diagonal components of the inertia tensor do
not vanish so we must apply moments 1\_/Ii and 1\_/5 in order to maintain planar motion

relative to the e{—e; plane.

PURELY PLANAR MOTION

If the plane of motion e;—e) is perpendicular to a principal direction of the inertia

tensor then two of the off-diagonal components of inertia vanish (note that Tl'z need not

vanish and will depend on our choice of e})

I,5=0,1,5=0, (32.14a,b)

so the balance of angular momentum reduces to a single scalar equation (32.13¢) which

can be rewritten in the simpler form (I = 15%)

H=Tw =M, H=10 . (32.15a,b)
For this case the motion is called purely planar motion since the only moment that need

be supplied is a moment in the direction perpendicular to the plane of motion.
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33. Impulse On A Rigid Body

In view of the simplicity of the balance of linear momentum (29.5) and the two forms

of the balance of angular momentum (29.6) and (29.2) it follows that changes in

momentum from time t; to time t, can be determined by integrating these balance laws.

A\
A A —_
In particular, we can define the impulsive force F and impulsive moments M , M such

that
t
FZI Fdt ,
t
)
Moz_[ M, dt ,
t
A2
M=] M
t

t
t
A J'zo
Mo: Hodt:Hoz_Hol ,
t
A2 _
M=) Hd-H,-H, .
t
1

(33.1a)

(33.1b)

(33.1¢)

(33.2a)

(33.2b)

(33.2¢)

As an example let us consider the purely planar motion of a rigid body that is acted

AN
upon by an impulsive force R (see Fig. 33.1). The body has mass m, moment of inertia

— — A
I = m k2 about its center of mass and is initially at rest. The impulsive force R is applied

in the constant e, direction at the position x; relative to the center of mass, such that

A

AN
R=Re; , x;=—se; —he,
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e center of percussion

x>

Fig. 33.1

Letting v, be the velocity of the center of mass just after the application of the

impulsive force, equation (33.2a) can be used to deduce that

>

A A _ _ — — ﬁ
=R= eizm(vz—vl)zmvz,vzza e . (33.4)

Next, consider the consequence of the balance of angular momentum about the center of

mass and let @, = o, e; be the angular velocity of the body just after the application of

the impulsive force, so that (33.2c¢) yields

AN
M=H,-H,=1w,e; . (33.5)
However, assuming that the impulsive force is applied to the body over an infinitesimally

small time interval, the body does not have time to change its position during the impact

AN
so that the impulsive moment M about the center of mass can be approximated by

t

A2 AA

MZ,[ x; xR(t)dt=x; x R=hRe; , (33.6)
£

AN
where R(t) is the force associated with the impulsive force R. Substituting (33.5) into

(33.6) yields the value of the angular velocity o,

(02 = 0)2 e3 , 0)2 = (337a,b)

— | =
>
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Now, assuming that no forces or moments are applied after the impact it follows that

the velocity v of the center of mass and the angular velocity @ remain constant
(33.8)

Thus, the velocity v, of an arbitrary material point that is instantaneously located by the

position vector p relative to the center of mass is given by

A AN
v _., R hR
VATVHP = vioexp =vy= et r e;x(pye;tpye) ,
A A A
R hR h R
Va= [ —— paleg [ pile. (33.9)
I I

Recall that the point A will locate the instantaneous center of zero velocity (v, = 0)

provided that {p, p,} are given by

1 K

p;=0, p,= mh — §n - (33.10a,b)
The result (33.10a) states that the instantaneous center of zero velocity lies along the line
perpendicular to the velocity of the center of mass of the body as it should. This point is

called the center of percussion because if the body were hinged there the impulsive

reaction at the hinge would vanish. Also, notice that the results (33.10) are valid for all

time so that instantaneous center of zero velocity is always located a distance p, above

the center of mass and it moves with the constant velocity of the center of mass. In this
regard, it is emphasized that as the body rotates the material points that instantaneously

coincide with the instantaneous center of zero velocity change with time.

144



34. Energy Equation For A Rigid Body
Recall from (18.5) that we proved that for a single particle the rate of work of all

external forces is equal to the rate of change of kinetic energy

* d 1
P:F°V:T:&[§mV'V]. (34.1)

Similarly we proved for a system of particles rigidly connected by central forces that the
internal forces do no work so the rate of work done by external forces again equals the
rate of change of kinetic energy [see (27.4) and (27.16)]

N . N.
P=Y F.+v,=T=Y T, T,=
i=1 i=1

mv;ev; . (34.2a,b)

Do [—

Before developing the energy equation for a rigid body it is desirable to first develop
an expression for the kinetic energy of the rigid body. It follows from the definition
(27.3b) for the kinetic energy of a system of particles that the kinetic energy of a rigid
body should be defined by

1
TZ,[ Ev-vdm. (34.3)
Next, referring the motion to the center of mass we may write

X=X+p,Vv=v+p, p=0xp, (34.4a,b,c)

where p is the vector from the center of mass x to an arbitrary point in the body and ® is

the angular velocity of the body. It follows from (34.4b) that
Vev=(VEp)s(V+p)
Vev=vev+2ve f)+(0)><p)~f),

VeV=Vev+2Vep+oe(pxp). (34.5)

Thus, the kinetic energy becomes

TZJ %V-Vder V-I[.)der%(o-I pr)dm ,
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T=-mvev+T, (34.6)

N | —

where the kinetic energy of motion relative to the center of mass T is given by

= 1 — ] - | -
T=§co-H=§c0°Ico=§(oiIijoaj. (34.7)

Note that in words, equation (34.6) states that the kinetic energy of the rigid body is equal
to the kinetic energy of the center of mass plus the kinetic energy of motion relative to
the center of mass.

