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1. Introduction 

 Continuum Mechanics is concerned with the fundamental equations that describe the 

nonlinear thermomechanical response of all deformable media.  Although the theory is a 

phenomenological theory, which is proposed to model the macroscopic response of 

materials, it even is reasonably accurate for many studies of micro- and nano-mechanics 

where the typical length scales approach, but are still larger than, those of individual 

atoms.  In this sense, the general thermomechanical theory provides a theoretical 

umbrella for most areas of study in mechanical engineering.  In particular, continuum 

mechanics includes as special cases theories of: solids (elastic, plastic, viscoplastic, etc), 

fluids (compressible, incompressible, viscous) and the thermodynamics of heat 

conduction including dissipation due to viscous effects. 

 The material in this course on continuum mechanics is loosely divided into four parts. 

Part 1 includes sections 2-5 which develop a basic knowledge of tensor analysis using 

both indicial notation and direct notation.  Although tensor operations in general 

curvilinear coordinates are needed to express spatial derivatives like those in the gradient 

and divergence operators, these special operations required to translate quantities in direct 

notation to component forms in special coordinate systems are merely mathematical in 

nature.   Moreover, general curvilinear tensor analysis unnecessarily complicates the 

presentation of the fundamental physical issues in continuum mechanics.  Consequently, 

here attention is restricted to tensors expressed in terms of constant rectangular Cartesian 

base vectors in order to simplify the discussion of spatial derivatives and concentrate on 

the main physical issues. 

 Part 2 includes sections 6-13 which develop tools to analyze nonlinear deformation 

and motion of continua.  Specifically,  measures of deformation and their rates are 

introduced.  Also, the group of superposed rigid body motions (SRBM) is introduced for 

later fundamental analysis of invariance under SRBM. 

 Part 3 includes sections 14-23 which develop the balance laws that are applicable for 

general continua.  The notion of the stress tensor and its relationship to the traction vector 

is developed.  Local forms of the equations of motion are derived from the global forms 

of the balance laws.  Referential forms of the equations of motion are discussed and the 

relationships between different stress measures are developed.  Also, invariance under 
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SRBM of the balance laws and the kinetic quantities are discussed.  Although attention is 

focused on the purely mechanical theory, the first law of thermodynamics is introduced to 

show the intimate relationship between the balance laws and invariance under SRBM. 

 Part 4 includes sections 24-29 which present an introduction to constitutive theory.  

Although there is general consensus on the kinematics of continua, the notion of 

constitutive equations for special materials remains an active area of research in 

continuum mechanics.  Specifically,  in these sections the theoretical structure of 

constitutive equations for nonlinear elastic solids, isotropic elastic solids, viscous and 

inviscid fluids and elastic-plastic solids are discussed. 
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2. Indicial Notation 

 In continuum mechanics it is necessary to use tensors and manipulate tensor 

equations.  To this end it is desirable to use a language called indicial notation which 

develops simple rules governing these tensor manipulations.  For the purposes of 

describing this language we introduce a set of right-handed orthonormal base vectors 

denoted by (e1,e2,e3).  Although it is not our purpose here to review in detail the subject 

of linear vector spaces, we recall that vectors satisfy certain laws of addition and 

multiplication by a scalar.  Specifically, if a,b are vectors then the quantity  

  c = a + b  (2.1) 

is a vector defined by the parallelogram law of addition.  Furthermore, we recall that the 

operations  

  a + b = b + a  (commutative law)  , (2.2a) 

  ( a + b ) + c = a + ( b + c )  (associative law)  , (2.2b) 

  α a = a α  (multiplication by a real number)  ,  (2.2c) 

  a • b = b • a  (commutative law)  , (2.2d) 

  a • ( b + c ) = a • b + a • c  (distributive law)  , (2.2e) 

  α ( a • b ) = ( α a ) • b  (associative law)  , (2.2f) 

  a × b = - b × a  (lack of commutativity)  , (2.2g) 

  a × ( b + c ) = a × b + a × c  (distributive law)  , (2.2h) 

  α ( a × b ) = ( α a ) × b   (associative law)  , (2.2i) 

are satisfied for all vectors a,b,c and all real numbers α, where a • b denotes the scalar 

product (or dot product) and a × b denotes the vector product (or cross product) between 

the vectors a and b.  

 Quantities written in indicial notation will have a finite number of indices attached to 

them.  Since the number of indices can be zero a quantity with no index can also be 

considered to be written in index notation.  The language of index notation is quite simple 

because only two types of indices may appear in any term.  Either the index is a free 

index or it is a repeated index.  Also, we will define a simple summation convention 

which applies only to repeated indices.  These two types of indices and the summation 

convention are defined as follows. 
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 Free Indices: Indices that appear only once in a given term are known as free indices.  

For our purposes each of these free indices will take the values (1,2,3).  For example, i is 

a free index in each of the following expressions 

  (x1 , x2 , x3 ) = xi  (i=1,2,3)  , (2.3a) 

  (e1 , e2 , e3 ) = ei  (i=1,2,3)  . (2.3b) 

 Repeated Indices: Indices that appear twice in a given term are known as repeated 

indices.  For example i and j are free indices and m and n are repeated indices in the 

following expressions 

  ai bj cm Tmn dn   ,  Aimmjnn    ,  Aimn Bjmn  . (2.4a,b,c) 

It is important to emphasize that in the language of indicial notation an index can never 

appear more than twice in any term.   

 Einstein Summation Convention: When an index appears as a repeated index in a 

term, that index is understood to take on the values (1,2,3) and the resulting terms are 

summed.  Thus, for example, 

  xi ei = x1 e1 + x2 e2 + x3 e3  . (2.5) 

Because of this summation convention, repeated indices are also known as dummy 

indices since their replacement by any other letter not appearing as a free index and also 

not appearing as another repeated index does not change the meaning of the term in 

which they occur.  For examples, 

  xi ei = xj ej  ,  ai bmcm = ai bj cj  . (2.6a,b) 

It is important to emphasize that the same free indices must appear in each term in an 

equation so that for example the free index i in (2.6b) must appear on each side of the 

equality. 
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 Kronecker Delta: The Kronecker delta symbol δij is defined by 

  δij = ei • ej = ⎩⎨
⎧ 1  if i = j
 0  if i ≠ j  . (2.7) 

Since the Kronecker delta δij vanishes unless i=j it exhibits the following exchange 

property 

  δij xj = ( δ1j xj , δ2j xj , δ3j xj ) = ( x1 , x2 , x3 ) = xi  . (2.8) 

Notice that the Kronecker symbol may be removed by replacing the repeated index j in 

(2.8) by the free index i.   

 Recalling that an arbitrary vector a in Euclidean 3-Space may be expressed as a linear 

combination of the base vectors ei such that 

  a = ai ei  , (2.9) 

it follows that the components ai of a can be calculated using the Kronecker delta 

  ai = ei • a = ei • (am em) = (ei • em) am = δim am = ai   . (2.10) 

Notice that when the expression (2.9) for a was substituted into (2.10) it was necessary to 

change the repeated index i in (2.9) to another letter (m) because the letter i already 

appeared in (2.10) as a free index.  It also follows that the Kronecker delta may be used to 

calculate the dot product between two vectors a and b with components ai and bi, 

respectively by 

  a • b = (ai ei) • (bj ej) = ai (ei • ej) bj = ai δij bj = ai bi  . (2.11) 

 Permutation symbol: The permutation symbol εijk is defined by 

  

    εijk = ei × ej • ek = 
⎩⎪
⎨
⎪⎧
 
 1  if (i,j,k) are an even permutation of (1,2,3)
−1  if (i,j,k) are an odd permutation of (1,2,3)
 0  if at least two of (i,j,k) have the same value

  (2.12) 

From the definition (2.12) it appears that the permutation symbol can be used in 

calculating the vector product between two vectors.  To this end, let us prove that 

  ei × ej = εijk ek . (2.13) 
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Proof: Since ei × ej is a vector in Euclidean 3-Space for each choice of the values of i and 

j it follows that it may be represented as a linear combination of the base vectors ek such 

that 

  ei × ej = Aijk ek  , (2.14) 

where the components Aijk need to be determined.  In particular, by taking the dot 

product of (2.14) with ek and using the definition (2.12) we obtain 

  εijk = ei × ej • ek = Aijm em • ek = Aijm δmk = Aijk  , (2.15) 

which proves the result (2.13).  Now using (2.13) it follows that the vector product 

between the vectors a and b may be represented in the form 

  a × b = (ai ei) × (bj ej) = (ei × ej) ai bj = εijk ai bj ek  . (2.16) 

 Contraction: Contraction is the process of identifying two free indices in a given 

expression together with the implied summation convention.  For example we may 

contract on the free indices i,j in δij to obtain 

  δii = δ11 + δ22 + δ33 = 3  . (2.17) 

Note that contraction on the set of 9=32 quantities Tij can be performed by multiplying 

Tij by δij to obtain 

  Tij δij = Tii  . (2.18) 
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3. Tensors and Tensor Products 

 A scalar is sometimes referred to as a zero order tensor and a vector is sometimes 

referred to as a first order tensor.  Here we define higher order tensors inductively starting 

with the notion of a first order tensor or vector. 

 Tensor of Order M:  The quantity T is called a tensor of order M (M≥2) if it is a 

linear operator whose domain is the space of all vectors v and whose range Tv or vT is a 

tensor of order M–1.  Since T is a linear operator it satisfies the following rules 

  T(v + w) = Tv + Tw  , (3.1a) 

  α(Tv) = (αT)v = T(αv)  , (3.1b) 

  (v + w)T = vT + wT  , (3.1c) 

  α(vT) = (αv)T = (vT)α  , (3.1d) 

where v,w are arbitrary vectors and α is an arbitrary real number.  Notice that the tensor 

T may operate on its right [e.g. (3.1a,b)] or on its left [e.g. (3.1c,d)] and that in general 

operation on the right and the left is not commutative 

  Tv ≠ vT  (Lack of commutativity in general)  . (3.2) 

 Zero Tensor of Order M:  The zero tensor of order M is denoted by 0(M) and is a 

linear operator whose domain is the space of all vectors v and whose range 0(M–1) is the 

zero tensor of order M–1. 

  0(M) v = v 0(M) = 0(M–1)  . (3.3) 

Notice that these tensors are defined inductively starting with the known properties of the 

real number 0 which is the zero tensor 0(0) of order 0. 

 Addition and Subtraction:  The usual rules of addition and subtraction of two tensors 

A and B apply when the two tensors have the same order.  We emphasize that tensors of 

different orders cannot be added or subtracted.   

 In order to define the operations of tensor product, dot product, and juxtaposition for 

general tensors it is convenient to first consider the definitions of these properties for the 

special case of the tensor product of a string of M (M≥2) vectors (a1,a2,a3,...,aM).  Also, 

we will define the left and right transpose of the tensor product of a string of vectors. 
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 Tensor Product (Special Case):  The tensor product operation is denoted by the 

symbol ⊗ and it is defined so that the tensor product of a string of M (M≥1) vectors 

(a1,a2,a3,...,aM) is a tensor of order M having the following properties 

  (a1⊗a2⊗a3⊗...⊗aM–1⊗aM) v = (aM • v) (a1⊗a2⊗a3⊗...⊗aM–1)  , (3.4a)  

  v (a1⊗a2⊗a3⊗...⊗aM–1⊗aM) = (v • a1) (a2⊗a3⊗...⊗aM)  ,  (3.4b) 

  α(a1⊗a2⊗...⊗aM) = (αa1⊗a2⊗...⊗aM) = (a1⊗αa2⊗...⊗aM) 

  = ... = (a1⊗a2⊗...⊗αaM) = (a1⊗a2⊗...⊗aM)α  ,  (3.4c)  

  (a1⊗a2⊗a3⊗...⊗aK–1⊗{aK + w}⊗aK+1⊗...⊗aM–1⊗aM) 

   = (a1⊗a2⊗a3⊗...⊗aK–1⊗aK⊗aK+1⊗...⊗aM–1⊗aM) 

  + (a1⊗a2⊗a3⊗...⊗aK–1⊗w⊗aK+1⊗...⊗aM–1⊗aM)  

 for 1≤K≤M  , (3.4d) 

where v and w are arbitrary vectors, the symbol (•) in (3.4) is the usual dot product 

between two vectors, and α is an arbitrary real number.  It is important to note from 

(3.4a,b) that in general the order of the operation is not commutative.  As specific 

examples we have 

  (a1⊗a2) v = (a2 • v) a1  ,   v (a1⊗a2) = (a1 • v) a2  , (3.5a,b) 

 Dot Product (Special Case):  The dot product operation between two vectors may be 

generalized to an operation between any two tensors (including higher order tensors).  

Specifically, the dot product of the tensor product of a string of M vectors 

(a1,a2,a3,...,aM) with the tensor product  of another string of N vectors (b1,b2,b3,...,bN) is 

a tensor of order |M–N| which is defined by 

 (a1⊗a2⊗a3⊗...⊗aM) • (b1⊗b2⊗b3⊗...⊗bN) 

  

  =  (a1⊗a2⊗...⊗aM–N) 
⎩
⎨
⎧

⎭
⎬
⎫

∏
K=1

N
  (aM–N+K • bK)   (for M>N)  ,  (3.6a) 

 (a1⊗a2⊗a3⊗...⊗aM) • (b1⊗b2⊗b3⊗...⊗bN) 
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  = 
⎩
⎨
⎧

⎭
⎬
⎫

∏
K=1

M
  (aK • bK)    (for M=N)  ,  (3.6b) 

 (a1⊗a2⊗a3⊗...⊗aM) • (b1⊗b2⊗b3⊗...⊗bN)  

 

  = 
⎩
⎨
⎧

⎭
⎬
⎫

∏
K=1

M
  (aK • bK)  (bM+1⊗bM+2⊗...⊗bN) (for M<N)  ,  (3.6c) 

where Π is the usual product operator indicating the product of the series of quantities 

defined by the values of K 

 

  
⎩
⎨
⎧

⎭
⎬
⎫

∏
K=1

N
  (aK • bK)    = (a1 • b1)(a2 • b2)(a3 • b3) ... (aN • bN)  .        (3.7) 

Note from (3.6a,c) that if the orders of the tensors are not equal (M≠N) then the order of 

the dot product operator is important.  However, when the orders of the tensors are equal 

(M=N) then the dot product operation yields a real number (3.6b) and the order of the 

operation is unimportant (i.e. the operation is commutative).  For example, 

  (a1⊗a2) • (b1⊗b2) = (a1 • b1) (a2 • b2)  , (3.8a) 

  (a1⊗a2⊗a3) • (b1⊗b2) = a1 (a2 • b1) (a3 • b2)  , (3.8b) 

  (a1⊗a2) • (b1⊗b2⊗b3) = (a1 • b1) (a2 • b2) b3  . (3.8c) 

 Cross Product (Special Case):  The cross product of the tensor product of a string of 

M vectors (a1,a2,a3,...,aM) with the tensor product  of another string of N vectors 

(b1,b2,b3,...,bN) is a tensor of order M if M≥N and of order N if N≥M, which is defined 

by 

 (a1⊗a2⊗a3⊗...⊗aM) × (b1⊗b2⊗b3⊗...⊗bN) 

  

  =  (a1⊗a2⊗...⊗aM–N) 
⎩
⎨
⎧

⎭
⎬
⎫

∏
K=1

N
  ⊗(aM–N+K × bK)    (for M>N) , (3.9a) 

 (a1⊗a2⊗a3⊗...⊗aM) × (b1⊗b2⊗b3⊗...⊗bN) 
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  = (a1 × b1) ⊗
⎩
⎨
⎧

⎭
⎬
⎫

∏
K=2

M
  (aK × bK)     (for M=N)  ,  (3.9b) 

 (a1⊗a2⊗a3⊗...⊗aM) × (b1⊗b2⊗b3⊗...⊗bN)  

  =  
⎩
⎨
⎧

⎭
⎬
⎫

∏
K=1

M
  (aK × bK)⊗  (bM+1⊗bM+2⊗...⊗bN) (for M<N)  , (3.9c) 

Note from (3.9) that the order of the cross product operation is important.   For examples 

we have 

  (a1⊗a2) × (b1⊗b2) = (a1 × b1)⊗(a2 × b2)  , (3.10a) 

  (a1⊗a2⊗a3) × (b1⊗b2) = a1⊗(a2 × b1)⊗(a3 × b2)  , (3.10b) 

  (a1⊗a2) × (b1⊗b2⊗b3) = (a1 × b1)⊗(a2 × b2)⊗b3  . (3.10c) 

 Juxtaposition (Special Case):  The operation of juxtaposition  of the tensor product of 

a string of M (M≥1) vectors (a1,a2,a3,...,aM) with another string of N (N≥1) vectors 

(b1,b2,b3,...,bN) is a tensor of order M+N–2 which is defined by 

 (a1⊗a2⊗a3⊗...⊗aM)(b1⊗b2⊗b3⊗...⊗bN)  

  = (aM • b1) (a1⊗a2⊗a3⊗...⊗aM–1⊗b2⊗b3⊗...⊗bN)  .       (3.11) 

It is obvious from (3.7) that the order of the operation juxtaposition is important.  For 

example, 

  a1b1 = a1 • b1  , (3.12a) 

  (a1⊗a2)(b1⊗b2) = (a2 • b1) (a1⊗b2)  . (3.12b) 

Note from (3.11a) that the juxtaposition of a vector with another vector is the same as the 

dot product of the two vectors.  In spite of this fact we will usually express the dot 

product between two vectors explicitly. 