If the body rotates about a fixed point O (see Fig. 34.1) then the kinetic energy T may

be expressed in the alternative form

1 1 !
sz 5 vevdm :EI(mXX'V)dmZEI(w'XXV)dm )

1 -
T= co',[(xxv)dm: mZEm}I(')iju)j. (34.8)

N | —
e
=
©

Il
N | —
e
—

1
2

One of the differences between a rigid body and a system of particles is that it is
possible to apply external moments at points on a rigid body which can do work on the
body. Therefore, in order to develop the general form of the energy equation for a rigid
body we generalize the procedure used to obtain (34.2) which took the scalar product of
the equations of linear momentum of each particle with its associated velocity and

summed the result. Thus, for a rigid body we multiply the linear momentum equation

(29.5) by the velocity of the center of mass v and multiply the balance of angular
momentum (29.22) by the angular velocity @ and sum the results to obtain

N N M

i=1 i=1 i=1
=mvev+H-o, (34.9)

where p; is the vector measured from the center of mass to the point of application of the

force F;. Using the properties of the scalar triple product and the fact that v and @ are

functions of time only it is possible to rearrange this equation into the form
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N M L] L]
J.b-(V+co><p)dm+ 2 FevV+toxp)t 2 M+o=mvev+tH-o . (34.10)
=1 =1

However, since p and p; are each vectors that connect two material points on the rigid

body it follows that the absolute velocity v of an arbitrary material point and the absolute

velocity v; of the point of application of the force F; are given by

V=V+oxp, Vi=v+toxp;, (34.11a,b)
so that (34.10) reduces to
N M . .
Ib-vdm+z Fi°Vi+ZMi°co=mV~v+H°co. (34.12)
i=1 i=1

Next, using (34.7) and the fact that e} is a body coordinate system it may be shown that

T ! . (34.13)

H=1!0 e , (34.14a)
* SH _
Hzg +oxH, (34.14b)
h SH — e — . *
Heo= 6t°co=Ii'- ieco=o [fo=T. (34.14c¢)
Thus, it follows that
mvev+Heo=T, (34.15)
so the energy equation for a rigid body may be written in the usual form
P=T, (34.16)
where the mechanical power P is defined by
N M
P=[bevdm+ X Fevi+ M- o . (34.17)

i=1 i=1
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For a uniform (independent of position) body force b, the rate of work of the body force

can be expressed in the simple form
_[b°vdm=mb-V, (34.18)

which is equivalent to an external force (m b) acting at the center of mass of the body.
Then, (34.17) reduces to the simpler form

N M

P=mbev+ 2 Fev.+ 2 M+ . (34.19)
i=1 i=1

Here it is important to emphasize that the external forces F; are multiplied by the absolute
velocities v; of the material points where they are applied and that all the external
moments M; are multiplied by the same absolute angular velocity @ of the rigid body.

Using the form (34.19) of the mechanical power we may integrate the energy

equation (34.16) over the time interval [t,t,] and write an energy equation in the form
Uy =(Ty =T+ (Vg = V) + (Ve = V) (34.20)

where I_Jz /1 1s the work done by all external forces which don't contribute to gravitational
potential energy Vg or elastic potential energy V. and the work done by all external

moments.

€

Fig. 34.1
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35. Angular Momentum And Transformation Relations

Fig. 35.1

Consider a rigid body that is moving and rotating with absolute angular velocity ®

relative to a fixed coordinate system e; with origin O. Let e; be a body coordinate system
rotating with angular velocity @ and let e! be another coordinate system rotating with

angular velocity Q such that

=oxel , ef=Qxel . (35.1a.b)

Recall from (29.25) that the angular momentum H| of a body about the fixed point O is

the angular momentum of the center of mass plus the angular momentum H about the

center of mass

H =xxmv+H, (35.2)

o
where H may be expressed in terms of the components Tﬁ of the inertia tensor I relative

to the basis e as

ﬁ = T.’. o' e

'
1 1

(35.3)

Note that since ﬁ, f, ® are tensors we can express them in terms of any basis which we

choose. In particular we can use the basis e} and write
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el (35.4)

H I"

To prove this we recall the properties (30.33a,c),(30.34a) of the transformation tensor A

between the two bases el and el

AJ—e -ej R

and use (30.33b,c) to derive the transformation relations between the components ;' and

" AL AL =0 (35.5a,b.,c)

| J—
ei_Amiem > Amym T Yo

o;' of the angular velocity vector ®
n '
1 A A Az (@

(Di':Aij (DJ! , (Dg = A21 AZZ A23 (Di , (356a,b)
®3 Azp Ay Az /) \o3
o] A Mg Azp (@]
(D _A O)J"—AE J” (Dé = A12 AZZ A32 (05 . (356a,b)
®3 Az Ay A3/ \0f

Then, with the help of (35.5), (35.6) and the transformation relations (30.37b) it may be

shown that
=(A, AnJ Ilgn) (Arj ;) (Ag €y) ,
H = (A Ag) (A Arj) (I ol el) =38 O (I noorer)
H=Ijo'e/=1}o (35.7)
Using the expressions (35.3) and (35.4) and recalling the associated angular velocities

of the base vectors e; and e' we may calculate the rate of change of angular momentum in

the equivalent forms
> d
HZ&(I oa)e +oxH , (35.8a)
H= 5 (I o) ef +QxH . (35.8b)

It is important to note that although the components I are independent of time because e}

is a body coordinate system the components I" may depend on time.
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For example, let us consider the simple case when e; are parallel to the principal axes
of inertia so that
I, 00

L= 0L 0. (35.9)
0 01
Also, let €] be related to e} such that
e] =cosf e] +sinp ey , e)=—sinp e] +cospe;, e3=e3 , o=pt, (35.10a,b,c)
el =cospe; —sinpe, ,es=sinpe; +cospey, es=e3 , (35.10d.e,1)