 Transpose (Special Case):  The left transpose of order N of the tensor product of a 

string of M (M≥2N) vectors is denoted by a superscript LT(N) on the left-hand side of the 

string of vectors and is defined by  

  LT(N)[ (a1⊗a2⊗...⊗aN)⊗(aN+1⊗aN+2⊗...⊗a2N) ] 
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  ⊗(a2N+1⊗a2N+2...⊗aM) 

  =  [ (aN+1⊗aN+2⊗...⊗a2N)⊗(a1⊗a2⊗...⊗aN) ] 

  ⊗(a2N+1⊗a2N+2...⊗aM)   for M ≥ 2N      (3.13) 

Similarly, the right transpose of order N of the tensor product of a string of M (M≥2N) 

vectors is denoted by a superscript T(N) on the right-hand side of the string of vectors 

and is defined by  

 (a1⊗a2⊗...⊗aM–2N) 

  ⊗[ (aM–2N+1⊗aM–2N+2⊗...⊗aM–N)⊗(aM–N+1⊗aM–N+2...⊗aM) ]T(N) 

     = (a1⊗a2⊗...⊗aM–2N) 

  ⊗[ (aM–N+1⊗aM–N+2...⊗aM)⊗(aM–2N+1⊗aM–2N+2⊗...⊗aM–N)]   

   for M ≥ 2N       (3.14) 

The notation T(N) is used for the right transpose instead of the more cumbersome 

notation RT(N) because the right transpose is used most frequently in tensor 

manipulations.  Similarly, for simplicity the left transpose of order 1 will merely be 

denoted by a superscript LT and the right transpose of order 1 will be denoted by a 

superscript T so that 

 LT(a1⊗a2)⊗(a3⊗a4⊗...⊗aM) = (a2⊗a1)⊗(a3⊗a4⊗...⊗aM)  , (3.15a) 

 (a1⊗a2⊗...aM–2)⊗(aM–1⊗aM)T =  (a1⊗a2⊗...aM–2)⊗(aM⊗aM–1) . (3.15b) 

For example, 

  LT(a1⊗a2)⊗a3 = (a2⊗a1)⊗a3  ,   a1⊗(a2⊗a3)T = a1⊗(a3⊗a2)  ,  (3.16a,b) 

  LT(2)[ (a1⊗a2)⊗(a3⊗a4) ] = (a3⊗a4)⊗(a1⊗a2)  , (3.16c) 

  [ (a1⊗a2)⊗(a3⊗a4) ]T(2) = (a3⊗a4)⊗(a1⊗a2)  . (3.16d) 

From (3.16c,d) it can be seen that the right and left transposes of order 2 of the tensor 

product of a string of vectors of order 4 (2×2) are equal.  In general the right and left 

transposes of order N of the tensor product of a string of vectors of order 2N are equal so 

that 

 LT(N)[ (a1⊗a2⊗...⊗aN)⊗(aN+1⊗aN+2⊗...⊗a2N) ] 
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  = [ (aN+1⊗aN+2⊗...⊗a2N)⊗(a1⊗a2⊗...⊗aN) ] 

  = [ (a1⊗a2⊗...⊗aN)⊗(aN+1⊗aN+2⊗...⊗a2N) ]T(N)  . (3.17) 

 Using the above definitions we are in a position to define the base tensors and 

components of tensors of any order on a Euclidean 3-space.  To this end we recall that ei 

are the orthonormal base vectors of a right-handed rectangular Cartesian coordinate 

system.  It follows that ei span the space of vectors.   

 Base Tensors:  It also follows inductively that the tensor product of the string of M 

vectors 

  (ei⊗ej⊗ek⊗...⊗er⊗es⊗et)   , (3.18) 

with M free indices (i,j,k,...,r,s,t) are base tensors for all tensors of order M.  This is 

because when (3.18) is in juxtaposition with an arbitrary vector v it yields scalar 

multiples of the base tensors of all tensors of order M–1, such that 

  (ei⊗ej⊗ek⊗...⊗er⊗es⊗et) v = (et • v) (ei⊗ej⊗ek⊗...⊗er⊗es)  ,  (3.19a) 

  v (ei⊗ej⊗ek⊗...⊗er⊗es⊗et) = (ei • v) (ej⊗ek⊗...⊗er⊗es⊗et)  .  (3.19b) 

 Components of an Arbitrary Tensor: By definition the base tensors (3.18) span the 

space of tensors of order M so an arbitrary tensor T of order M may be expressed as a 

linear combination of the base tensors such that 

  T = Tijk...rst (ei⊗ej⊗ek⊗...⊗er⊗es⊗et)  ,  (3.20) 

where the coefficients Tijk...rst in (3.20) are the components of T relative to the coordinate 

system defined by the base vectors ei and the summation convention is used over 

repeated indices in (3.20).  Using the above operations these components may be 

calculated by 

 Tijk...rst = T • (ei⊗ej⊗ek⊗...⊗er⊗es⊗et)  . (3.21) 

Notice that the components of the tensor T are obtained by taking the dot product of the 

tensor with the base tensors of the space defining the order of the tensor, just as is the 

case for vectors (tensors of order one). 
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 Tensor Product (General Case):  Let A be a tensor of order M with components 

Aij...mn and let B be a tensor of order N with components Brs...vw then the tensor product 

of A and B 

  A⊗B = Aij...mn Brs...vw ( ei⊗ej⊗...⊗em⊗en⊗er⊗es⊗...ev⊗ew ) ,        (3.22) 

is a tensor of order (M+N). 

 Dot Product (General Case):  The dot product A • B of a tensor A of order M with a 

tensor B of order N is a tensor of order |M–N|.  As examples let A and B be second order 

tensors with components Aij and Bij and let C be a fourth order tensor with components 

Cijkl, then we have 

  A • B = B • A = Aij Bij  , (3.23a) 

  A • C = Aij Cijkl ek ⊗ el  ,   C • A = Cijkl Akl ei ⊗ ej  ,          (3.23b,c) 

  A • C ≠ C • A  .  (3.23d) 

 Cross Product (General Case):  The cross product A × B of a tensor A of order M 

with a tensor B of order N is a tensor of order M if M≥N and of order N if N≥M.  As 

examples let v be a vector with components vi and A and B be second order tensors with 

components Air and Bjs. Then we have 

  A × v = Air vs ei⊗(er × es) = εrst Air vs (ei⊗et)  , (3.24a) 

  v × A = vs Air (es × ei)⊗er = εsit vs Air (et⊗er)  , (3.24b) 

  A × B = Air Bjs (ei × ej)⊗(er × es) = εijkεrst Air Bjs ek⊗et  , (3.24c) 

  B × A = Bjs Air (ej × ei)⊗(es × er) = εijkεrst Air Bjs ek⊗et  , (3.24d) 

  A × v ≠ v × A  ,   A × B = B × A  .  (3.24e,f) 

Note that in general the cross product operation is not commutative.  However, from 

(3.24f) we observe that the cross product of two second order tensors is commutative. 

 Juxtaposition (General Case):  Let A be a tensor of order M with components Aij...mn 

and B be a tensor of order N with components Brs...vw.  Then juxtaposition of A with B is 

denoted by  
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  A B = Aij...mn Brs...vw ( ei ⊗ ej ⊗ ... ⊗ em ⊗ en) (er ⊗ es ⊗ ... ev ⊗ ew )    , 

  = Aij...mn Brs...vw (en • er ) ( ei ⊗ ej ⊗ ... ⊗ em ⊗ es ⊗ ... ev ⊗ ew )   , 

  = Aij...mn Brs...vw δnr ( ei ⊗ ej ⊗ ... ⊗ em ⊗ es ⊗ ... ev ⊗ ew )    , 

  = Aij...mn Bns...vw ( ei ⊗ ej ⊗ ... ⊗ em ⊗ es ⊗ ... ev ⊗ ew ) ,  (3.25) 

and is a tensor of order (M+N–2).  Note that the juxtaposition of a tensor with a vector is 

the same as the dot product of the tensor with the vector. 

 Transpose of a Tensor:  Let T be a tensor of order M with components Tijkl...rstu 

relative to the base vectors ei.  Then with the help of (3.11)-(3.14) we define the Nth 

order (2N≤M) left transpose LT(N)T and right transpose TT(N) of T.  For example 

  T = Tijkl...rstu (ei⊗ej)⊗(ek⊗el)⊗...⊗(er⊗es)⊗(et⊗eu)  , (3.26a) 

  LTT = Tijkl...rstu (ej⊗ei)⊗(ek⊗el)⊗...⊗(er⊗es)⊗(et⊗eu)  , (3.26b) 

  TT = Tijkl...rstu (ei⊗ej)⊗(ek⊗el)⊗...⊗(er⊗es)⊗(eu⊗et)  , (3.26c) 

  LT(2)T = Tijkl...rstu (ek⊗el)⊗(ei⊗ej)⊗...⊗(er⊗es)⊗(et⊗eu)  , (3.26d) 

  TT(2) = Tijkl...rstu (ei⊗ej)⊗(ek⊗el)⊗...⊗(et⊗eu)⊗(er⊗es)  , (3.26e) 

where we recall that the superscripts LT and T in (3.26b,c) stand for the left and right 

transpose of order 1.  In particular note that the transpose operation does not change the 

order of the indices of the components of the tensor but merely changes the order of the 

base vectors.  To see this more clearly let T be a second order tensor with components Tij 

so that 

  T = Tij ei ⊗ ej  ,  TT = Tij ej ⊗ ei = LTT ,          (3.27a,b) 

It follows that for an arbitrary vector v we may deduce that 

  T v = v TT  ,  TT v = v T  . (3.28a,b) 

Also, we note that the separate notation for the left transpose has been introduced to 

avoid confusion in interpreting an expression of the type ATB which is not equal to 

ALTB. 
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 Identity Tensor of Order 2M:  The identity tensor of order 2M (M≥1) is denoted by 

I(2M) and is a tensor that has the property that the dot product of I(2M) with an arbitrary 

tensor A of order M yields the result A, such that 

  I(2M) • A = A • I(2M) = A  .  (3.29) 

Letting ei⊗ej⊗...⊗es⊗et be the base tensors of order M we may represent I in the form 

  I(2M)  = (ei⊗ej⊗...⊗es⊗et) ⊗ (ei⊗ej⊗...⊗es⊗et)  , (3.30) 

where we emphasize that summation over repeated indices is implied in (3.30).  Since the 

second order identity tensor appears often in continuum mechanics it is convenient to 

denote it by I.  In view of (3.30) it follows that the second order identity I may be 

represented by 

  I = ei ⊗ ei  . (3.31) 

Using (2.7) and (3.31) it may be shown that the components of the second order identity 

tensor are represented by the Kronecker delta symbol so that 

  I • (ei⊗ej) = δij  . (3.32) 

 Zero Tensor of Order M:  Since all components of the zero tensor of order M are 0 

and since the order of the tensors in a given equation will usually be obvious from the 

context we will use the symbol 0 to denote the zero tensor of any order. 

 Lack of Commutativity:  Note that in general, the operations of tensor product, dot 

product, cross product and juxtaposition are not commutative so the order of these 

operations must be preserved.  Specifically, it follows that 

     A ⊗ B ≠ B ⊗ A  ,  A • B ≠ B • A  ,  A × B ≠ B× A  ,  A B ≠ B A . (3.33a,b,c,d) 

 Permutation Tensor:  The permutation tensor ε  is a third order tensor that may be 

defined such that for any two vectors a and b we have 

  (a⊗b) • ε   = a × b  .  (3.34) 

Using (2.12) and (3.34) it may be shown that the components of the permutation tensor ε  

may be represented by the permutation symbol such that 

  ε  • (ei⊗ej⊗ek) = εijk  .  (3.35) 

It also follows that 

  ε  • (a⊗b) = a × b  . (3.36) 
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 Hierarchy of Tensor Operations:  To simplify the notation and reduce the need for 

using parentheses to clarify mathematical equations it is convenient to define the 

hierarchy of the tensor operations according to Table 3.1 with level 1 operations being 

performed before level 2 operations and so forth.  Also, as is usual, the order in which 

operations in the same level are performed is determined by which operation appears in 

the most left-hand position in the equation. 

 

Level Tensor Operation 

1 Left Transpose (LT) and Right Transpose (T) 

2 Juxtaposition and Tensor product (⊗) 

3 Cross product (×) 

4 Dot product (•) 

5 Addition and Subtraction 

Table 3.1  Hierarchy of tensor operations 

 

 Gradient:  Let xi be the components of the position vector x associated with the 

rectangular Cartesian base vectors ei.  The gradient of a scalar function f with respect to 

the position x is a vector denoted by grad f and represented by 

 

  grad f = ∇ f = ∂f/∂x = ∂f/∂xm em = f,m em  , (3.37) 

where for convenience a comma is used to denote partial differentiation.  Also, the 

gradient of a tensor function T of order M (M≥1) is a tensor of order M+1 denoted by 

grad T and  represented by 

  grad T = ∂T/∂x = ∂T/∂xm ⊗ em = T,m ⊗ em  . (3.38) 

Note that we write the derivative ∂T/∂x on the same line to indicate the order of the 

quantities.  To see the importance of this, let T be a second order tensor with components 

Tij so that 

  grad T = ∂T/∂x = ∂[Tij ei⊗ej]/∂xm ⊗em = Tij,m ei⊗ej⊗em  .   (3.39) 
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 Divergence:  The  divergence of a tensor T of order M (M≥1) is a tensor  of order  

M–1 denoted by div T and represented by 

  div T =  
∂T
∂xk

   • ek. (3.40) 

For example if T is a second order tensor then from (3.31),(3.39) and (3.40) we have 

  div T =  Tij,j ei  . (3.41) 

 Curl:  The curl of a vector v with components vi is a vector denoted by curl v and 

represented by 

  curl v =  – 
∂v
∂xj

   × ej =  – vi,j εijk ek = vi,j εjik ek  .   (3.42) 

Also, the curl of a tensor T of order M (M≥1) is a tensor of order M denoted by curl T 

and represented by 

  curl T = –  
∂T 
∂xk

   × ek  .  (3.43) 

For example, if T is a second order tensor with components Tij then 

  curl T = – Tij,k εjkm ei⊗em . (3.44) 

 Laplacian:  The Laplacian of a tensor T of order M is a tensor of order M denoted by 

∇2T and represented by 

  ∇2T = div ( grad T ) = [ T,i ⊗ ei ],j • ej = T,mm   .   (3.45) 

 Divergence Theorem:  Let n be the unit outward normal to a surface ∂P of a region P, 

da be the element of area of ∂P, dv be the element of volume of P, and T be an arbitrary 

tensor of any order.  Then the divergence theorem states that 

 

  ∫∂P T n da =∫P div T dv  . (3.46) 
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4. Additional Definitions and Results 

 In order to better understand this definition of juxtaposition and in order to connect 

this definition with the usual rules for matrix multiplication let A, B, C be second order 

tensors with components Aij, Bij, Cij, respectively, and define C by 

  C = AB  . (4.1) 

Using the representation (3.18) for each of these tensors it follows that 

 C = Aij ei⊗ej Bmn em⊗en = Aij Bmn (ej • em) ei⊗en = Aim Bmn ei⊗en  ,    (4.2a) 

  Cij = C • ei⊗ej = Arm Bmn (er⊗en) • (ei⊗ej) = Aim Bmj  . (4.2b) 

Examination of the result (4.2b) indicates that the second index of A is summed with the 

first index of B which is consistent with the usual operation of row times column inherent 

in the definition of matrix multiplication. 

 Symmetric: The second order tensor A with the 9=32 components Aij referred to the 

base vectors ei is said to be symmetric if 

  A = AT  ,  Aij = Aji  . (4.3a,b) 

It follows from (3.25) that if A is symmetric and v is an arbitrary vector with components 

vi then  

  A v =  v A  ,  Aij vj =  vj Aji  .         (4.4a,b) 

 Skew-Symmetric: The second order tensor A with the 9=32 components Aij referred 

to the base vectors ei is said to be skew-symmetric if 

  A = – AT  ,  Aij =  – Aji  .  (4.5a,b) 

It also follows from (3.17) that if A is skew-symmetric and v is an arbitrary vector with 

components vi then 

  A v = – v A  ,  Aij vj = – vj Aji  . (4.6a,b) 

 Using these definitions we may observe that an arbitrary second order tensor B , with 

components Bij, may be separated uniquely into its symmetric part denoted by Bsym, with 

components B(ij), and its skew-symmetric part denoted by Bskew, with components B[ij], 

such that 

  B = Bsym + Bskew  ,  Bij = B(ij) + B[ij]  , (4.7a,b) 
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  Bsym = 
1
2 (B + BT)  = Bsym

T    ,  B(ij) = 
1
2 (Bij + Bji)  = B(ji)  ,  (4.7c,d) 

  Bskew = 
1
2 (B – BT)  = – Bskew

T    ,  B[ij] = 
1
2 (Bij – Bji)  = – B[ji]  . (4.7e,f) 

 Trace:  The trace operation is defined as the dot product of an arbitrary second order 

tensor T with the second order identity tensor I.  Letting Tij be the components of T we 

have 

  T • I = Tij (ei ⊗ ej) • (em ⊗ em) = Tij (ei • em)(ej • em) = Tij δim δjm 

  = Tij δij = Tjj  . (4.8) 

 Deviatoric Tensor:  The second order tensor A with the 9=32 components Aij referred 

to the base vectors ei is said to be deviatoric if 

  A • I = 0  ,  Amm = 0   . (4.9a,b) 

 Spherical and Deviatoric Parts:  Using these definitions we may observe that an 

arbitrary second order tensor T , with components Tij, may be separated uniquely into its 

spherical part denoted by T I, with components T δij, and its deviatoric part denoted by 

T', with components Ti'j, such that 

  T = T I + T'  ,  Tij = T δij + Ti'j   , (4.10a,b) 

  T' • I = 0  , Tm' m  = 0  .  (4.10c,d) 

Taking the dot product of (4.10a) with the second order identity I it may be shown that T 

is the mean value of the diagonal terms of T 

 

  T = 
1
3  T • I = 

1
3  Tmm  .  (4.11) 

 For later convenience it is useful to consider properties of the dot product between 

strings of second order tensors.  To this end, let A, B, C, D be second order tensors, with 

components Aij, Bij, Cij, Dij, respectively.  Then it can be shown that 

  A • (BCD) = AijBimCmnDnj  ,   A • (BCD) = (BTA) • (CD)  ,  (4.12a,b) 

  A • (BCD) = (ADT) • (BC) ,  A • (BCD) = (BTADT) • C  .  (4.12c,d) 
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5. Transformation Relations 

 Consider two right handed orthonormal rectangular Cartesian coordinate systems 

with base vectors ei and ei',  and define the transformation tensor A by 

  A = em⊗em'   .  (5.1) 

It follows from the definition (5.1) that A is an orthogonal tensor 

  A AT = (em⊗em' ) (en'⊗en) = (em'  • en' ) (em⊗en)  , (5.2a) 

  = δm' n  (em⊗en) =  (em⊗em) = I  , (5.2b) 

  ATA = (em' ⊗em) (en⊗en' ) = (em • en) (em' ⊗en' )  , (5.2c) 

  = δmn (em' ⊗en' ) =  (em' ⊗em' ) = I  . (5.2d) 

It also follows that 

  ei  = A ei' = (em⊗em' ) ei' = em (em'  • ei') = em δmi   , (5.3a) 

  ei' = AT ei ,  (5.3b) 

where in obtaining (5.3b) we have multiplied (5.2a) by AT and have used the 

orthogonality condition (5.2c). 

 These equations can be written in equivalent component form by noting that the 

components Aij of A referred to the base vectors ei and the components  Ai'j of A referred 

to the base vectors ei' are defined by 

  Aij = A • (ei⊗ej) = (em⊗em' ) • (ei⊗ej) = (em • ei) (em'  • ej)  

  = δmi (em'  • ej) = ei' • ej ,  (5.4a) 

  Ai'j = A • (ei'⊗ej') = (em⊗em' ) • (ei'⊗ej') = (em • ei') (em'  • ej')  

  = (em • ei') δmj  = ej • ei' = ei' • ej .  (5.4b) 

It is important to emphasize that these results indicate that the first index of Aij (or Ai'j) is 

identified with the primed coordinate system ei' and the second index is identified with 

the unprimed coordinate system ei.  This identification is a consequence of the definition 

(5.1) and is arbitrary in the sense that one could introduce an alternative definition where 

the order of the vectors in (5.1) is reversed.  However, once the definition (5.1) is 

introduced it is essential to maintain consistency throughout the text.  Also, note from 
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(5.4a,b) that the components of A referred to either the unprimed or the primed 

coordinate systems are equal 

  Aij = Ai'j  .  (5.5) 

 Using the expressions (5.4) and the results (5.5) we may rewrite (5.3) in the forms 

  ei = (Amn em' ⊗en' ) ei' = Ami em'   ,  (5.6a) 

  ei' = (Amn en⊗em) ei = Ain en  .  (5.6b) 

Again, we note that in (5.6) the first index of Aij refers to the primed coordinate system 

and the second index refers to the unprimed coordinate system. 

 One of the most fundamental property of a tensor T is that the tensor is independent 

of the particular coordinate system with respect to which we desire to express it.  

Specifically, we note that all the tensor properties (3.1)-(3.15) have been defined without 

regard to any particular coordinate system.  Furthermore, we emphasize that since 

physical laws cannot depend on our arbitrary choice of a coordinate system it is essential 

to express the mathematical representation of these physical laws using tensors.  For this 

reason tensors are essential in continuum mechanics. 

 Although an arbitrary tensor T of order M is independent of the choice of a 

coordinate system, the components Tijk...rst of T with respect to the base vectors ei are 

defined by (3.21) and explicitly depend on the choice of the coordinate system that 

defines ei.  It follows by analogy to (3.21) that the components Ti'jk...rst of T relative to 

the base vectors ei' are defined by 

  Ti'jk...rst = T • (ei'⊗ej'⊗ek'⊗...⊗er'⊗es'⊗et')  , (5.7) 

so that T admits the alternative representation 

  T = Ti'jk...rst  ei'⊗ej'⊗ek'⊗...⊗er'⊗es'⊗et'  . (5.8) 

Now, since T admits both of the representations (3.20) and (5.8) it follows that the 

components Tijk..rst  and Ti'jk...rst must be related to each other.  To determine this relation 

we merely substitute (5.6) into (3.21) and (5.7) and use (3.20) and (5.8) to obtain 
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 Tijk...rst = T • (Aliel'⊗Amjem' ⊗Anken'⊗...⊗Aureu'⊗Avsev'⊗Awtew' ) 

    = AliAmjAnk...AurAvsAwt T • (el'⊗em' ⊗en'⊗...⊗eu'⊗ev'⊗ew' ) 

    = AliAmjAnk...AurAvsAwt Tl'mn...uvw , (5.9a) 

 Ti'jk...rst = T • (Ailel⊗Ajmem⊗Aknen⊗...⊗Arueu⊗Asvev⊗Atwew) 

    = AilAjmAkn...AruAsvAtw T • (el⊗em⊗en⊗...⊗eu⊗ev⊗ew) 

    = AilAjmAkn...AruAsvAtw Tlmn...uvw  . (5.9b) 

For example, if v is a vector with components vi and vi' then 

  v = vi ei = vi'  ei'  , (5.10a) 

  vi = Ami vm'   , vi' = Aim vm , (5.10b,c) 

and if T is a second order tensor with components Tij and Ti'j then 

  T = Tij ei⊗ej  = Ti'j ei'⊗ej'  , (5.11a) 

  Tij = Ami Anj Tm' n  ,  Tij = Aim
T  Tmn'Anj  ,          (5.11b,c) 

  Ti'j = Aim Ajn Tmn  ,  Ti'j = AimTmn Anj
T .          (5.11d,e) 
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6. Bodies, Configurations, Motions, Mass, Mass Density 

 In an abstract sense a body  B is a set of material particles which are denoted by Y 

(see Fig. 6.1).  In mechanics a body is assumed to be smooth and can be put into 

correspondence with a domain of Euclidean 3-Space.  Bodies are seen only in their 

configurations, i.e., the regions of Euclidean 3-Space they occupy at each instant of time t 

(– ∞ < t < ∞).  In the following we will refer all position vectors to the origin of a fixed 

rectangular Cartesian coordinate system. 

 Present Configuration:  The present configuration of the body is the region of 

Euclidean 3-Space occupied by the body at the present time t.  Let x be the position 

vector which identifies the place occupied by the particle Y at the time t.  Since we have 

assumed that the body can be mapped smoothly into a domain of Euclidean 3-Space we 

may write 

  x = –x (Y,t)   .  (6.1) 

In (6.1), Y refers to the particle, t refers to the present time, x refers to the value of the 

function –x  which characterizes the mapping.  It is assumed that  –x  is differentiable as 

many times as desired both with respect to Y and t.  Also, for each t it is assumed that 

(6.1) is invertible so that 

  Y =  –x–1(x,t) = ~Y(x,t)   .  (6.2) 

 Motion:  The mapping (6.1) is called a motion of the body because it specifies how 

each particle Y moves through space as time progresses. 

 Reference Configuration:  Often it is convenient to select one particular 

configuration, called a reference configuration, and refer everything concerning the body 

and its motion to this configuration.  The reference configuration need not necessarily be 

an actual configuration occupied by the body and in particular, the reference 

configuration need not be the initial configuration. 

 Let X be the position vector of the particle Y in the reference configuration κ. Then 

the mapping from Y to the place X in the reference configuration may be written as 

  X = –X(Y)   .  (6.3) 
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In (6.3), X refers to the value of the function –X  which characterizes the mapping.  It is 

important to note that the mapping (6.3) does not depend on time because the reference 

configuration is a single constant configuration.  The mapping (6.3) is assumed to be 

invertible and differentiable as many times as desired. Specifically, the inverse mapping 

is given by 

  Y = –X–1(X) = Ŷ(X)   .  (6.4) 

 It follows that the mapping from the reference configuration to the present 

configuration can be obtained by substituting (6.4) into (6.1) to deduce that 

  x = –x(Ŷ(X),t)  = x̂(X,t)   .  (6.5) 

From (6.5) it is obvious that the functional form of the mapping x̂  depends on the 

specific choice of the reference configuration.  Further in this regard we emphasize that 

the choice of the reference configuration is similar to the choice of coordinates in that it is 

arbitrary to the extent that a one-to-one correspondence exists between the material 

particles Y and their locations X in the reference configuration.  Also, the inverse of the 

mapping (6.5) may be written in the form 

  X = ~X(x,t)   . (6.6) 

 Representations:  There are several methods of describing properties of a body.  In 

the following we specifically consider three possible representations.  To this end, let f be 

an arbitrary function characterizing a property of the body, and admit the following three 

representations 

  f = –f(Y,t)   ,  f = f̂(X,t)   ,  f = ~f(x,t)   .  (6.7a,b,c) 

For definiteness, in (6.7) we have distinguished between the value of the function and its 

functional form.  Whenever, this is necessary we will consistently denote functions that 

depend on Y with and overbar (–), functions that depend on X with a hat (^), and 

functions that depend on x with a tilde (~).  Furthermore, in view of the mappings (6.4) 

and (6.6) the functional forms –f, f̂ , ~f  are related by 

  f̂ (X,t) = –f(Ŷ(X),t) ,  ~f (x,t) = f̂  (~X(x,t),t)  .           (6.8a,b) 
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 The representation (6.7a) is called material because the material point Y is used as an 

independent variable.  The representation (6.7b) is called  referential or Lagrangian 

because the position X of a material point in the reference configuration is the 

independent variable, and the representation (6.7c) is called spatial or Eulerian because 

the current position x in space is used as an independent variable.    However, we 

emphasize that in view of our smoothness assumption, any two of these representations 

may be placed in a one-to-one correspondence with each other. 

 Here we will use both the coordinate free forms of equations as well as their indicial 

counterparts.  To this end, let eA be a constant orthonormal basis associated with the 

reference configuration and let ei be a constant orthonormal basis associated with the 

present configuration.  For our purposes it is sufficient to take these basis to coincide so 

that 

  ei • eA = δiA  ,  (6.9) 

where δiA is the usual Kronecker delta symbol.  In the following we will refer all tensor 

quantities to either of these bases and for clarity we will use upper case letters as indices 

of quantities associated with the reference configuration and lower case letters as indices 

of quantities associated with the present configuration.  For example 

  X = XA eA  ,  x = xi ei  , (6.10) 

where XA are the rectangular Cartesian components of the position vector X and xi are 

the rectangular Cartesian components of the position vector x and the usual summation 

convention over repeated indices is used.  It follows that the mapping (6.5) may be 

written in the form 

  xi = x̂i (XA,t)  .  (6.11) 

 Velocity and Acceleration:  The velocity v of a material point Y is defined as the rate 

of change of position of the material point.  Since the function –x(Y,t)  characterizes the 

position of the material point Y at any time t it follows that the velocity is given by 

  v = •x  = 
∂–x(Y,t)
∂t     ,  vi = •xi = 

∂–xi(Y,t)
∂t    , (6.12a,b) 
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where a superposed dot is used to denote partial differentiation with respect to time t 

holding the material particle Y fixed.  Similarly, the acceleration a of a material point Y 

is defined by 

  a = •v  = 
∂–v(Y,t)
∂t    ,  ai = •vi = 

∂–vi(Y,t)
∂t    .  (6.13a,b) 

Notice that in view of the mappings (6.4) and (6.6) the velocity and acceleration can be 

expressed as functions of either (X,t) or (x,t). 

 Material Derivative:  The material derivative of an arbitrary function f is defined by 

  •f  = ⎪
⎪
⎪∂–f(Y,t)

∂t Y   .  (6.14) 

It is important to emphasize that the material derivative which is denoted by a superposed 

dot is defined to be the rate of change of the function holding the material particle Y 

fixed.  In this sense the velocity v is the material derivative of the position x and the 

acceleration a is the material derivative of the velocity v.  Recalling from (6.7) that the 

function f can be represented using either the material, Lagrangian, or Eulerian 

representations, it follows from the chain rule of differentiation that •f  admits the 

additional representations 

 

  •f  = 
∂ f̂(X,t)
∂t   •t  + [∂f̂ (X,t)/∂X] •X  = 

∂ f̂(X,t)
∂t     ,  (6.15a) 

  •f  = 
∂ f̂(X,t)
∂t   •t  + [∂f̂ (X,t)/∂XA] •XA = 

∂ f̂(X,t)
∂t    ,        (6.15b) 

  •f  = 
∂~f(x,t)
∂t   •t  + [∂~f(x,t)/∂x] •x  = 

∂~f(x,t)
∂t   + [∂~f(x,t)/∂x] • v  , (6.15c) 

  •f  = 
∂~f(x,t)
∂t   •t  + [∂~f(x,t)/∂xm]  •xm =  

∂~f(x,t)
∂t  + [∂~f(x,t)/∂xm]  vm  , (6.15d) 

where in (6.15a) we have used the fact that the mapping (6.3) from the material point Y 

to its location X in the reference configuration is independent of time so that •X  vanishes.  

It is important to emphasize that the physics of the material derivative defined by (6.14) 
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remains unchanged even though its specific functional form (6.15) for different 

representations may change. 