For this case the rigid body rotates with angular velocity p e relative to the e} coordinate

system. It follows from the definition (35.5a) that

cosd —sing 0
Aij: sing cos¢ O | , (35.11)
0 0 1

so that the transformation relations (30.36¢) yield

Tu Tu Tu

W2 3 oosp —sing 0)( 1 O O cosp sing 0
Iy 1y I3 | =| sing cos¢ O 01, 0 ]| —sind cosp 0
- = = 0 0 1/ 0 01 0 0 1
Iy 13y L3

I Tu Tvv .
11 12 13 (Cosd) —Sind) OJ IICOS(I) IISIH(I) 0

Tl"z Tz"z f2"3 sing cosdp 0O —L,sing Iycos¢p O

T 0 0 I o 0

I3 Tp3 133

I Iy Ify Ilcos2¢+12sin2¢ {I;-1,}singcos¢p 0

I Iy Iy |5 {(-Iysingeosd  Ijsin®g+Lycos’p 0 | . (35.12)
U B L O O 13

I3 I3 133

Notice from (35.12) that in general the components TIJ' are functions of time and that TI'J' is
not a diagonal tensor. However, if the components of inertia I; and I, of the body along
the axes perpendicular to the axis of relative rotation e} are equal

=1, (35.13)
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then (35.12) simplifies to give

—
—_
e

0
0 | . (35.14)
3

T T —

o o
o
Ll

Physically, this means that when two principal values of inertia are equal then the body
possesses rotational symmetry about any axis in the plane characterized by the associated
principal axes of inertia. Consequently, the components of the tensor of inertia are

insensitive to rotations of the coordinate axes about the axis perpendicular to this plane.
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36. Point Masses, Massless Links, And A System Of Rigid Bodies
A point mass is an idealized rigid body which has finite mass m but zero volume so
that its mass is concentrated at a point instead of distributed over a region of space. It

follows from the definition (30.20a) of the inertia tensor about a point B that the inertia
tensor I about the center of mass of a mass point vanishes
I=0. (36.1)
Thus, the angular momentum H about the center of mass of the mass point vanishes
H=0, (36.2)

so the balance of angular momentum requires the resultant moment M about the center of

mass to also vanish

M=0, (36.3)
These results indicate that a mass point can only be subjected to a force which passes

through its center of mass.

Fig. 36.1

Sometimes a rigid body may be idealized as a collection of point masses connected

by massless rigid links (see Fig. 36.1). It follows that if the rigid body is idealized as

massless then both the linear momentum G and the angular momentum H vanish so the

balances of linear momentum and angular momentum require the resultant force F and

moment M to vanish
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F=0, M=0 . (36.4)
Furthermore since the mass vanishes it follows from the balance of angular momentum

(29.18) about an arbitrary moving point B that the resultant moment My vanishes
Mp =0 . (36.5)

This means that the resultant moment about any point vanishes.

J'th rigid body u I'th rigid body

€ L'th massless link
K'th rigid body
Fig. 36.2
Here we consider a system of N rigid bodies connected by M massless links. For

example, consider a typical case where the L'th massless link connects the I'th, J'th and

K'th rigid bodies (see Fig. 36.2). Let R; be the resultant external force applied to the I'th

rigid body and let p; be the resultant external moment applied to the I'th rigid body about

its center of mass x;. Also, let Ry and p; be the resultant external force and moment
applied to the L'th link at the point x; . Furthermore, let f;; be the force and my; be the
moment, both applied by the L'th link on the I'th rigid body at their point of contact xy; .

Since the force and moment applied by the I'th rigid body on the L'th link are equal in

magnitude and opposite in direction to the fj; and my, respectively, the free-body

diagrams of the I'th rigid body and the L'th link are given by Fig. 36.3.
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L'th massless link

- fJL

u
- R Ry

=y,

I'th rigid body

- fKL — My

Fig. 36.3
It follows from the free body diagram that the balances of linear and angular

momentum of the I'th rigid body may be written in the forms

G =R;+f , (36.6a)
I'{IO = iI x Rp+ pp+ xpp x fip +myp (36.6b)

where Gy is the linear momentum of the I'th rigid body and Hy is the angular momentum

of the I'th rigid body about the fixed origin O.

For our present purposes we allow the massless link to be a joint which enforces
kinematical constraints on the relative motion of the connected body or even a motorized
joint which can control the relative motion between the connected bodies. However,
since the link is considered to be massless we assume that like a massless rigid body, the
resultant force and moment applied to it both vanish. In particular, with reference to the

L'th link in Fig. 36.3 this assumption requires

Ry +(fip) + () + (—fxp) =0, (36.7a)
xp X Ry +pp + [ xqp < (= fyp) +xpp < (= fyp) + xep % (= fiep)
+(my) +(myp) F(-myg )] =0 . (36.7b)

Now, if we sum the balances of linear and angular momentum of the system of three

rigid bodies in Fig. 36.2 we may deduce that

GI + GJ + GK = (RI + fIL) + (RJ + fJL) + (RK + fKL) ,
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G+ G+ Gy =R+ Ry + Ry + (fy + 5 + £ (36.8a)
Hy, + Hy, + Hy = (X x Ry + py +xpp x fyp +myp )
+ (X x Ry +py +xpp x £y +myp)
+(§K><RK+pK+xKL>< fep T mgp)
HIO+HJO+HKOZ(§I><RIJr,,LIJriJ xRJ+uJ+§K><RK+uK)
+xp x fyp Hmyp +xgyp x By Ay Xy X ey Fmgg ] (36.8b)
With the help of the equations of motion (36.7) of the massless link equations (36.8) may
be rewritten in the forms
G+ G+ Ge= (R +R; +R) +R, | (36.9a)

HIO+HJO+HK0=(EI><RI+uI+§JxRJ+uJ+§KxRK+uK)
+xp xRy . (36.9b)

These equations state that the rate of change of the linear momentum of the system is

equal to the total resultant external force applied to the system

G=F, (36.10)
and that the rate of change of angular momentum of the system about the fixed point O is

equal to the total resultant external moment applied to the system about O

H =M, . (36.11)
It is important to emphasize that in calculating the resultant external force applied to the
system we must include both the external forces and moments applied directly to the rigid
bodies as well as those applied directly to the link.