 Mass and Mass Density:  Each part P of the body is assumed to be endowed with a 

positive measure M(P) (i.e. a real number > 0) called the mass of the part P.  Letting v be 

the volume of the part P in the present configuration at time t, and assuming that the mass 

M(P) is an absolutely continuous function there exists a positive measure ρ(x,t) defined 

by 

 

  ρ(x,t) = 
limit
v→0 

M(P)
v    .  (6.16) 

In (6.16) x is the point occupied by the part P of the body at time t in the limit as v 

approaches zero.  The function ρ is called the mass density of the body at the point x in 

the present configuration at time t.  It follows that the mass M(P) of the part P may be 

determined by integration of the mass density such that 

 

  M(P)  = ∫P  ρ dv  ,  (6.17) 

where dv is the element of volume in the present configuration. 

 Similarly, we can define the mass density ρ0(X,t) of the part P0 of the body in the 

reference configuration such that the mass M(P0) of the part P0 is given by 

 

  M(P0)  =  ∫P0
  ρ0 dV  ,  (6.18) 

where dV is the element of volume in the reference configuration.  It should be 

emphasized that at this stage in the development the mass of a material part of the body 

denoted by P or P0 can depend on time. 
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7. Deformation Gradient and Deformation Measures 

 In order to describe the deformation of the body from the reference configuration to 

the present configuration let us model the body in its reference configuration as a finite 

collection of neighboring tetrahedrons.  As the number of tetrahedrons increases we can 

approximate a body having an arbitrary shape.  If we can determine the deformation of 

each of these tetrahedrons from the reference configuration to the present configuration 

then we can determine the shape (and volume) of the body in the present configuration by 

simply connecting the neighboring tetrahedrons.  Since a tetrahedron is characterized by 

a triad of three vectors we realize that the deformation of an arbitrary elemental 

tetrahedron (infinitesimally small) can be determined if we can determine the 

deformation of an arbitrary material line element.  This is because the material line 

element can be identified with each of the base vectors of the tetrahedron. 

 Deformation Gradient:  For this reason it is sufficient to determine the deformation of 

a material line element dX in the reference configuration to the material line element dx 

in the present configuration.  Recalling that the mapping x = x̂(X,t)  defines the position x 

in the present configuration of any material point X in the reference configuration, it 

follows that 

  dx = (∂x̂/∂X) dX = F dX  ,  (7.1a)   

  dxi = (∂x̂i/∂XA) dXA = xi,A dXA = FiA dXA  , (7.1b) 

  F = (∂x̂/∂X)  ,  FiA = xi,A  ,  (7.1c,d) 

where F is the deformation gradient with components FiA. Throughout the text a comma 

denotes partial differentiation with respect to XA if the index is a capital letter and with 

respect to xi if the index is a lower case letter.  Since the mapping  x̂(X,t)  is invertible we 

require 

  det F ≠ 0  ,  det (xi,A) ≠ 0  . (7.2a,b) 

However, for our purposes we wish to retain the possibility that the reference 

configuration could coincide with the present configuration at one time (x=X;F=I) so we 

require 
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  det F > 0  ,  det (xi,A) > 0  .  (7.3a,b) 

 Right and Left Green Deformation Tensors:  The magnitude ds of the material line 

element dx in the present configuration may be calculated using (7.1) such that 

  (ds)2 = dx • dx = F dX • F dX = dX • FTF dX = dX • C dX  , (7.4a) 

  (ds)2 = dxi dxi = FiA dXA FiB dXB = dXA xi,Axi,B dXB = dXA CAB dXB  ,  (7.4b) 

  C = FTF  ,   CAB = FiA FiB = xi,A xi,B ,            (7.4c,d) 

where C is called the right Green deformation tensor.  Similarly, the magnitude dS of the 

material line element dX in the reference configuration may be calculated by inverting 

(7.1a) to obtain 

  dX = F–1 dx  ,  dXA = XA,i dxi  , (7.5a,b) 

which yields 

  (dS)2 = dX • dX = F–1dx • F–1dx = dx • F–TF–1dx = dx • c dx  ,  (7.6a) 

  (dS)2 = dXA dXA = XA,idxi XA,jdxj = dxi XA,i XA,j dxj =  dxi cij dxj  ,  (7.6b) 

  c = F–TF–1  ,  cij = XA,i XA,j  . (7.6c,d) 

where c is the Cauchy deformation tensor.  It is also convenient to define the left Green 

deformation tensor B by 

  B = FFT  ,  Bij = FiA FjA = xi,A xj,A ,            (7.7a,b) 

and note that 

  c = B–1  .  (7.8) 

 Stretch and Extension:  The stretch λ of a material line element is defined in terms of 

the ratio of the lengths ds and dS of the line element in the present and reference 

configurations, respectively, such that 

  λ =  
ds
dS   .  (7.9) 

Also, the extension E of the same material line element is defined by 

  E = λ – 1  .  (7.10) 

It follows from these definitions that the stretch is always positive.  Also, the stretch is 

greater than one and the extension is greater than zero when the material line element is 

extended relative to its reference length. 
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 For convenience let S be the unit vector defining the direction of the line element dX 

and let s be the unit vector defining the direction of the associated line element dx.  It 

follows from (7.4a) and (7.6a) that 

  dX = S dS  ,  dXA = SA dS  ,   S • S = SASA = 1  ,  (7.11a,b,c) 

  dx = s ds  ,  dxi = si ds  ,  s • s = si si = 1  .      (7.11d,e,f) 

Thus using (7.1),(7.6),(7.9) and (7.11) it follows that 

  λ s = F S  ,  λ si = xi,A SA  , (7.12a,b) 

  λ2 = S • C S  ,  λ2 = SA CAB SB  ,  (7.12c,d) 

  
1
λ2   = s • c s   ,  

1
λ2   = si cij sj  . (7.12e,f)  

Since the stretch is positive it also follows from (7.12c,d) that the C is a positive definite 

tensor.  Similarly, it can be shown that B in (7.7a) is also a positive definite tensor.  

Notice from (7.12c) that the stretch of a line element depends not only on the value of C 

at the material point X and the time t, but it depends on the orientation S of the line 

element in the reference configuration. 

 A Pure Measure of Dilatation (Volume Change):  In order to discuss the relative 

volume change of a material  element it is convenient to first prove that for any 

nonsingular second order tensor F and any two vectors a and b that 

  Fa × Fb = det (F) F–T(a × b)  .  (7.13) 

To prove this it is first noted that the quantity F–T(a × b) is a vector that is orthogonal to 

plane formed by the vectors Fa and Fb since 

  F–T(a × b) • Fa = (a × b) • (F–T)TFa = (a × b) • F–1Fa = (a × b) • a = 0 , 

  F–T(a × b) • Fb = (a × b) • F–1Fb = (a × b) • b = 0 . (7.14) 

This means that the quantity (Fa × Fb) must be a vector that is parallel to F–T(a × b) so 

that 

  Fa × Fb = α F–T(a × b)  .  (7.15) 

Next, the value of the scalar α is determined by noting that both sides of equation (7.15) 

must be linear functions of a and b.  This means that α is independent of the vectors a 

and b.  Moreover, letting c be an arbitrary vector it follows that 
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  Fa × Fb • Fc = α F–T(a × b) • Fc = α (a × b) • c  . (7.16) 

The proof is finished by considering the rectangular Cartesian base vectors ei and taking 

a=e1, b=e2, c=e3 to deduce that 

  α = Fe1 × Fe2 • Fe3 = det (F) .  (7.17) 

This expression can be recognized as the determinant of the tensor F since it represents 

the scalar triple product of the columns of F when it is expressed in rectangular Cartesian 

components. 

 Now, it will be shown that the determinant J of the deformation gradient F  

  J = det F  ,  (7.18) 

is a pure measure of dilatation.  To this end, consider an elemental material volume 

defined by the line elements dX1, dX2, dX3 in the reference configuration and defined by 

the associated line elements dx1, dx2, dx3 in the present configuration.  Thus, the 

elemental volumes dV in the reference configuration and dv in the present configuration 

are given by 

  dV  = dX1 × dX2 • dX3  ,  dv  = dx1 × dx2 • dx3  . (7.19a,b) 

Since (7.1a) defines the mapping of each line element from the reference configuration to 

the present configuration it follows that 

  dv = FdX1 × FdX2 • FdX3 = J F–T(dX1 × dX2) •  FdX3 , 

       = J (dX1 × dX2) •  F–1FdX3 = J dX1 × dX2 • dX3 ,  (7.20a) 

  dv = J dV  .  (7.20b) 

This means that J is a pure measure of dilatation.  It also follows from (7.4c) and (7.19) 

that the scalar I3 defined by 

  I3 = det C = J2  , (7.21) 

is another pure measure of dilatation. 

 Pure Measures of Distortion (Shape Change):  In general, the deformation gradient F 

characterizes the dilatation (volume change) and distortion (shape change) of a material 

element. Therefore, whenever F is a unimodular tensor (its determinant J equals unity) F 

is a pure measure  of distortion.  Using this idea which originated with Flory (1961) we 

separate F into its dilatational part J1/3I and its distortional part F' such that 
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  F = (J1/3I) F' = J1/3 F'  ,   F' = J–1/3 F  ,  det F' = 1  . (7.22a,b,c) 

Note that since F' is unimodular (7.22c) it is a pure measure of distortion.  Also note that 

the use of a prime here should not be confused with the earlier use of a prime to denote 

the deviatoric part of a tensor (4.10).  In this regard we emphasize that in general F' is not 

a deviatoric tensor.  Similarly, we may separate C into its dilatational part I3
1/3I and its 

distortional part C' such that   

  C = (I3
1/3I) C' = I3

1/3 C'  ,  C' = I3
–1/3 C  ,  det C' = 1  . (7.23a,b,c) 

 Strain Measures:  Using (7.4) and (7.6) it follows that the change in length of a line 

element can be expressed in the following forms 

  (ds)2 – (dS)2 = dX • (C – I) dX = dX • (2E) dX  , (7.24a) 

  (ds)2 – (dS)2 = dXA (CAB – δAB) dXB = dXA(2EAB) dXB  , (7.24b) 

  (ds)2 – (dS)2 = dx • (I – c) dx = dx • (2e) dx  , (7.24c) 

  (ds)2 – (dS)2 = dxi (δij – cij) dxj = dxi(2eij) dxj  , (7.24d) 

where E is the Lagrangian strain and e is the Almansi strain defined by 

  2 E = C – I  ,  2 e = I – c  . (7.25a,b) 

Furthermore, in view of the separation (7.23) it is sometimes convenient to define a scalar 

measure of dilatational strain E and a tensorial measure of distortional strain E' by 

  2 E = I3 – 1  ,  2 E' = C' – I  . (7.26a,b) 

 Eigenvalues of C and B:  In appendix A we briefly review the notions of eigenvalues, 

eigenvectors and the principal invariants of a tensor.  Using the definitions (7.4c),(7.7a), 

and (A3) we first show that the principal invariants of C and B are equal.  To this end, we 

use the properties of the dot product given by (4.12) to deduce that 

  C • I = FTF • I = F • F = FFT • I = B • I  , (7.27a) 

  C • C = FTF • FTF = F • FFTF = FFT • FFT = B • B  , (7.27b) 

  det C = det FTF = det FT det F = (det F)2 = det FFT = det B  . (7.27c) 

If follows from (A3) that the principal invariants of C and B are equal 

  I1(C) = I1(B)  ,  I2(C) = I2(B)  ,  I3(C) = I3(B)  . (7.28a,b,c) 

Furthermore, using (7.12c) we may deduce that the eigenvalues of C are also the squares 

of the principal values of stretch λ, which are determined by the characteristic equation 
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  det (C – λ2I) = – λ6 + λ4 I1(C) – λ2 I2(C) + I3(C) = det (B – λ2I) = 0  . (7.29) 

 Displacement Vector:  The displacement vector u is the vector that connects the 

position X of a material point in the reference configuration to its position x in the present 

configuration so that 

  u = x – X  ,  x = X + u  ,  X = x – u  ,       (7.30a,b,c) 

  u = uA eA  = ui ei  .  (7.30d) 

It follows from the definition (7.1c) of the deformation gradient  F that 

  F = ∂x/∂X = ∂(X + u)/∂X = I + ∂û /∂X  ,  (7.31a) 

  F–1 = ∂X/∂x = ∂(x – u)/∂x = I – ∂~u/∂x  .  (7.31b) 

     C = FTF = (I + ∂û/∂X)T (I + ∂û/∂X)  

  = I + ∂û/∂X + (∂û/∂X)T + (∂û/∂X)T(∂û/∂X)  ,   (7.31c) 

  CAB = δAB + ûA,B + ûB,A + ûM,A ûM,B  ,  (7.31d) 

     c = B–1 = F–TF–1 = (I – ∂~u/∂x)T (I – ∂~u/∂x)  

  = I – ∂~u/∂x – (∂~u/∂x)T + (∂~u/∂x)T(∂~u/∂x)  ,   (7.31e) 

  cij = δij – ~ui,j – ~uj,i + ~um,i 
~um,j  .  (7.31f) 

Then, with the help of the definitions (7.25) the strains E and e may be expressed in 

terms of the displacement u by 

 

  E = 
1
2 [ ]∂û/∂X + (∂û/∂X)T + (∂û/∂X)T(∂û/∂X)    , (7.32a) 

  EAB = 
1
2 ( ûA,B + ûB,A + ûM,A ûM,B)   ,  (7.32b) 

  e = 
1
2 [ ]∂~u/∂x + (∂~u/∂x)T – (∂~u/∂x)T(∂~u/∂x)    ,  (7.32c) 

  eij = 
1
2 ( ~ui,j + ~uj,i – ~um,i 

~um,j)   .  (7.32d) 
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Since these expressions have been obtained without any approximation they are exact and 

are sometimes referred to as finite strain measures.  Notice the different signs in front of 

the quadratic terms in displacement appearing in the expressions (7.32a) and (7.32c). 

 Area Element:  The element of area dA formed by the elemental parallelogram 

associated with the material line elements dX1 and dX2  in the reference configuration, 

and the element of area da formed by the corresponding line elements dx1 and dx2 in the 

present configuration are given by 

  N dA = dX1 × dX2  ,  n da = dx1 × dx2  ,   (7.33a,b) 

where N and n are the unit vectors normal to the material surfaces defined by dX1, dX2 

and dx1, dx2, respectively.  It follows from (7.1a) and (7.13) that 

  n da = FdX1 × FdX2 = J F–T(dX1 × dX2) = J F–TN dA  .   (7.34) 

It is important to emphasize that the line element that was normal to the material surface 

in the reference configuration does not necessarily remain normal to the material surface.   
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8. Polar Decomposition Theorem 

 The polar decomposition theorem states that any invertible second order tensor F can 

be uniquely decomposed into the polar forms 

  F = RM = NR  ,  FiA = RiMMMA = NimRmA  ,            (8.1a,b) 

where R is an orthogonal tensor 

  RTR = I  ,  RmARmB = δAB  ,  (8.2a,b) 

  RRT = I  ,  RiMRjM = δij  ,  (8.2c,d) 

and M and N are symmetric positive definite tensors so that for an arbitrary vector v we 

have 

  MT = M  ,  MBA = MAB  , (8.3a,b) 

  v • Mv  > 0   ,    vAMABvB > 0   for v ≠ 0  ,  (8.3c,d) 

  NT = N  ,  Nji = Nij  , (8.3e,f) 

  v • Nv  > 0   ,    viNijvj > 0   for v ≠ 0  .           (8.3g,h) 

 To prove this theorem we first consider the following Lemma. 

Lemma:  If S is an invertible second order tensor then STS and SST are positive definite 

tensors. 

Proof:  (i)  Let  

  w = Sv  ,   wi = Sijvj  .   (8.4a,b) 

Since S is invertible it follows that  

  w = 0  if and only if  v = 0  ,  w ≠ 0 if and only if  v ≠ 0  .  (8.5a,b) 

Consider 

       w • w = Sv • Sv = v • STSv  ,  wmwm = SmiviSmjvj = viSim
TSmjvj  .  (8.6a,b) 

Since w • w > 0 whenever v ≠ 0 it follows that STS is positive definite. 

 (ii) Alternatively, let 

  w = STv  ,   wi = Sij
Tvj = Sjivj  .    (8.7a,b) 

Similarly, consider 

      w • w = STv • STv = v • SSTv  ,  wmwm = SimviSjmvj = viSimSmj
Tvj  .  (8.8a,b) 

Since w • w > 0 whenever v ≠ 0 it follows that SST is positive definite. 
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 To prove the polar decomposition theorem we first prove existence of the forms 

F=RM and F=NR and then prove uniqueness of the quantities R,M,N. 