Obviously, this analysis of a system of three rigid bodies connected by a single
massless link can be generalized to a system of any number of rigid bodies connected by
any number of massless links. The end result of such and analysis is the statement of the
balances of linear momentum and angular momentum of the system in the forms (36.10)

and (36.11), respectively.
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mg

v

Fig. 36.4

Consider the example shown in Fig. 36.4 of two point masses, each of mass

ma=mg=M, which are connected to a massless link AOBD which is allowed to rotate
freely about the fixed e) axis. Letting e} be a rotating set of base vectors defined so that

the two masses remain in the e;—e; plane we have

d=mxe, o=0e). (36.12a,b)

1
Furthermore, the link has a motor D (also idealized as massless!) which controls the

angle o between the bars OA and OB and the e, direction. Initially the system has

constant angular velocity o, and constant angle o, so that

0(0) =y » a0)=ay , w(0)=0 . (36.13a,b.¢)
The motor D is then operated to change the angle a as a function of time. The objective is
to determine the value of w(t) caused by this change in a.

Since the link is presumed to be massless the balance laws (36.10) and (36.11) hold

for the system under consideration where

G=mpvy+tmgvg , Hj=X, xmpy vy +Xgxmgvg. (36.14a,b)
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In the free body diagram Fig. 36.5 the bearing has been replaced by a force F; that acts at
the point x; and moment a M. Also, the force of gravity is neglected so that the total
force F and moment M, about the fixed point O are given by

F=F , M =x; xF +M, . (36.15a,b)
It then follows from the balances of linear and angular momentum that the reactions {F,

M, } can be expressed in the forms

F,=G, M;=H,—x; xF, . (36.16a,b)

Moreover, the vectors {X 5, Xg, X1} are given by
xp =L (—sina e] +cosa e)) , xg = L (sina e +cosa e)) , x; =—he; . (36.17a,b,c)
Thus, using (36.14), (36.16) and (36.17) it is possible to determine the reactions {Fy,

M, } for any specified functional form a(t) [see Table 36.1]

ma

Fig. 36.5
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e ) e
® 0 @ 0
XA — L sina L cosa 0
0X /6t ~L & cosa _L o sina 0
® X X, 0 0 o L sina
VA ~L o cosa _L o sina L sina,
Xp X Mp Vp M o L? sina cosa. M o L? sina ML? o
Xp L sina L cosa 0
Oxp/t L o cosa ~ L o sino; 0
® X Xp 0 0 — o L sina
VB L o cosa _ L o sino — o Lsina
Xg X Mg Vg — M o L? sino cosa M o L? sina. ~ML2 (;L
G 0 -2ML (;c sino 0
d |
0G/ot 0 -2ML T (o sina) 0
o xG 0 0 0
L] d N 1
G 0 ~2ML; (o sino) 0
H, 0 2M o L? sina 0
d .
SH /3t 0 2M L2 a (@ sinZal) 0
o x Hj 0 0 0
. d
2 = 02
1, 0 2ML* g (0 sin’a) 0
Table 36.1
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Next, using (36.17¢c) and the fact that the bearing is frictionless yields the condition
that

M;se;=Hj*e;=0 . (36.18)
However, the vector e) is constant so that (36.18) requires
H, * e; = constant . (36.19)
Thus, using the results in Table 36.1 and the initial conditions (36.13) it follows that
H,=2 ML2 o sinZa. e,=2 ML2 0 sin2a0 e .

02
sm-oy

=(—5 , 36.20
0 =52, @ (36.20)
which is the desired result. This indicates that the angular velocity ® increases as the

angle o decreases and the masses become closer to the axis e) of revolution. Also, using

Table 36.1 and (36.16) it follows that

d « . ,
Fl=—2MLa(a sina) e, , (36.21a)

d
M; =2ML?* g (osin‘a) ey =0, (36.21b)

so the force F; applied by the bearing acts only in the e; and the moment applied by the
bearing vanishes.

As another example consider the system of two rigid disks A and B connected by a
massless link that includes a motor D (see Fig. 36.6). The system is free to rotate about

the fixed e} axis and the angle o between the horizontal plane and the shaft of the motor

remains constant. The system is initially at rest. Then the motor D is turned on and it
starts rotating body A relative to body B until the shaft of motor D attains a constant
angular speed p. At this time the system reaches steady state with body B rotating with

angular speed Q in the e} direction. The objective is to determine the angular velocity of

the body B.
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Fig. 36.6

To this end, let e be base vectors defining a body coordinate system which rotates

with body B such that the angular velocity Q is given by

¢'=Qxe!, Q=Q¢) , (36.22a,b)

m

and the shaft of motor D remains in the ej—e; plane. Furthermore, let e!' be another set

" m

of rotating base vectors defined by taking e3' parallel to e3 and eY' parallel to the shaft of

the motor so that

e]' = cosa e] +sina €5 , (36.23a)
e)' =—sina e} + cosa e , (36.23b)
ey'=e; , (36.23c¢)
r=Qxel . (36.23d)

Also, since the body A rotates relative to e} with angular speed p in the direction of the

shaft of motor D it has angular velocity o given by

m "

®=Q+pej' =Q(sino e’ +cosaey) +pe™ . (36.24)
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M, F,

Fig. 36.7

Replacing the bearing with a force F; and moment M, each associated with the point
x; of application of the force, and neglecting the force of gravity we obtain the free body
diagram Fig. 36.7 and expressions for resultant external force F and moment M of the
form
F=F, , M ,=x; xF +M, , (36.25a,b)
where x; is parallel to the €5 and is given by
x;=—hej . (36.26)
Since the system is free to rotate about the e} axis, the component of the external moment
M, in the e} direction vanishes
M;-e;=0 . (36.27)
It then follows from (36.25b)—(36.27) that no matter what the value of F; we have
M, +e;=0, (36.28)

so that the balance of angular momentum of the system yields the result that the

component of angular momentum H_ in the constant e} direction remains constant

H, ¢ e; = constant . (36.29)
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However, since the system initially is at rest the value of the constant is zero so that

H *e;=0 . (36.30)
In order to derive an expression for H of the system for the steady state situation we

m

denote the mass of body A by m, and its inertia tensor Al about its center of mass and

relative to the e}' system by
I,y 0 0
L=l 0 Ta 0. (36.31)
0 0 Iy

m

This indicates that body A has rotational symmetry about the e}' axis. Similarly, we

denote the mass of body B by my and its inertia tensor TB"ij about its center of mass and

relative to the e} system by

Iy 0 0
Igi=| © T,z O | . (36.32)
0 0 Iy

This indicates that body B has rotational symmetry about the e5 axis.
Now, the angular momentum H of the system may be represented in the form
H, = [X, xmy v, +H,]+ [Xgx mg vg + Hg] . (36.33)

However, for body A we have

x,=Lel' , vy =Qxx, =—QLcosaej , (36.34a,b)
Xy xmy vy =my QL% cosa el , (36.34c)
H, =1, 0=1,; (Qsina+p)e}' +1,, (Qcosa)ey , (36.34d)
and for body B we have
vg=0, Hg=HgQ =13, Qe} . (36.35a,b)

Combining these results we have

H, =1, (Qsino.+p) e} +(Qcosa) (my L? +1,,) €5 +1g, Q¢ . (36.36)
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Here, it is important to emphasize that we have calculated each of the vectors with
respect to the base vectors which yield the simplest expressions and that we have added
these results in vectorial form. It follows from (36.30) that Q2 and p are related by the
expression
Iy (Q sina + p) (e]" = e3) + (€2 cosa) (my L2+ [yy) (€5 *e5) +1g, Q=0 . (36.37)

Next, with the help of (36.24) we may deduce that

I, (Qsina + p) sina + (Q cosa) (my L2 +1,,) cosa+ 15, Q=0 (36.38)
so that

I, p sina

Q= , (36.39)

- Iy sinZo + (my L2+ Iy5) cos2a + Is,
which is the desired result. Notice that the denominator is positive and that for a

between 0 and 1/2 and the sign of Q2 is opposite to that of p.
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37. Gyroscopic Effects
In order to begin to understand gyroscopic effects let us first consider the simple case
of a gyroscope which is designed with three perpendicular frictionless gimbals that allow

the gyroscope to rotate freely without applying any moment about its center of mass

M =0 . (37.1)

It follows from the balance of angular momentum that (37.1) causes the angular

momentum H about the center of mass to be constant

H = constant . (37.2)
Now if we start the gyroscope spinning with angular velocity @ parallel to one of its

principal axis of inertia we have
H=1o=1o, (37.3)

where I is the principal value of inertia associated with this axis of rotation. Since 1is
constant it follows from (37.2) and (37.3) that angular velocity @ remains constant

® = constant . (37.4)
This means that the gyroscope will continue to rotate with constant rotational speed | |
about a fixed direction in space. For this reason the gyroscope tends to point in a
constant direction and can be used for navigational purposes. Of course, frictional effects

cause small moments to be applied to the gyroscope which must be corrected.

Tq
o 12 o

A\
|

4

Fig. 37.1
Now that we know what happens to a gyroscope which is free of moment let us

consider the case when moments are applied that cause constant angular speed about two
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axes. With reference to Fig. 37.1, let e] be parallel to a principal axis of a body which is
tilted by an angle 0(t) relative to the horizontal plane. Furthermore, let the e! coordinate
system rotate with angular velocity Q so that e3 always remains in the horizontal plane
and the vertical ej—e5 plane rotates about the vertical axis e, with constant angular speed

q so that

(37.52)

Q=qe,+0e5=q(sin0 e] +cosOey)+0ey . (37.5b)
Also, let the body rotate relative to the e! coordinate system with constant angular speed

p about the e} axis so that the absolute angular velocity @ of the body becomes

o=Q+pej=(qsind+p)e]+qcosOey+ 0 e3 . (37.6)
In this example we calculate the moments applied to the body about its center of mass O

and we calculate the rotation 0(t) caused when the body is assumed to rotate freely about

the e3 axis.

Assuming that the body is a homogeneous body of revolution with respect to the e

axis, the components fl‘J of the inertia tensor relative to its center of mass and relative to a

body coordinate system e; parallel to the principal axes of inertia may be written in the

form
1, 0 0
Ii=| 01, 0. (37.7)
00 1,

Since fz'z and f3'3 are equal it follows that the components of inertia TI'J' relative to e} are

unaffected by the rotation of e! relative to e} so that
IIJ' = Ii'j . (37.8)

Thus, the angular momentum H about the center of mass becomes
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H= I"oaJ 3'— 1(qsm9+p)e +Iz(q0059)e + 129e . (37.9)

From the balance of angular momentum we may calculate the moment M applied to the

center of mass

M=H . (37.10)

The results of this calculation are summarized in Table 37.1. Since the body is free to
rotate about the e;" axis the component of the moment about this axis vanishes

M°e"—0 . (37.11)

This gives an equation for determining 6(t) of the form
TZ 0+ (Tz —Tl) q? sind cosO —Tl pqcosO=0 . (37.12)
Multiplying (37.12) by 0 and integrating we obtain

1
+35 (I —Il)q sin20 — I 1 pqsind=C, (37.13)

N | —

where C is a constant of integration which is determined by the initial conditions. For

example if the initial values of 6 and 0 are given by

0(0)=0, 6(0) =0 , (37.14a,b)
then the constant C vanishes and (37.12) and (37.13) may be written in the forms
Y 1 _ _ B
0= __[(Il—lz)qzsineﬂlpq} cosf , (37.15a)
I
[ 1 _ _ o
0% = - [(Il—lz)qzsineJrZIlqu sin@ . (37.15b)
I
2

Notice that initially we have

0(0)=0 , 6(0)=

LX) Tl
- pq, (37.16a,b)
I,
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so that if pq > 0 then 0(0) > 0 and the axis e tends to tilt up whereas if pq < 0 then

0(0) < 0 and the axis e tends to tilt down. Also, notice that when 0= +r we have

° Y Tl
0m) =0, O(=n)=— — pq . (37.17a,b)
I

This means that the body will oscillate between 6=0 and 6=n for pq > 0 whereas it will

oscillate between 6=0 and 6= —= for pq < 0.