Existence: (i)  Since F is invertible the tensor FTF is symmetric and positive definite so 

there exists a symmetric positive definite square root M 

  M = (FTF)1/2  ,  M2 = FTF  ,   MAMMMB = FmAFmB  .  (8.9a,b,c) 

Then let R1 be defined by 

  R1 = FM–1  ,  F = R1M  . (8.10a,b) 

To prove that R1 is an orthogonal tensor consider 

  R1R1
T = FM–1(FM–1)T = FM–1M–TFT = F(M2)–1FT  

  = F(FTF)–1FT = F(F–1F–T)FT = I  ,  (8.11a) 

  R1
TR1 = M–TFTFM–1 = M–1M2M–1 = I  .  (8.11b) 

(ii)  Similarly, since F is invertible the tensor FFT is symmetric and positive definite so 

there exists a symmetric positive definite square root N 

  N = (FFT)1/2  ,  N2 = FFT  ,  NimNmj = FiMFjM  .         (8.12a,b,c) 

Then let R2 be defined by 

  R2 = N–1F  ,  F = NR2  . (8.13a,b) 

To prove that R2 is an orthogonal tensor consider 

  R2R2
T = N–1F(N–1F)T = N–1FFTN–T = N–1N2N–1 = I  , (8.14a) 

  R2
TR2 = FTN–TN–1F = FTN–2F = FT(FFT)–1F  

  =  FTF–TF–1F = I .  (8.14b) 

Uniqueness:  (i)  Assume that R1 and M are not unique so that 

  F = R1M = R1
*M*  . (8.15) 

Then consider 

  FTF = M2 = (R1
*M*)TR1

*M* = M*TR1
*TR1

*M* = M*2  .   (8.16) 

However, since M and M* are both symmetric and positive definite we deduce that M is 

unique 

  M = M*  . (8.17) 
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Using (8.17) in (8.15) we have 

  R1M = R1
*M  , (8.18) 

so that by multiplication of (8.18) on the left by M–1 we may deduce that R1 is unique 

  R1 = R1
*  .  (8.19) 

(ii)  Similarly, assume that R2 and N are not unique so that 

  F = NR2 = N*R2
* .  (8.20) 

Then consider 

  FFT = N2 = N*R2
* (N*R2

*)T = N*R2
*R2

*TN*T = N*2  .   (8.21) 

However, since N and N* are both symmetric and positive definite we deduce that N is 

unique 

  N = N*  .  (8.22) 

Using (8.22) in (8.20) we have 

  NR2 = NR2
*  , (8.23) 

so that by multiplication of (8.23) on the right by N–1 we may deduce that R2 is unique 

  R2 = R2
*  .  (8.24) 

 Finally, we must prove that R1=R2=R.  To this end let 

  A = R1MR1
T = FR1

T  .  (8.25) 

Clearly, A is symmetric so that 

  A2 = AAT = FR1
T (FR1

T)T = FR1
TR1FT = FFT = N2  . (8.26) 

Since A and N are symmetric it follows with the help of (8.25) and (8.10b) that 

  N = A = FR1
T = NR2R1

T .  (8.27) 

Now, multiplying (8.27) on the left by N–1 and on the right by R1 we deduce that 

  R1 = R2 = R  ,  (8.28) 

which completes the proof. 

 To explain the physical interpretation of the polar decomposition theorem recall from 

(7.1a) that a line element dX in the reference configuration is transformed by F into the 
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line element dx in the present configuration and define the elemental vectors dX' and dx' 

such that 

  dx = RM dX  ⇒  dX' = M dX  , dx = R dX'  ,        (8.29a,b,c) 

  dxi = RiAMAB dXB ⇒ dXA' = MAB dXB  ,  dxi = RiA dXA' ,    (8.29d,e,f) 

and 

  dx = NR dX   ⇒   dx' = R dX  ,  dx = N dx'  ,         (8.30a,b,c) 

  dxi = NijRjB dXB  ⇒  dxj' = RjB dXB  ,  dxi = Nij dxj' .       (8.30d,e,f) 

In general a line element experiences both stretching and rotation as it deforms from dX 

to dx.  However, the polar decomposition theorem separates the deformation into 

stretching and pure rotation.  To see this use (7.4a) together with (8.29) and consider 

  ds2 = dx • dx = R dX' • R dX' = dX' • RTR dX' = dX' • dX'  . (8.31) 

It follows that the magnitude of dX' is the same as that of dx so that all the stretching 

occurs during the transformation from dX to dX' and that the transformation from dX' to 

dx is a pure rotation.  Similarly, with the help of (7.6a) and (8.30) we have 

  dx' • dx' = R dX • R dX = dX • RTR dX = dX • dX = dS2  . (8.32) 

It follows that the magnitude of dx' is the same as that of dX so that all the stretching 

occurs during the transformation from dx' to dx and that the transformation from dX to 

dx' is a pure rotation.   

 Although the transformations from dX to dX' and from dx' to dx contain all the 

stretching they also tend to rotate a general line element.  However, if we consider the 

special line element dX which is parallel to any of the three principal directions of M 

then the transformation from dX to dX' is a pure stretch without rotation (see Fig. 8.1a ) 

because 

  dX' = M dX = λ dX  ,  (8.33) 

where λ is the stretch defined by (7.9).  It then follows that for this line element 

  dx = F dX = RM dX = R λdX = λ dx'  , (8.34a) 

  dx = F dX = NR dX = N dx' = λ dx'  , (8.34b) 

so that dx' is also parallel to a principal direction of N, which means that the 

transformation from dx' to dx is a pure stretch without rotation (see Fig. 8.1b).  This also 
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means that the rotation tensor R describes the complete rotation of line elements which 

are either parallel to principal directions of M in the reference configuration or parallel to 

principal directions of N in the present configuration. 

 

dX

dX'

dx

 
 

Fig. 8.1a:  Pure stretching followed by pure rotation; F=RM; dX'=M dX; dx=R dX'. 

 

 

 

dX dx

dx'

 
 

 

Fig. 8.1b:  Pure rotation followed by pure stretching; F=NR; dx'=RdX; dx=Ndx'. 
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9. Velocity Gradient and Rate of Deformation Tensors 

 The gradient of the velocity v with respect to the present position x is denoted by L 

and is defined by 

  L = ∂v/∂x  ,  Lij = 
∂vi
∂xj

   = vi,j . (9.1a,b) 

The symmetric part of L is called the rate of deformation tensor and is denoted by D, 

while the skew symmetric part of L is called the spin tensor and is denoted by W.  Thus 

  L = D + W  ,  vi,j = Dij + Wij  ,  (9.2a,b) 

  D = 
1
2 (L + LT)  = DT  ,  Dij = 

1
2 (vi,j + vj,i)  = Dji  ,           (9.2c,d) 

  W = 
1
2 (L – LT)  = – WT  ,  Wij = 

1
2 (vi,j – vj,i)  = – Wji  .           (9.2e,f) 

 Using the chain rule of differentiation, the continuity of the derivatives, and the 

definition of the material derivative it follows that 

     •F  = 
∂
∂t( )∂x̂/∂X   = ∂2x̂/∂t∂X  = ∂(∂x̂/∂t)/∂X = ∂v̂/∂X   

  = (∂~v/∂x) (∂x̂/∂X) = LF ,     (9.3a) 

  -----•
(xi,A)  = 

∂
∂t (x̂i,A)  = 

∂2x̂i
∂t∂XA

  = 
∂
∂XA

 ⎝
⎜
⎛

⎠
⎟
⎞∂x̂i

∂t   = v̂i,A = ~vi,m x̂m,A  .   (9.3b) 

Now let us consider the material derivative of C 

         •C  = 
-----•
FTF  = •F TF + FT •F  = (LF)TF + FT(LF) = FT(LT + L)F = 2 FTDF ,   (9.4a) 

          •CAB = -----•
(xi,A)  xi,B + xi,A -----•

(xi,B)  = vi,mxm,Axi,B + xi,Avi,mxm,B 

  = xm,A (vi,m + vm,i) xi,B = 2 xm,A Dim xi,B  = 2 xm,ADmixi,B  .   (9.4b) 

 Furthermore, since the spin tensor W is skew symmetric there exits a unique vector ω 

called the axial vector of W such that for any vector a 

  W a = ω × a  ,  Wij aj = εikj ωk aj  .  (9.5a,b) 

Since (9.5b) must be true for any vector a and W and ω are independent of a it follows 

that 

  Wij = εikj ωk = εjik ωk = – εijk ωk  . (9.6) 
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Multiplying (9.6) by εijm and using the identity 

  εijkεijm = 2 δkm  ,  (9.7) 

we may solve for ωm in terms of Wij to obtain 

  ωm = – 
1
2   εijm Wij  .  (9.8) 

Substituting (9.2f) into (9.8) we have 

  ωm = – 
1
2  εijm vi,j = 

1
2  εjim vi,j = 

1
2  εmji vi,j  , (9.9a) 

  ω = 
1
2  curl v = 

1
2  ∇ × v  , (9.9b) 

where the symbol ∇ denotes the gradient operator 

  ∇φ = φ,i ei  .  (9.10) 
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10. Deformation: Interpretations and Examples 

 In order to interpret the various deformation measures we recall from (7.11) and 

(7.12) that 

  λ s = FS  ,  λ si = xi,ASA  ,  λ =  
ds
dS   ,       (10.1a,b,c) 

 

  s = 
dx
ds   ,  s • s = 1  ,  S = 

dX
dS   ,   S • S = 1  ,       (10.1d,e,f) 

where S is the unit vector in the direction of the material line element dX of length dS, s 

is the unit vector in the direction of the material line element dx of length ds, and λ is the 

stretch.  Now from (7.12c) and the definition (7.25a) of Lagrangian strain E we may 

write 

  λ2 = S • CS = 1 + 2 S • ES = 1 + 2 SAEABSB  . (10.2) 

Also, the extension E defined by (7.10) becomes 

 

  E = 
ds – dS

dS    = λ – 1 = 1 + 2 SAEABSB     – 1  .  (10.3) 

 For the purpose of interpreting the diagonal components of the strain tensor let us 

calculate the extensions E1,E2,E3 of the line elements which were parallel to the 

coordinate axes with base vectors eA in the reference configuration.  Thus, from (10.3) 

we have 

  E = E1 = 1 + 2E11     – 1    for S = e1  , (10.4a) 

  E = E2 = 1 + 2E22     – 1    for S = e2  , (10.4b) 

  E = E3 = 1 + 2E33     – 1    for S = e3  . (10.4c) 

This clearly shows that the diagonal components of the strain tensor are measures of the 

extensions of line elements which were parallel to the coordinate directions in the 

reference configuration. 

 To interpret the off-diagonal components of the strain tensor EAB as measures of 

shear we consider two material line elements dX and d–X  which are deformed into dx and 
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d–x, respectively.  Letting –S, d–S  and –s, d–s be the directions and lengths of the line 

elements d–X  and d–x, respectively, we have from (10.1a) 

  –
λ  –s = F –S  ,  –λ   = 

d–s

d–S
   . (10.5a,b) 

Notice that there is no over bar on F in (10.5) because (10.1a) is valid for any line 

element, including the particular line element d–X.  It follows that the angle Θ between the 

undeformed line elements dX, d–X and the angle θ between the deformed line elements 

dx, d–x may be calculated by (see Fig. 10.1) 

  cos Θ =  
dX
dS   • 

d–X
d–S

   = S • –S,  cos θ =  
dx
ds   • 

d–x
d–s

   = s • –s  .  (10.6a,b) 

Then with the help of (10.1a), (10.5a) and (7.25a) we deduce that 

  cos θ =  
S • C–S
λ

–
λ

   =  
2S • E–S + S • –S

λ
–
λ

  .  (10.7) 

Furthermore, using (10.2) and (10.6a) we have 

  cos θ =  
2 SAEAB

–SB + cos Θ

1 + 2SMEMNSN  1 + 2–SRERS
–SS

    . (10.8) 

Defining the change in the angle between the two line elements by ψ (10.8) becomes 

  θ = Θ – ψ  ,  (10.9a) 

 

  cosΘ cosψ + sinΘ sinψ =  
2 SAEAB

–SB + cos Θ

1 + 2SMEMNSN  1 + 2–SRERS
–SS

    . (10.9b) 

Notice that in general the change in angle ψ  depends on the original angle Θ and on all 

of the components of strain. 

 As a specific example consider two line elements which in the reference 

configuration are orthogonal and aligned along the coordinate axes so that 
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  S = e1  ,  –S = e2  ,  Θ = 
π
2   . (10.10a,b,c) 

Then, (10.9b) reduces to 

 

  sin ψ =  
2E12

1 + 2E11  1 + 2E22
   .  (10.11) 

Thus, the shear depends on the normal components of strain as well as on the off-

diagonal components of strain .  However, if the strain is small (i.e. EAB << 1) then 

(10.11) may be approximated by 

  ψ ≈ 2E12  , (10.12) 

which shows that the off-diagonal terms are related to shear deformations. 

 

 

 

 

 

 

 

 

Fig. 10.1  Shear Angle:  Points I, II in the reference configuration move  

to points 1, 2 in the present configuration. 

 

 To provide a physical interpretation of the rate of deformation it is convenient to use 

(9.2a) and (9.3a) and take the material derivative of (10.1a) to deduce that 

  
•
λ s + λ •s = •F S = LFS = λ Ls = λ (D + W) s  . (10.13) 

In (10.13) we have used the fact that S is a material direction so its material derivative 

vanishes.  Since s is a unit vector it can only rotate so that its rate of change is 

perpendicular to itself  

  s • s = 1 ⇒  •s • s + s • •s = 2 •s • s = 0  ⇒  •s • s = 0  .      (10.14a,b,c) 

S 

–S –s 

s 
I 

II 2 

1 Θ 

θ = Θ – ψ 
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Thus, taking the dot product of (10.13) with s we have 

  
•
λ  = λ (D + W) • (s⊗s)  = λ D • (s⊗s) = λ s • Ds  , (10.15) 

where we have used the fact that the inner product of the skew-symmetric tensor W with 

the symmetric tensor n⊗n vanishes.  It follows that the rate of deformation tensor D is 

directly related to the rate of change of stretch. 

 Substituting (10.15) into (10.13) we obtain 

  •s = Ws + [D – {s • Ds}I] s  ,  (10.16) 

which shows that in general the rate of rotation of s is dependent on both the tensors D 

and W.  However, if s is parallel to a principal direction of D then 

  Ds = {s • Ds} s  ,  •s = Ws  . (10.17a,b) 

This shows that the spin tensor W controls the rate of rotation of the line element dx 

which in the present configuration is parallel to a principal direction of D.  Furthermore, 

using (9.5a) we see that the axial vector ω determines the rate of rotation of s for this 

case 

  •s = ω × s  .  (10.18) 

Example: Extension and Contraction (Fig. 10.2) 

 By way of example let XA be the Cartesian components of X and xi be the Cartesian 

components of x and let the Cartesian base vectors eA and ei coincide (ei = δiAeA) and 

consider the motion defined by 

  x1 = eat X1  ,  x2 = e–bt X2  ,  x3  = X3  ,  (10.19a,b,c) 

where a,b are positive numbers.  The inverse mapping is given by 

  X1 = e–at x1  ,  X2 = ebt x2  ,  X3 = x3  . (10.20a,b,c) 

It follows that 

 

   F = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

eat 0 0
0 e–bt 0
0 0 1

 , C = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

e2at 0 0
0 e–2bt 0
0 0 1

  , 2E = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

e2at –1 0 0
0 e–2bt –1 0
0 0 0

 .   (10.21a,b,c) 
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In order to better understand the deformation we calculate the stretch λ and the extension 

E of line elements which were parallel to the coordinate directions in the reference 

configuration 

 For   S = e1  ,  λ = eat ≥ 1  ,E = eat – 1 ≥ 0 ,   (extension)  ,          (10.22a) 

 For   S = e2  ,  λ = e–bt ≤ 1  ,E = e–bt – 1 ≤ 0 ,  (contraction),         (10.22b) 

 For   S = e3  ,  λ = 1  , E =  0 ,                (no deformation).   (10.22c) 

Next we consider the rate of deformation and deduce that 

  v1 = ax1  ,  v2 = – bx2  ,  v3 = 0  ,  (10.23a,b,c) 

 

   L = D = 
⎝
⎜
⎛

⎠
⎟
⎞a 0 0

0 –b 0
0 0 0

    ,  W = 0 ,  ω = 0 .      (10.23d,e,f) 

The principal directions of D are e1,e2,e3 so since W=0 we realize that the line elements 

that are parallel to these principal directions in the present configuration experience pure 

stretching without rotation 

 For   s = e1  ,  
•
λ
λ  = a > 0  , •s = 0  ,     (rate of extension)  ,         (10.24a) 

 For   s = e2  ,  
•
λ
λ  = – b < 0  ,  •s = 0  ,     (rate of contraction) ,       (10.24b) 

 For   s = e3  ,  
•
λ
λ  =  0  ,  •s = 0  ,     (no deformation)  .           (10.24c) 

We emphasize that although W vanishes this does not mean that no line elements rotate 

during this motion. 
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III

III IV

12

3 4

2 2
X  , x

11X  , x

 
Fig. 10.2  Extension and Contraction:  Points I,II,III,IV in the reference  

configuration move to points 1,2,3,4 in the present configuration. 