() e €3
Q q sin® q cosO é
H Tl (q sinb + p) Tz (q cos0) fz 0
SH/5t Tl q 6 cosH _Tz q 6 sin® Tz 0
q cosO Tz 0 — q sin@ Tz 0 q sin® Tz (q cosB)
Q x ﬁ ° L] J—
—qcos01,0 + 1;(qsin®+p)0O —1,(q sin6 +p)qcos6d
. 1,0
. ~21,q0sin0
H fl q 6 cosO . +(f2—f1)q2sin9cos9
+ 1,(qsin®+p) 0 -
—1,pqcosd

Table 37.1
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38. Euler Angles And A Spinning Top

\cb v
4 e3. €3

m "
€7, € \9

Fig. 38.1
In order to describe Euler angles it is convenient to consider the physical problem of a
spinning top whose tip O is fixed in space (see Fig. 38.1). In this problem we introduce

four coordinate systems and consider the transformation relations between them
e, > ¢e" —> e — e . (38.1)

The base vectors e; are fixed in space with

¢=0 (38.2)

"m

whereas the base vectors e!

", €', e rotate with angular velocities which are functions of

the rates of change of the Euler angles {y, 0, ¢} which define the orientation of e; relative

to €.

m

Precession Angle y: The base vectors e;" are related to e; by a rotation about the e5 axis

through the angle y, which is called the precession angle, and the transformation

relations are given by
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e|"=cosye tsinye, , (38.3a)

"o

e)' =—sinye tcosye, , (38.3b)
e =e; . (38.3¢)

"m
1

m

by a rotation about the e{" axis

Nutation Angle 0: The base vectors e’ are related to e

through the angle 6, which is called the nutation angle, and the transformation relations

are given by

e;'=e" . (38.4a)
ey =cos 0 ey +sin6ey" (38.4a)
ey’ =—sin0e)"+cos0e;" . (38.4b)

Spin Angle ¢: The base vectors e} are associated with a body coordinates system which
rotates with the top. These base vectors are related to e}’ by a rotation about the e3' axis

through the angle ¢, which is called the spin angle, and the transformation relations are

given by
e;=cose +singey , (38.5a)
e, =—sine;'+cos ey , (38.5b)
e} =e;'. (38.5¢)

It is important to note that even though the relationship between e} and e, is quite

complicated it can be described by three consecutive simple rotations, each about a single

axis (see Fig. 38.2).

[ "m
2 e3 )
m n

¢

Fig. 38.2
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Before proceeding with the solution of the spinning top problem it is important to

note that the transformations (38.3)—(38.5) can be written in a convenient matrix forms

"

€ [cosw siny OJ €

e —siny cosy 0 || € |, (38.62)
e}" 0 0 1\ e
N (1 0 o0 (e
e) [=| 0 cosO sinO e" |, (38.6b)
el 0 —sin® cosO e
e cos¢p sing 0 ey
e | =| —sing cosp O || &' |. (38.6¢)
e} 0 0 1 es'

Furthermore, since the matrices in (38.6) are orthogonal their inverses are equal to their

transposes so that the inverse transformations can be written in the matrix forms

€ cosy —siny 0 €l
€ | =| siny cosy O e | | (38.7a)
e; 0 0 1 eé”
er’ 1o o (&
e" [ =] 0 cos® -sin® || €' | | (38.7b)
ey" 0 sin® cosO ey’
e’ cos¢p —sinp O e
ey | =| sing cosp O || € | . (38.7¢)
eé' 0 0 1 eé
Now the angular velocity Q of the system e!' is given by
¢'=Q xe! , Q =y e;+0 el . (38.8a,b)

However from the geometry of Fig. 38.1 we may write e5 in terms of €;' in the form
ey =sin0 e;' + cosO e3' , (38.9)
so that Q becomes
Q =0 e]'+y (sind e} +cosdel) . (38.10)

Also, the angular velocity @ of the system e} is given by
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—oxel , (38.11a)

®=Q+he) =0 el'+(y sind) ey +(y cosd+ ) el . (38.11b)
Furthermore, let the body base vectors e} be parallel to the principal axes of inertia and let
the top have rotational symmetry about the e and e, axes so that the components Io'ij of

the inertia tensor about the point O and relative to the basis ;' are

Iy, O 0
L= 0 T O . (38.12)
0 0 I,

"

However since 11, =15, it follows that the components Ioij of the inertia tensor relative

to e;' are unchanged by the spin (I) so that

T =Tgjj - (38.13)
| 6 A e3
€3
L e
R
ef
Fig. 38.3

From the free-body diagram in Fig. 38.3 we see that the only forces acting on the top

are the force of gravity mg which acts through the center of mass in the negative e;
direction and the reaction R applied at the point O by the floor on the top so that
F=R-mge; =R e!'—mg(sin0 e}' + cosO e3") , (38.14a)

F=(R}) e]'+ (R} — mg sin6) e;' + (R} — mg cosb) e}’ . (38.14b)
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In order to calculate the value of R and the motion {y(t), 6(t), ¢(t)} we must consider the

balances of linear and angular momentum. To this end we note that the vector x from O

to the center of mass is given by
x=Lej , (38.15)
where L is a constant. Also, the angular momentum Hj about the fixed point O becomes

H,=1o=13 o) ¢, (38.16a)

oij ™j
Ho=(I,;;0)ej"+ ;v sinb) ey +[ 133y cosO+¢)]es . (38.16b)

Now the acceleration a of the center of mass and the rate of change of angular
momentum are calculated in Table 38.1.