 

Example: Simple Shear (Fig. 10.3) 

 In order to clarify the meaning of the spin tensor W consider the simple shearing 

deformation which is defined by 

  x1 = X1 + κ(t) X2  ,  x2 = X2  ,  x3 = X3  ,  (10.25a,b,c) 

where κ is a monotonically increasing nonnegative function of time 

  κ ≥ 0  ,  •κ  > 0  . (10.26a,b) 

The inverse mapping is given by 

  X1 = x1 – κ x2  ,  X2 = x2  ,  X3 = x3  , (10.27a,b,c) 

and it follows that 

 

   F = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞1 κ 0

0 1 0
0 0 1

   ,  C = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

1 κ 0
κ 1+κ2 0
0 0 1

 ,   2E = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

0 κ 0
κ κ2 0
0 0 0

  .  (10.28a,b,c) 

In order to better understand the deformation we calculate the stretch λ and the extension 

E of line elements which were parallel to the coordinate directions in the reference 

configuration 
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 For   S = e1  ,  λ = 1  ,  E = 0 ,  (no deformation)  ,   (10.29a) 

 For   S = e2  ,  λ = 1+κ2   ,   E = 1+κ2  – 1 ≥ 0 ,  (extension),      (10.29b) 

 For   S = e3  ,  λ = 1  ,  E =  0 ,   (no deformation).  (10.29c) 

Notice that the result (10.29b) could be obtained by direct calculation using elementary 

geometry.  Next we consider the rate of deformation and deduce that 

  v1 = •κ  x2  ,  v2 = 0 ,  v3 = 0  , (10.30a,b,c) 

 

    L = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0 •

κ 0
0 0 0
0 0 0

 ,  D = 
1
2 
⎝
⎜
⎛

⎠
⎟
⎞0 •

κ 0
•
κ 0 0
0 0 0

 ,   (10.30d,e) 

 

  W = 
1
2 
⎝
⎜
⎛

⎠
⎟
⎞0 •

κ 0
–•
κ 0 0
0 0 0

 ,    ω = – 
1
2 •κ  e3 ,         (10.30f,g) 

Thus, the principal directions of D are 
1
2 (e1+ e2) , 

1
2 (– e1 + e2), e3 so with the help of 

(10.15) and (10.18) we may deduce that 

    For   s =  
1
2 (e1+ e2) ,  

•
λ
λ  = 

1
2 •κ  > 0  ,  (rate of extension)  ,         (10.31a) 

 For   s = 
1
2 (– e1 + e2) ,  

•
λ
λ  = – 

1
2 •κ  < 0  ,   (rate of contraction) ,       (10.31b) 

 For   s = e3  ,  
•
λ
λ  =  0  ,     (no deformation)  .             (10.31c) 

It follows from (10.30g) that the material line elements in (10.31) are rotating in the 

clockwise direction about the e3 axis with angular speed 
1
2 •κ.  Finally we note that the 

motion is isochoric (no change in volume) since 

  J = det F = 1  ,  D • I = 0  . (10.32a,b) 
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I II III IV1 2 3 4

2 2
X  , x

11X  , x
 

Fig. 10.3 Simple Shear: Points I,II,III,IV in the reference configuration move 

 to points 1,2,3,4 in the present configuration. 
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11. Superposed Rigid Body Motions 

 In this section we consider a group of motions associated with configurations P+ 

which differ from an arbitrary prescribed motion such as (6.5) 

  x = x̂(X,t)   ,  (11.1) 

by only superposed rigid body motions of the entire body, i.e., motions which in addition 

to the prescribed motion include purely rigid motions of the body. 

 To this end, consider a material point X of the body, which in the present 

configuration P at time t occupies the location x as specified by (11.1).  Suppose that 

under a superposed rigid body motion the material point which is at x at time t in the 

configuration P moves to the location x+ at time t+ 

  t+ = t + a  , (11.2)  

in the configuration P+, where a is a constant.  Throughout the text we denote quantities 

associated with the configuration P+ using the same symbol as associated with the 

configuration P but with a superposed (+).  Thus, we introduce the vector function x+ and 

write 

  x+ = –̂x+(X,t+) = x̂+(X,t)  ,  (11.3) 

where we have used (11.2) and have distinguished between the two functions –̂x+ and x̂+ 

in (11.3) to indicate the absence of the constant a in the argument of x̂+. 

 Similarly, consider another material point Y of the body, which in the present 

configuration P at time t occupies the location y as specified by 

  y = x̂(Y,t)   . (11.4) 

It is important to emphasize that the function x̂  in (11.4) is the same function as that in 

(11.1).  Furthermore, suppose that under the same superposed rigid body motion the 

material point which is at y at time t in the configuration P moves to the location y+ at 

time t+.  Then, with the help of (11.3) we may write 

  y+ = –̂x+(Y,t+) = x̂+(Y,t)  . (11.5) 

Recalling the inverse relationships 
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  X = ~X–1(x,t)  ,  Y = ~X–1(y,t)  ,         (11.6a,b) 

the function x̂+ on the right hand sides of (11.3) and (11.5) may be expressed as different 

functions of x,t and y,t, respectively, such that 

  x+ = x̂+(~X–1(x,t),t) = ~x+(x,t)  , (11.7a) 

  y+ = x̂+(~X–1(y,t),t) = ~x+(y,t)  .  (11.7b) 

Since the superposed motion of the body is restricted to be rigid, the magnitude of the 

relative displacement y+–x+ must remain equal to the magnitude of the relative 

displacement y–x for all pairs of material points X,Y, and for all time. Hence, 

  [ ~x+(y,t) –  ~x+(x,t)] • [ ~x+(y,t) –  ~x+(x,t)] = (y – x) • (y – x)  ,       (11.8a) 

  [ ~xm
+(y,t) –  ~xm

+(x,t)]  [~xm
+(y,t) –  ~xm

+(x,t)] = (ym–xm) (ym–xm)  ,       (11.8b) 

for all x,y in the region occupied by the body at time t. 

 Since x,y are independent, we may differentiate (11.8) consecutively with respect to x 

and y to obtain 

  – 2 [ ∂~x+(x,t)/∂x ]T [ ~x+(y,t) –  ~x+(x,t)] = – 2 (y – x)  ,            (11.9a) 

  [ ∂~x+(x,t)/∂x ]T [ ∂~x+(y,t)/∂y ] = I  , (11.9b) 

  – 2 [ ∂~xm
+(x,t)/∂xi ] [

~xm
+(y,t) – ~xm

+(x,t)] = – 2 (yi – xi)  ,            (11.9c) 

  [ ∂~xm
+(x,t)/∂xi ]

 [ ∂~xm
+(y,t)/∂yj ] = δij  . (11.9d) 

It follows from (11.9b) that the determinant of the tensor ∂~x+(x,t)/∂x does not vanish so 

that this tensor is invertible and (11.9b) may be rewritten in the alternative form 

  [ ∂~x+(x,t)/∂x ]T  = [ ∂~x+(y,t)/∂y ]–1  ,  (11.10) 

for all x,y in the region and all t.  Thus, each side of the equation must be a tensor 

function of time only, say QT(t), so that 

  ∂~x+(x,t)/∂x  = Q(t)  , (11.11) 

for all x in the region and all time t.  Since (11.11) is independent of x we also have 

  ∂~x+(y,t)/∂y  = Q(t)  ,  (11.12) 
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so that (11.9b) yields 

  QT(t) Q(t) = I  ,  det Q = ± 1  ,  (11.13a,b) 

which shows that Q is an orthogonal tensor. 

 Since (11.7a) represents a superposed rigid body motion it must include the trivial 

motion 

   ~x+(x,t) = x  ,  Q = I  ,  det Q = + 1  .    (11.14a,b,c) 

Furthermore, since the motions are assumed to be continuous and det Q cannot vanish, 

we must always have 

  det Q = + 1 ,  (11.15) 

so that Q(t) is a proper orthogonal function of time only 

  QT(t) Q(t) = Q(t) QT(t) = I  ,  det Q = + 1  .       (11.15a,b) 

Integrating (11.11) we obtain the general solution in the form 

  x+ = ~x+(x,t) = c(t) + Q(t) x  ,  (11.16) 

where c(t) is an arbitrary function of time only.  In (11.16) the function c(t) represents an 

arbitrary translation of the body and the function Q(t) represents an arbitrary rotation of 

the body. 

 By definition the superposed part of the motion defined by (11.16) is a rigid body 

motion.  This means that the lengths of line elements are preserved and the angles 

between two line elements are also preserved so that 

 | x+ – y+ |2 = (x+ – y+) • (x+ – y+) = Q(x – y) • Q(x – y) = (x – y) • QTQ(x – y) 

  = (x – y) • I (x – y) = (x – y) • (x – y) = | x – y |2  ,           (11.17a) 

 

  cos θ+ =  
(x+ – y+)
| x+ – y+ |   •  

(x+ – z+)
| x+ – z+ |   =   

Q(x – y)
| x – y |    •  

Q(x – z)
| x – z |   

 

           =  
(x – y)
| x – y |   •  

QTQ(x – z)
| x – z |    =  

(x – y)
| x – y |   •  

(x – z)
| x – z |   = cos θ (11.17b) 

where x,y,z are arbitrary points in the body which move to x+,y+,z+ under superposed 

rigid body motion (SRBM).  Furthermore, this means that areas, and volumes are 
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preserved under SRBM.   To show this we use (11.16) with x=x̂(X,t)  to calculate the 

deformation gradient F+ from the reference configuration to the superposed configuration 

  F+ = ∂x+/∂X = Q(∂x/∂X) = QF  ,  (11.18) 

so that from (7.20b), (7.34) and (11.18) we have 

  J+ = 
dv+
dV  = det F+ = det (QF) = (det Q)(det F) = J  ,           (11.19a) 

  n+ da+ = dx1+ × dx2+ = J+(F+)–TN dA = J QF–TN dA = Qn da ,  (11.19b) 

 (da+)2 = n+ da+ • n+ da+ = Qn da • Qn da = n • QTQn (da)2 = (da)2  ,      (11.19c) 

  n+ = Qn  .  (11.19d) 

 For later convenience it is desirable to calculate expressions for the velocity and rate 

of deformation tensors associated with the superposed configuration.  To this end, we 

take the material derivative of (11.13a) to deduce that 

  •Q TQ + QT •Q  = 0   ⇒   •Q  = Ω  Q  ,  ΩT = – Ω   ,     (11.20a,b,c) 

where Ω   is a skew-symmetric tensor function of time only.  Letting ω be the axial vector 

of Ω we recall that for an arbitrary vector a 

  Ω  a = ω × a  . (11.21) 

Thus, by taking the material derivative of (11.16) we may calculate the velocity v+ of the 

material point in the superposed configuration 

  v+ = •x+ = •c  + •Q  x + Q •x  = •c  + Ω  Q x + Q v  ,  (11.22a) 

  v+ = •c  + Ω   (x+ – c) + Q v = •c  + ω × (x+ – c) + Q v  .          (11.22b) 

It follows that the velocity gradient L+ and rate of deformation tensors D+ and W+ 

associated with the superposed configuration are given by 

  L+ = ∂v+/∂x+ = Q(∂v/∂x)(∂x/∂x+) + Ω   = QLQT + Ω   ,           (11.23a) 

  D+ = QDQT  ,  W+ = QWQT + Ω   , (11.23b,c) 

where we have used the condition (11.20c) and have differentiated (11.16) to obtain 

  ∂x+/∂x = Q  ,  ∂x/∂x+ = QT  . (11.24a,b) 
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 Up to this point we have been discussing superposed rigid body motions that are in 

addition to the general motion x̂(X,t)  of a deformable body.  However, the kinematics of 

rigid body motions may be obtained as a special case by identifying x with its value X in 

the fixed reference configuration so that distortion and dilatation of the body are 

eliminated and (11.22b) yields 

  x = X  ⇒  •x + = •c  + ω × (x+ – c) .  (11.25) 

In this form it is easy to recognize that c(t) represents the translation of a point moving 

with the rigid body and ω is the angular velocity of the rigid body. 
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12. Material Line, Material Surface and Material Volume 

 Recall that a material point Y is mapped into its location X in the reference 

configuration.  Since this mapping is independent of time, lines, surfaces, and volumes 

which remain constant in the reference configuration always contain the same material 

points and therefore are called material. 

 Material Line:  A material line is a fixed curve in the reference configuration that may 

be parameterized by its archlength S which is independent of time.  It follows that the 

Lagrangian representation of a material line becomes 

  X = X(S)  .  (12.1) 

Alternatively, using the mapping (6.5) we may determine the Eulerian representation of 

the same material line in the form 

  x = x(S,t) =x̂(X(S),t)   .  (12.2) 

 Material Surface:  A material surface is a fixed surface in the reference configuration 

that may be parameterized by two coordinates S1 and S2 that are independent of time.  It 

follows that the Lagrangian representation of a material surface becomes 

  X = X(S1,S2)   or   F̂(X)  = 0  . (12.3a,b) 

Alternatively, using the mapping (6.5) and its inverse (6.6) we may determine the 

Eulerian representation of the same material surface in the form 

  x = x(S1,S2,t) = x̂(X(S1,S2),t)  or   ~F(x,t)  = F̂(~X(x,t))  = 0 .    (12.4a,b) 

Lagrange's criterion for a material surface:  The surface defined by the constraint ~f (x,t)=0 

is material if and only if 

  
•~f   = 

∂~f
∂t   + ∂~f/∂x • v = 0  . (12.5) 

Proof:  In general we can use the mapping (6.5) to deduce that 

  f̂ (X,t)  = ~f(x̂(X,t),t)  .  (12.6) 

It follows from (12.5) and (12.6) that 

  
•̂
f(X,t) = 

∂ f̂
∂t   =  

•~f  = 0  , (12.7) 
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so that f̂  is independent of time and the surface f̂=0 is fixed in the reference configuration 

and thus f̂  =~f=0 characterizes a material surface.  Alternatively, if f̂  is independent of 

time then 
•̂
f=0 and 

•~f=0. 

 Material Region:  A material region is a region of space bounded by a closed material 

surface.  For example if ∂P0  is a closed material surface in the reference configuration 

then the region of space P0 enclosed by ∂P0 is a material region that contains the same 

material points for all time. Alternatively, using the mapping (6.5) each point of the 

material surface ∂P0 maps into a point on the closed material surface ∂P in the present 

configuration so the region P enclosed by ∂P is the associated material region in the 

present configuration.  



 
 

61 

13. The Transport Theorem 

 In this section we develop the transport theorem that allows us to calculate the time 

derivative of the integral over a material region P in the present configuration whose 

closed boundary ∂P is changing with time.  By way of introduction let us consider the 

simpler one-dimensional case and recall that 

  
d
dt ∫

β(t)
 
α(t)

f(x,t) dx = ∫
β(t)
 
α(t)

 
∂f(x,t)
∂t  dx + f(β(t),t) 

•
β  – f(α(t),t) 

•
α   ,   (13.1) 

where f(x,t) is an arbitrary function of position x and time t, and α(t),β(t) define the 

changing boundaries of integration.  What is important to notice is that the rate of change 

of the boundaries enter in the calculation in (13.1). 