It follows from the balance of linear momentum that

R=mge;+ma =mg(sinf e}’ +cosBej’) +ma , (38.17a)
Rj=m[Lvysind+2Ly6 cosd] (38.17b)
R§=m[gsinO—L.O.JrL\IJ2 sin6 cosO | , (38.17¢)
Ry-m[gcosd L6 Ly2sin20] . (38.17d)

Furthermore, the moment M about the point O becomes

M =(Ley)x[-mges], (38.18a)
M, = (L e3)x[-mg(sinOe) +cosOey) ], (38.18b)
M, =mg L sin0 e{' , (38.18¢)

so the balance of angular momentum yields the equations

I [6- \112 sin® cosO | +1 33 \Il sin0 (\II cos0 + (T)) =mgLsin0, (38.19a)
To;; [ Wsind+2y 0 cos® ]~ 55 (ycosd+¢)0=0 |, (38.19b)

d o L]
33 at (ycosb+¢) =0 . (38.19¢)
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In general the solution of (38.19) is quite complicated, however, for the special case

of steady precession we have

v=0,uy=0, (38.20a,b)
6=0,06=0, (38.20c,d)
J’ =P :5:0 ) (38.20e,1)
so that the equations (38.17) for the forces RY reduce to
R} =0, (38.21a)
RS =m (g sin® + L Q7 sind cosh) , (38.21b)
R3=m(gcosd —L 02 sin0) , (38.21c¢)

and the angular momentum equations (38.19) reduce to the single equation
-1 Q2 sind cosd + I 33 €2 sin0 (€2 cosO + p) = mgL sinO . (38.22)

Rewriting (38.22) we have

[{(Iyy; —Ip33) cos® } Q% — (I35 p) Q +mgL] sin0=0 . (38.23)
Trivial solutions of (38.23) correspond to sinf = 0 for which 6 = 0 or 6 = =1 and the top
is vertical. If we discard these solutions then the term in square brackets must vanish so

we get a quadratic equation for the rate of precession Q in terms of rate of spin p which

gives the solutions

T43p V (I 33 p)> —4 mgL (I, — I_33) cosO
2 (Iyy1 —I,33) cosO

0= (38.24)

Since we require Q to be real, the term under the square root sign must be nonnegative so
that
4 mgL (I,;1 — I 33) cosO

(1033)2

If I);; < 1,33 then (38.25) places no restriction on the magnitude of the spin, whereas if

p*= (38.25)

I,11 > 1,33 then (38.25) means that the spin p must be greater than a minimum value for

ol

steady precession to exist.
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At this point it is reasonable to ask which one of the solutions (38.24) is the one most
observed? In order to get a simple estimate for the difference in magnitude of these two
solution let us consider the reasonable approximation that the spin p is quite large. It

follows that (38.24) may be rewritten in the equivalent, but alternative, form

[ ~2p 4 mgL (I,,; —1 75) cosO
Q- g e [ 1 oll i) . (38.26)
(To11 — Toz3) cos (533 p)

Now, for large values of the spin p the second term in the square root function is small so

by using a Taylor series expansion we can approximate (38.26) by

I3 P 2 mgL (I;;; — I 33) cosb
Q= 1£91- 2 ,  (38.27)
2 (Iy11 — Lo33) cos® (Io33 )

which yields the two solutions

L
Q=0 -1, (38.282)

033 P

I35 P
Q~Q 033 (38.28b)

27 (I,y1 — Lya3) cosb
Notice that for large values of the spin p, the value of €, is much smaller than €,. Since

tops which have large spin are usually observed to have slow precession rates we may
conclude that the solution (38.27) with the negative sign is the one usually observed.
However, it is important to emphasize that the above observation does not replace
theoretical analysis of the stability of the solutions (38.27). For example, if it could be
shown that the solution with a positive sign is unstable to perturbations then we could

conclude that it is unlikely to be observed during steady precession of the top.
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n

"

+ 133 \|./2 sinf cosO

+ 133 ¢y sind

—133 (\If cosO + d.)) 0

ey € €3
Q é \I/ sin® \If cosO
< 0 0 L
v=QxXx L\I/sine -L6 0
SV/3t | Ly sin@+Ly 0 cosd ~-Lo :
Qxv L \I.f 0 cosH L \I/z sin cosO ~L62-L \.112 sin%0
L ;|; sin® -L .6. . .
a . . ~L 62— L y?sin’0
+2L vy 6 cosO + L y? sin6 cos@
H, I, © I,;; v sind I 33 (W cosO + ¢)
5H. /ot - for v e foss (050
© 1011 e o ° o ° oo
+1511 v 6 cosb —y 0sind + ¢)
T35y cosO+ ¢ )y sind | —T 55 (W cosO + ¢) 0 I, v 0 sind
QxH,
L y? sind cos® +114 e\.llCOSG -1 \IJ 0 sin6
I, 0 I {|; sin6
. —1,;; w2 sind cos® F21 v 0 cosd I 33 (y cosd
H

—y Osind + )

Table 38.1

176




39. Euler Equations Of Motion
Recall that the balances of linear momentum and angular momentum are vector
equations which can be referred to any coordinate system. However, if we refer these

equations to base vectors e} which remain parallel to the principal axes of inertia of the

body then the component equations of angular momentum simplify considerably. These
simplified equations are called the Euler equations of motion of a rigid body. In

particular, let the body rotate with angular velocity @ so that the base vectors e; attached

to the body also rotate with angular velocity @

1

e=mxe . (39.1)

Referring the balance of linear momentum to the base vectors e; we may write
maj;=F; , may;=F) ,maj=F; . (39.2a,b,c)
Since the vectors e; are parallel to the principal directions of inertia the components

fﬁ» of the inertia tensor I about the center of mass may be written in the simple

diagonalized form

L=l 0 I, 0 |, (39.3)
0 0 Iy

so the angular momentum H about the center of mass becomes
H= Ii} o el = (1| o)) e; +(I,, w)) e; +(I550m3)e3 . (39.4)

Thus, using Table 39.1 the balance of angular momentum yields the equations

M{ =1} o]+ (I35 1,,) 0} 0} , (39.5a)
M) =15, 0y + (1] — 133) 0] ©} , (39.5b)
M} =135 0+ (1), — 1{)) 0] ®) , (39.5¢)

for the components 1\7[; of the moment M about the center of mass.
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e € e
o) o] ) ®3
T T T 1 1
H I} o L), o) I35 03
SH/5t I} o Ly, o) I35 w3
o x H (I35 = 1,,) 0; o3 (I} = 153) 0] o3 (I = 1)) o] o,
. Ly o1 + (I35 = 1) 03 | Iy @3 + (14} = I33) o1 | I35 03+ (1) = 1) o
H 1 1 1
03 03 ®y

Table 39.1

Fig. 39.1

Now consider the problem of a flipping coin which is a cylindrical disk of radius R,

thickness h and mass m (see Fig. 39.1). Initially the center of mass of the coin is located

at position Xy, it has velocity v, and the coin has angular velocity o so that

x(0)=xy , v(0)=v, , 0(0)=0, . (39.6a,b,c)
The coin then flips in space and its motion is influenced only by the force of gravity

which acts in the negative e5 direction (see the free-body diagram in Fig. 39.2) so that the
resultant force F acting on the coin is

F=-mge; . (39.7)

Notice that since the force of gravity acts in a fixed direction it is most convenient to

solve the balance of linear momentum in terms of the fixed base vectors e;. It follows

from (39.7) that the balance of linear momentum becomes
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mX=-mge; . (39.8)

Integrating (39.8) subject to the initial conditions (39.6) we deduce that
_ . |
x(t) = x + vt — 58 t2 e, (39.9)

which shows that the center of mass of the coin moves in a plane parallel to the v,—e,

plane.

Fig. 39.2

Taking ej to be parallel to the axis of revolution of the coin, the components Ti} of the

inertia tensor I about the center of mass of the coin are

I, 00
1= 0 ; O 1—l 1121+h—2 I—l R2 39.10
ij - 1 » [ =g mR7] 3R2]’ 3T M (39.10)
0014

Since the coin is free from moments (1\_/Ii = 0), the Euler equations (39.5) reduce to

Lo!—(-) 00y =0, (39.11a)
I oy+ (I-1) 0] 0y=0 (39.11b)
®y=0 . (39.11¢)

Integrating (39.11c) subject to the initial condition (39.6¢) we have

03 =0y =0, *e3(0) = constant , (39.12)
where we emphasize that the components w); are the components of the vector @ in the

direction of the base vectors €}(0) at time t=0 so that
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®p; = @) *€el0) . (39.13)

Now the equations (39.11a,b) may be rewritten in the simpler forms

Ol -Loy=0, oy +rol =0, (39.14a,b)
where the constant A is defined by

_—(11_13) '
=" o - (39.15)

Differentiating (39.14a) and substituting (39.14b) into the result we deduce that

ol -Aoy=0] +22 0! =0 . (39.16)
Thus, the solution of (39.16) and hence (39.14b) may be written in the forms
O] = mq; Cos(At) + oy, sin(At) , ®)=—wy; sin(rt) + @y, cos(At), (39.17a,b)
where the constants have been determined by satisfying the initial conditions (39.13).
Next, it is convenient to introduce the base vectors e} such that
® = 0! € = [0y} cos(At) + w(), sin(At)] e + [~ (; sin(At) + (), cos(At)] €5 + (5 €3
® = wg) €] + g € T 0g3 €3,

" _

e] = cos(At) e; —sin(At) ey , €5 =sin(At) e; +cos(At) e) , e3=e3 ,

I
* 3
el=Axel, A=0—Ae;=my e+ 0y e§+1—c00'3 es . (39.18)
1
e" ,
2 e
€
At
¢
Fig. 39.2
However, since the components of A are constants
*  OA
7L=§+7ka=0, (39.19)
A is a constant vector which can be written in the form
. . A
sze,\u>0,e=m . (39.20)
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It then follows that the orientation of the coin can be described like a spinning top with
the rate of precession \T/ about the fixed e axis, with spin rate A (relative to the e axes)

about e3, and with constant angle of nutation 6 given by

I, oy
W 03
cosO=e3 ce I, ( ) ) . (39.21)

Moreover, using the fact that the components of I relative to e and e! are the same it
follows that the angular momentum about the center of mass
H =1} of &7 =1,(0g; €] + g, €3) T I3 (wg3 €3) ,
_ I
H=LA - ﬁ 03 €3) T I3 (og; €3) =1; A, (39.22)

is a constant vector. This is consistent with the fact that M vanishes.

\V
A
AN .
" 6
€
Fig. 39.4

Since A is constant the evolution equations

L]
"n_ "
ei—kxei ,

(39.23)

for determining e! can be solved by introducing another set of base vectors e}, which

also have absolute angular velocity A, such that
é'i” =Axel', e3'=e. (39.24)

Moreover, the constant base vectors e; can be specified so that
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¢=0, eg=e,

m mo_

e]' = cos(yt) ey +sin(yt) e, , e5'=— sin(yt) e; + cos(yt) e, ,
e2 e'”
e’ 1
wt
€1

Fig. 39.5

Then, the vectors ej can be written in terms of e!' to obtain

ej(t) = [¢f(0) « ¢]'(0)] €'(V) ,

where the components of €] in the e}" directions are constants.
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(39.25)

(39.26)