 To develop the generalization of (13.1) to three dimensions it is most convenient to 

consider an arbitrary scalar or tensor valued function φ which admits the representations 

  φ = ~φ(x,t)  = φ̂(X,t)   .  (13.2) 

By mapping the material region P from the present configuration back to the reference 

configuration P0 we may easily calculate the derivative of the integral of φ over the 

changing region P as follows 

  
d
dt ∫P ~φ(x,t) dv = 

d
dt ∫P0

φ̂(X,t) J dV  ,  (13.3a) 

  = ∫P0
⎪
⎪∂

∂t{φ̂(X,t) J}
X

 dV  ,  (13.3b) 

  = ∫P0

•––––––––
{φ̂(X,t) J} dV  ,   (13.3c) 

  = ∫P0
 {•
φ J + φ̂ •J} dV  ,  (13.3d) 

  = ∫P0
{•
φ + φ̂  div v } J dV  , (13.3e) 

so that in summary we have 
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d
dt ∫P ~φ(x,t) dv = ∫P {•

φ + ~φ  div v } dv  , (13.4) 

where •φ  is the usual material derivative of φ 

  •
φ  = 

∂φ̂(X,t)
∂t    = 

∂~φ(x,t)
∂t    + ∂~φ(x,t)/∂x • v   .  (13.5) 

Now, substituting (13.5) into (13.4) and using the divergence theorem we have 

  
d
dt ∫P ~φ(x,t) dv = ∫P{∂

~φ(x,t)
∂t   + ∂~φ(x,t)/∂x • v + ~φ div v} dv  ,  (13.6a) 

  = ∫P ∂
~φ(x,t)
∂t   dv + ∫P div{~φ v} dv  ,  (13.6b) 

  = ∫P ∂
~φ(x,t)
∂t   dv + ∫∂P ~φ v • n da  ,   (13.6c) 

where n is the unit outward normal to the material surface ∂P.  It should be emphasized 

that the time differentiation and the integration operations commute in (13.3b) because 

the region P0 is independent of time.  In contrast, the time differentiation and the 

integration operations in (13.6c) do not commute because the region P depends on time.  

However, sometimes in fluid mechanics the region P in space at time t is considered to be 

a control volume and is identified as the fixed region –P  with boundary ∂–P  and the time 

differentiation is interchanged with the integration operations to obtain 

  
d
dt ∫P ~φ(x,t) dv = 

∂
∂t ∫–P

 ~φ(x,t) dv + ∫ –∂P
 ~φ v • n da  .  (13.7) 

However, in (13.7) it is essential to interpret the partial differentiation operation as 

differentiation with respect to time holding x fixed.  To avoid possible confusion it is 

preferable to use the form (13.6c) instead of (13.7).  
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14. Conservation of Mass 

 Recall from (6.17) and (6.18) that the mass M(P) of the part P in the present 

configuration and the mass M(P0) of the part P0 in the reference configuration are 

determined by integrating the mass densities ρ and ρ0, respectively.  The conservation of 

mass states that mass of a material region remains constant.  Since the material region P0 

in the reference configuration is mapped into the material region P in the present 

configuration it follows that the conservation of mass requires  

  ∫P ρ dv  = ∫P0
ρ0 dV  , (14.1) 

for every part P (or P0) of the body.  Furthermore, since P0 and ρ0 are independent of 

time we may also write 

  
d
dt ∫P ρ dv  = 0  .  (14.2) 

 The equations (14.1) and (14.2) are called global equations because they are stated 

with reference to a finite region of space.  In order to derive the local forms of these 

equations we first recall that by using (7.20b) the integral over P may be converted to an 

integral over P0  such that 

  ∫P ρ dv  = ∫P0
 ρ J dV   . (14.3) 

It then follows that the statement (14.1) may be rewritten in the form 

  ∫P0
[ρJ – ρ0] dV = 0  .  (14.4) 

Now, assuming that the integrand in (14.4) is a continuous function of space and 

assuming that (14.4) holds for all arbitrary parts P0 of the body we may use the theorem 

proved in Appendix B to deduce that 

  ρ J = ρ0  ,  (14.5) 

at every point of the body.  The form (14.5) is the Lagrangian representation of the local 

form of conservation of mass.  It is considered a local form because it holds at every 

point in the body. 
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 Alternatively, we may use the transport theorem (13.4) to rewrite (14.2) in the form 

  ∫P [•
ρ + ρ div v] dv = 0  . (14.6) 

Now, assuming that the integrand in (14.6) is a continuous function of space and 

assuming that (14.6) holds for all arbitrary parts P of the body we may use the theorem 

proved in Appendix B to deduce that 

  •
ρ  + ρ div v = 0  ,  (14.7) 

at every point of the body.  The form (14.7) is the Eulerian representation of the local 

form of conservation of mass.  Note that the result (14.7) may also be deduced directly 

from (14.5) by using equation (P4.3) and the condition that •ρ 0=0. 

 For later convenience we use the transport theorem (13.4) with φ=ρf to deduce that 

  
d
dt ∫P ρ f dv  = ∫P [ 

•–––
ρ f   + ρ f div v ] dv 

  = ∫P [ ρ •f + f (•
ρ + ρ div v)] dv  .  (14.8) 

Now using the local form (14.7) of conservation of mass, equation (14.8) reduces to 

  
d
dt ∫P ρ f dv = ∫P [ ρ •f ] dv  .  (14.9) 
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15. Balances of Linear and Angular Momentum 

 In the previous section we discussed the conservation of mass equation, which can be 

thought of as an equation to determine the mass density ρ.  For the purely mechanical 

theory it is necessary to add two additional balance laws called the balances of linear and 

angular momentum. 

 Balance of Linear Momentum:  In words the balance of linear momentum states that 

the rate of change of linear momentum of an arbitrary part P of a body is equal to the 

total external force applied to that part of the body.  These external forces are separated 

into two types: body forces which act at each point of the part P and surface tractions that 

act at each point of the surface ∂P of P.  The body force per unit mass is denoted by the 

vector b and the surface traction per unit area is denoted by the stress vector t (n), which 

depends explicitly on the unit outward normal n to the surface ∂P.  Then, the global form 

of the balance of linear momentum may be expressed as 

  
d
dt ∫P ρ v dv = ∫P ρ b dv + ∫∂P  t(n) da  , (15.1) 

where ρ is the mass density and the velocity v is the linear momentum per unit mass. 

 Balance of Angular Momentum:  In words the balance of angular momentum states 

that the rate of change of angular momentum of an arbitrary part P of a body is equal to 

the total external moment applied to that part of the body by the body force and the 

surface tractions.  In this statement the angular momentum and the moment are referred 

to an arbitrary but fixed point.  Letting x be the position vector relative to a fixed origin 

of an arbitrary point in P, the global form of the balance of angular momentum may be 

expressed as 

  
d
dt ∫P x × ρ v dv = ∫P x × ρ b dv + ∫∂P x × t(n) da  , (15.2) 
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16. Existence of the Stress Tensor 

 Consider an arbitrary part P of the body with closed boundary ∂P and let P be divided 

by a material surface s into two parts P1 and P2 with closed boundaries ∂P1 and ∂P2, 

respectively.  Furthermore, let the intersection of ∂P1 and ∂P be denoted by ∂P' and the 

intersection of ∂P2 and ∂P be denoted by ∂P'' (see Fig. 16.1).  Mathematically, we may 

summarize these definitions by 

  P = P1 ∪ P2  ,  ∂P' = ∂P1 ∩ ∂P  ,   ∂P'' = ∂P2 ∩ ∂P  ,  (16.1a,b,c) 

  ∂P = ∂P' ∪ ∂P''  ,  ∂P1 = ∂P' ∪ s  ,  ∂P2 = ∂P'' ∪ s  .       (16.1d,e,f) 

Also, let n be the unit normal to the surface s measured outward from the part P1 (see 

Fig. 16.1). 

!P'

!P''

P
1

P
2

n

s

s

 
Fig. 16.1  Parts P1 and P2 of an arbitrary part P of a body 

 Now recall that the balance of linear momentum is assumed to apply to an arbitrary 

part of the body so its application to the parts P, P1 and P2 yields 

 

  
d
dt ∫P ρ v dv – ∫Pρ b dv – ∫∂P t (n) da  = 0 ,            (16.2a) 

  
d
dt ∫P1

 ρ v dv – ∫P1
 ρ b dv – ∫∂P1

 t (n) da = 0 , (16.2b) 

  
d
dt ∫P2

 ρ v dv – ∫P2
 ρ b dv – ∫∂P2

 t (n) da = 0 , (16.2c) 
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where n in (16.2a,b,c) is considered to be the unit outward normal to the part and is not to 

be confused with the particular definition of n associated with the surface s.  Since the 

regions P,P1,P2 are material and since the local form (14.7) of the conservation of mass is 

assumed to hold in each of these parts, the result (14.9) may be used to deduce that 

  
d
dt ∫P ρ v dv = ∫P ρ •v  dv  =  ∫P1

 ρ •v  dv + ∫P2
 ρ •v  dv  ,  (16.3a) 

  
d
dt ∫P1

 ρ v dv =  ∫P1
 ρ •v  dv ,   

d
dt ∫P2

 ρ v dv = ∫P2
 ρ •v  dv  .  (16.3b,c) 

Also, using (16.1) we obtain 

  ∫Pρ b dv = ∫P1
 ρ b dv + ∫P2

 ρ b dv  ,  (16.4a) 

  ∫∂P t (n) da = ∫∂P' t (n) da + ∫∂P'' t (n) da  ,  (16.4b) 

  ∫∂P1
 t (n) da = ∫∂P' t (n) da + ∫

s
 t (n) da  ,  (16.4c) 

  ∫∂P2
 t (n) da = ∫∂P'' t (n) da + ∫

s
 t (–n) da  ,  (16.4d) 

where in (16.4d) we note that the unit outward normal to s when it is considered a part of 

P2 is (– n).  Thus, with the help of (16.3) and (16.4) the equations (16.2) may be rewritten 

in the forms 

  [∫P1
 ρ •v  dv – ∫P1

 ρ b dv – ∫∂P' t (n) da] 

  + [∫P2
 ρ •v  dv – ∫P2

 ρ b dv – ∫∂P' t (n) da]  = 0  ,  (16.5a) 

  ∫P1
 ρ •v  dv – ∫P1

 ρ b dv – ∫∂P' t (n) da – ∫
s
 t (n) da  = 0  ,  (16.5b) 

 ∫P2
 ρ •v  dv – ∫P2

 ρ b dv – ∫∂P' t (n) da – ∫
s
 t (–n) da   = 0  . (16.5c) 

Next we subtract (16.5b) and (16.5c) from (16.5a) to deduce that 
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  ∫
s
 [t (n) + t (–n)] da = 0  .  (16.6) 

Since (16.6) must hold for arbitrary material surfaces s and since we assume that the 

integrand is a continuous function of points on s it follows by a result similar to that 

developed in Appendix B that 

  t (– n) = – t (n)  ,  (16.7) 

must hold for all points on s.  Note that this result, which is called Cauchy's Lemma, is 

the analogue of Newton's law of action and reaction because it states that the stress vector 

applied by part P2 on part P1 is equal in magnitude and opposite in direction to the stress 

vector applied by part P1 on part P2. 

 In general, the stress vector t is a function of position x, time t, and the unit outward 

normal n to the surface on which it is applied 

  t = t (x,t ; n)  .  (16.8) 

It follows that the state of stress at a point x and at time t must be determined by the 

infinite number of stress vectors obtained by considering all possible orientations (n) of 

planes passing through x at time t.  However, it is not necessary to consider all possible 

orientations.  To verify this statement we first note that the simplest polyhedron is a 

tetrahedron with four faces.  Secondly, we note that any three-dimensional region of 

space can by approximated to any degree of accuracy using a  finite collection of 

tetrahedrons.  Therefore, if we can analyze the state of stress in a simple tetrahedron we 

can in principle analyze the stress at a point in an arbitrary body.  To this end, consider 

the tetrahedron with three faces that are perpendicular to the Cartesian base vectors ei, 

and whose fourth face is defined by the unit outward normal vector n (see Fig. 16.2).  

Let: the vertex D (Fig. 16.2) be located at an arbitrary point y in the part P of the body; 

the surfaces perpendicular to ei have surface areas Si, respectively; and the slanted 

surface whose normal is n have surface area S. 
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Fig. 16.2  An Elemental Tetrahedron 

 

Denoting xAD, xBD, xCD as the vectors from the vertex D to the vertices A,B,C, 

respectively, it follows by vector algebra that 

  2 S n = (xBD – xAD) × (xCD – xAD)  , (16.9a) 

  2 S n  = (xBD × xCD) + (xCD × xAD) + (xAD × xBD) , (16.9b) 

  2 S n = 2 S1 e1 + 2 S2 e2 + 2 S3 e3  ,  (16.9c) 

so that the areas Sj may be related to S and n by the formula 

  Sj = ej • S n = S nj  ,  (16.10) 

where nj are the Cartesian components of n.  Also, the volume of the tetrahedron is given 

by 

  Vtet = 
1
6  (xBD–xAD)  × (xCD–xAD) • xCD = 

1
6  (2 S n)  • xCD = 

1
3   S h  , (16.11) 

where we have used (16.9a).  In (16.11) S is the area of the slanted side ABC of the 

tetrahedron and h is the height of the tetrahedron measured normal to the slanted side. 

 Now with the help of the result (14.9) the balance of linear momentum may be 

written in the form 
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  ∫P ρ {•v – b} dv = ∫∂P t (n) da  .  (16.12) 

Then taking P to be the region of the tetrahedron the balance of linear momentum (16.12) 

becomes 

  ∫P ρ {•v – b} dv = ∫S t (n) da + ∑
j=1

3
 ∫Sj

 t (– ej) da  .  (16.13) 

However, by Cauchy's Lemma (16.7) 

  t (– ej) = – t (ej)  .   (16.14) 

Defining the three vectors Tj to be the stress vectors applied to the surfaces whose 

outward normals are ej 

  Tj = t (ej)  ,  (16.15) 

we may rewrite (16.13) in the form 

  ∫P ρ {•v – b} dv = ∫S t (n) da – ∑
j=1

3
 ∫Sj

 Tj da  .  (16.16) 

Assuming that the term ρ(•v  – b) is bounded and recalling that 

  ⎪⎪
⎪

⎪⎪
⎪∫P f dv  ≤ ∫P | f | dv  ,  (16.17) 

it follows that there exists a positive constant K such that 

  ⎪⎪
⎪

⎪⎪
⎪∫P ρ {•v – b} dv  ≤ ∫P | |ρ {•v – b}  dv   

  ≤ ∫P K dv = K  ∫P dv = K 
1
3  Sh  . (16.18) 

Further, assuming that the stress vector is a continuous function of position x and the 

normal n, the mean value theorem for integrals states that there exist points on the 

surfaces S,Si for which the values t*(n),Tj
* of the quantities t (n), Tj evaluated at these 

points are related to the integrals such that 

  ∫S t (n) da = t*(n) S  , ∑
j=1

3
 ∫Sj

 Tj da = T j
* Sj = T j

* nj S  ,  (16.19a,b) 
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where we have used the result (16.10) and summation is implied over the repeated index 

j.  Then with the help of (16.16) and (16.19) equation (16.18) yields the result that 

  | |t*(n) –T j
*nj  ≤ 

1
3  Kh  , (16.20) 

where we have divided by the positive area S.  Now, considering the set of similar 

tetrahedrons with the same vertex and with diminishing heights h it follows from (16.20) 

that as h approaches zero we may deduce that 

  t*(n) = Tj
*nj  . (16.21) 

However, in this limit all functions are evaluated at the same point x so we may suppress 

the star notation and write 

  t(n) = Tj nj  . (16.22) 

Also, since x was an arbitrary point in the above argument it follows that (16.22) must 

hold for all points x and all normals n. 

 In words the result (16.22) states that the stress vector on an arbitrary surface may be 

expressed as a linear combination of the stress vectors applied to the surfaces whose unit 

normals are in the coordinate directions ej, and that the coefficients are the components of 

the normal n.  Notice that by introducing the definition 

  T = Tj⊗ej  ,  (16.23) 

equations (16.15) and (16.22) may be written in the alternative forms 

  Tj = T ej  ,  t(n) = T n  ,  (16.24a,b) 

It follows from (16.24b) that since T transforms an arbitrary vector n into a vector t, T 

must be a second order tensor.  This tensor T is called the Cauchy stress tensor and its 

Cartesian components Tij are given by 

  Tij = (ei⊗ej) • T = ei • Tj  ,  (16.25) 

so that the component form of (16.24) becomes 

  ti = Tij nj  ,  (16.26) 

where ti are the Cartesian components of t.  Furthermore, in view of (16.15) it follows 

that components Tij  of Tj  are the components of the stress vectors on the surfaces whose 

outward normals are ej  (see Fig. 16.3) and that the first index i of Tij refers to the 
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direction of the component of the stress vector and the second index j of Tij refers to the 

plane on which the stress vector acts. 

 It is important to emphasize that the stress tensor T(x,t) is a function of position x and 

time t and in particular is independent of the normal n.  Therefore the state of stress at a 

point is characterized by the stress tensor T.  On the other hand, the stress vector t(x,t ;n) 

includes an explicit dependence on the normal n and characterizes the force per unit area 

acting on the particular plane defined by n that passes through the point x at time t. 
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Fig. 16.3  Components of Stress Tensor 

 

 The stress vector t on any surface can be separated into a component normal to the 

surface and a component parallel to the surface such that 

  t = tn + ts  ,  tn = σ n  ,  ts = τ s  , (16.27a,b,c) 

where the normal component σ, the magnitude of the shearing component τ, and the 

shearing direction s are defined by 

  σ = t • n  ,  τ = | ts | = [t • t – σ2]1/2
   , (16.28a,b) 

  s = 
ts
τ    =  

t – σ n
τ    ,  s • s = 1 .  (16.28c,d) 
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It is important to note that σ and τ are functions of the state of the material through the 

value of the stress tensor T at the point of interest and are functions of the normal n to the 

plane of interest. 

 Sometimes a failure criterion for a brittle material is formulated in terms of a critical 

value of tensile stress whereas a failure criterion (like the Tresca condition) for a metal is 

formulated in terms of a critical value of the shear stress.  Consequently, it is natural to 

determine the maximum values of the normal stress σ and the shear stress τ.  To this end 

the equations (16.28a,b) are rewritten in the forms 

  σ = T • (n ⊗ n)  ,  τ2 = T2 • (n ⊗ n) – σ2   . (16.29a,b) 

Then, it is necessary to search for critical values of σ and τ as functions n. However, it is 

important to remember that the components of n are not independent because n must be a 

unit vector  

  n • n = 1  .  (16.30) 

 Appendix C reviews the method of Lagrange Multipliers which is used to determine 

critical values of functions subject to constrains, and Appendix D determines the critical 

values of σ and τ. In particular, it is recalled that the critical values of σ occur on the 

planes whose normals are in the principal directions of the stress tensor T.  Also, letting 

{σ1, σ2, σ3} be the ordered principal values of T and {p1, p2, p3} be the associated 

principal directions of T  

  T p1 = σ1 p1 ,  T p2 = σ2 p2  , T p3 = σ3 p3  , (16.31a,b,c) 

  σ1 ≥ σ2 ≥ σ3  ,  (16.31d) 

it can be shown that σ is bounded by the values σ1 and σ3 

  σ1 ≥ σ ≥ σ3  .  (16.32) 

Therefore, the maximum value of tensile stress σ equals σ1 and it occurs on the plane 

whose normal is in the direction p1.  Moreover, it can be shown that the stress vector 

acting on this critical plane has no shearing component 

  t  = σ1 n  ,  σ = σ1  ,  τ = 0   for  n = ± p1  . (16.33a,b,c) 
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 In Appendix D it is also shown that the maximum shear stress τmax occurs on a plane 

which bisects the planes defined by the maximum tensile stress p1 and the minimum 

tensile stress p3 such that 

    σ =  
σ1 + σ3

2    ,     τmax = τ =   
σ1 – σ3

2     for  n = ± 
1
2  (p1 ± p3). (16.34a,b) 

Notice that on this plane the normal stress σ does not necessarily vanish so that the stress 

vector t does not apply a pure shear stress on the plane where τ is maximum. 
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17. Local Forms of Balance Laws 

 Assuming sufficient continuity and using the local form of conservation of mass 

together with the result (14.9) we may deduce that 

  
d
dt ∫P ρ v dv  = ∫P ρ •v  dv  , (17.1a) 

  
d
dt ∫P x × ρ v dv  = ∫P ρ 

•---------x × v   dv =  ∫P x × ρ •v  dv  . (17.1b) 

Also, we may use the relationship (16.24) between the stress vector t, the stress tensor T, 

and the unit normal n together with the divergence theorem (3.46) to obtain 

  ∫∂P  t da = ∫∂P T n da = ∫P div T dv  ,  (17.2a) 

 ∫∂P x×t da = ∫∂P x × Tn da =∫P div (x × T) dv = ∫P [ej × Tj + x × div T] dv ,  (17.2b) 

where in (17.2b) we have used (3.40) and (16.24a) to write 

  div (x × T) = (x × T),j • ej = (x,j × T + x × T,j) • ej  

  = ej × Tej + x × (T,j • ej) = ej × Tj + x × div T  . (17.3) 

 Now the balance of linear momentum (15.1) may be rewritten in the form 

  ∫P [ρ •v – ρ b – div T] dv = 0 . (17.4) 

Assuming that the integrand in (17.4) is a continuous function and assuming that (17.4) 

must hold for arbitrary regions P it follows from the results of Appendix B that  

  ρ •v  = ρ b + div T  ,  (17.5) 

must hold for each point of P.  Letting vi,bi,Tij be the Cartesian components of v,b,T, 

respectively, the component form of balance of linear momentum becomes 

  ρ •v i = ρ bi + Tij,j  .  (17.6) 

 Similarly, the balance of angular momentum (15.2) may be rewritten in the form 

  ∫P [ x × {ρ •v – ρ b – div T} – ej × Tj ] dv = 0  .   (17.7) 
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Assuming that the integrand in (17.7) is a continuous function, using the local form 

(17.5) of balance of linear momentum and assuming that (17.7) must hold for arbitrary 

regions P it follows from the results of Appendix B that  

  ej × Tj = 0 , (17.7) 

must hold for each point of P.  Then, using (3.36) and (16.24a) equation (17.7) may be 

rewritten in the form 

  ej × T ej = ε  • (ej⊗T ej) = ε  • (ej⊗ej TT) = ε  • (I TT) = ε  • TT = 0  .   (17.8) 

Since ε  is skew-symmetric in any two of its indices we may conclude that the local form 

of angular momentum requires the stress tensor to be symmetric 

  TT = T  ,  Tij = Tji  .  (17.9a,b) 
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18. Referential Forms of the Equations of Motion 

 In the previous sections we have defined the stress vector t  as the force per unit area 

in the present configuration.  This leads to a definition of stress which is sometimes 

referred to as the true stress.  Alternatively, since the surface ∂P in the present 

configuration maps to the surface ∂P0 in the reference configuration we can define 

another stress vector π   as the force acting in the present configuration but measured per 

unit area in the reference configuration.  This leads to a definition of stress which is 

sometimes referred to as engineering stress.  

 Recalling that the stress vector t depends on position x, time t, and the unit outward 

normal n,  it follows that the stress vector π   depends on position X, time t, and the unit 

outward normal N to the surface ∂P0.  Thus, the force acting in the present configuration 

on an arbitrary material part S of the present surface P or the associated part S0 of the 

reference surface P0 of the body may be expressed in the equivalent forms 

   ∫S  t(n) da  = ∫S0
  π(N) dA   ,  (18.1) 

where dA is the element of area in the reference configuration.  Similarly, the quantities 

v, b, x × v, x × b are measured per unit mass and represent the linear momentum, body 

force, angular momentum, and moment of body force, respectively.  Therefore, since ρ0  

is the mass density per unit  reference volume we have 

  ∫P ρ v dv  = ∫P0
 ρ0 v dV  , (18.2a) 

  ∫P ρ b dv  = ∫P0
 ρ0 b dV   ,   (18.2b) 

  ∫P x × ρ v dv  = ∫P0
 x × ρ0 v dV  ,  (18.2c) 

  ∫P x × ρ b dv  = ∫P0
 x × ρ0  b dV   ,   (18.2d) 

where dV is the element of volume in the reference configuration. 
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 Then with the help of the results (18.1) and (18.2) the balances of linear momentum  

(15.1) and angular momentum (15.2) may be rewritten in the forms 

  
d
dt ∫P0

ρ0 v dV  = ∫P0
ρ0 b dV  + ∫∂P0

π(N) dA  , (18.3a)   

  
d
dt ∫P0

 x × ρ0 v dV  =  ∫P0
 x × ρ0 b dV  + ∫∂P0

 x × π(N) dA  .  (18.3b) 

Following similar arguments as those in Sec 16 the stress vector π  (N) may be shown to 

be a linear function of N which may be represented in the form 

  π(N) = Π N  ,  πi (NA) = ΠiA NA  ,  Π = ΠiA ei⊗eA  ,       (18.4a,b,c) 

where πi  are the components of π , and Π , with components ΠiA, is a second order tensor 

called the first Piola-Kirchhoff stress tensor.  

 With the help of (18.4) the local form of balance of linear momentum becomes 

  ρ0 
•v  = ρ0 b + Div Π   ,  ρ0 

•v i = ρ0 bi + ΠiA,A  ,       (18.5a,b) 

where Div denotes the divergence with respect to X and (,A ) denotes partial 

differentiation with respect to XA.  To obtain the local form of angular momentum let us 

first consider 

 Div (x × Π) = (x × Π),A • eA = (x,A × Π) • eA + x × (Π ,A • eA) 

  = (F eA) × (Π eA) + x × (Div Π)  .  (18.6) 

Thus, with the help of (18.5) the local form of balance of angular momentum yields  

  (F eA) × (Π  eA) = 0  . (18.7) 

Using (3.36) we may rewrite (18.7) in the form 

  0 = (F eA) × (Π  eA) = ε  • (F eA ⊗ Π  eA) = ε  • (F eA⊗eAΠ
T) = ε  • (F I ΠT)  , 

  ε  • (F ΠT) = 0 .  (18.8) 

Thus, since ε  is skew-symmetric in any two of its indices we realize that the tensor F ΠT 

must be symmetric 

  F ΠT = (F ΠT)T = Π FT   ,   FiA ΠjA = FjA ΠiA . (18.9a,b) 

This means that the first Piola-Kirchhoff stress Π  is not necessarily symmetric. 
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 Since the stress vector t is related to the Cauchy stress T by the formula t (n) = T n 

and since equation (18.1) relates the force acting on the part S of the surface ∂P to the 

force acting on the part S0 of the surface ∂P0, it should be possible to relate the Cauchy 

stress T to the first Piola-Kirchhoff stress Π.  To this end, we recall from (7.34) that 

  π  (N) dA = Π N dA = Π FT n J–1 da  ,  (18.10) 

so equation (18.1) may be rewritten in the form 

  ∫S {T – J–1 Π FT} n da = 0  .  (18.11) 

Assuming that the integrand is continuous and that ∂P is arbitrary we obtain 

  {T – J–1 Π FT} n = 0  .  (18.12) 

However, the tensor in the brackets is independent of the normal n and n is arbitrary so 

we deduce that the Cauchy stress T is related to the first Piola-Kirchhoff stress Π  by 

  T = J–1 Π FT  ,  Tij = J–1 ΠiB FjB  . (18.13a,b) 

Notice that (18.9a) and (18.13a) ensure that the Cauchy stress T is symmetric, which is 

the same result that we obtained from the balance of angular momentum referred to the 

present configuration. 

 The first Piola-Kirchhoff stress Π , with components ΠiA, is referred to both the 

present configuration and the reference configuration and it is also called the 

nonsymmetric Piola-Kirchhoff stress.  For many purposes it is convenient to introduce 

another stress S, with components SAB, which is referred to the reference configuration 

only and is defined by 

  Π  = F S  ,  ΠiB = FiA SAB  .  (18.14a,b) 

It follows from the definition (18.14a) and the result (18.9a) that S is a symmetric tensor 

  ST = S  ,  SBA = SAB  .  (18.15a,b) 

For this reason S is also called the symmetric Piola-Kirchhoff stress.  Finally, we note 

from (18.13a) and (18.14a) that the Cauchy stress T is related to S by the formula 

  T = J–1 FSFT ,  Tij = J–1 FiA SAB FjB  .       (18.16a,b) 
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 Furthermore, recall that the Cauchy stress T can be separated into its spherical  part –

pI and its deviatoric part T', such that 

  T = – pI + T'  ,   p = – 
1
3  T • I  ,   T' • I = 0  ,     (18.17a,b,c) 

where p denotes the pressure.  It follows from (18.16a) and (18.17) that the symmetric 

Piola-Kirchhoff stress S admits an analogous separation 

  S = J F–1 T F–T  ,  (18.18a) 

  S = – p J C–1 + S'  ,  (18.18b) 

  p = – 
1
3  J–1 S • C  ,  (18.18c) 

  S' = J F–1 T' F–T  ,  S' • C = 0  . (18.18d,e) 

It is important to emphasize that although T' is deviatoric (18.17c) the associated quantity 

S' is not (18.18e) even though S' is directly related to T' (18.18d). 
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19. Invariance Under Superposed Rigid Body Motions 

 From section 11 we recall that under superposed rigid body motion (SRBM) the point 

x at time t is moved to the point x+ at time t+=t+a such that x+ and x are related by the 

mapping 

  x+ = c(t) + Q(t) x  ,  QQT= QTQ = I  ,  det Q = + 1  ,       (19.1a,b,c) 

where c is a vector, and Q is a second order tensor and both c and Q are functions of time 

only.  Furthermore, we recall that in section 11 the mapping (19.1a) was used to derive a 

number of expressions for the values of various kinematic quantities associated with the 

superposed configuration P+.  In this section we will determine expressions for the 

superposed values of a number of kinetic quantities that include: the mass density ρ, the 

stress vector t, the Cauchy stress tensor T, and the body force b.  Consequently, we will 

derive expressions for the quantities 

  { ρ+ , t+ , T+ , b+ }  . (19.2) 

 It is important to emphasize that the values of all kinematic and kinetic quantities in 

the superposed configuration P+ must be consistent with the basic physical requirement 

that the balance laws remain form-invariant when expressed relative to P+.  Therefore the 

conservation of mass and balances of linear and angular momentum may be stated 

relative to P+ in the forms 

  ∫P+ ρ+ dv+ = ∫P0
 ρ0 dV  ,  (19.3a) 

  
d
dt ∫P+ ρ+ v+ dv+  = ∫P+ ρ+ b+ dv+  +  ∫∂P+ t+

 (n+) da+  , (19.3b) 

    
d
dt ∫P+x+ × ρ+ v+ dv+  = ∫P+ x+ × ρ+ b+ dv+  +   ∫∂P+ x+ × t+

 (n+) da+  , (19.3c) 

where ∂P+ is the closed boundary of P+.  Using the arguments of section 16 it can be 

shown a Cauchy tensor T+ exists which is a function of position and time only, such that 

  t+(n+) = T+ n+  . (19.4) 

Then, with the help of the transport and divergence theorems and the result (11.19a) that 

dv+=J+dV, the local equations forms of (19.3) become 
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  ρ+J+ = ρ0  , (19.5a) 

  ρ+ •v + = ρ+ b+ + div+ T+  ,  (T+)T = T+  ,  (19.5b,c) 

where div+  denotes the divergence operation with respect to x+. 

 Using the kinematic result (11.19a) that J+=J it follows that the conservation of mass 

(19.5a) may be used to prove that the mass density remains unchanged by SRBM 

  ρ+ = ρ  . (19.6) 

In contrast, the balance of linear momentum (19.5b) contains two additional unknowns 

b+ and T+ [once ρ+=ρ is used and •v+ is expressed in terms of derivatives of (19.1a)].  

Therefore, to determine the forms for b+ and T+ it is essential to make a physical 

assumption.  To this end, we assume that  the component of the stress vector t+ in the 

direction of the outward normal n+ remains unchanged under SRBM so that 

  t+(n+) • n+ = t (n) • n   . (19.7) 

Recalling from (11.19) that 

  n+ = Q n  ,  n = QT n+  (19.8a,b) 

it follows that (19.7) may be rewritten in the form 

  [ t+ (n+) – Q t (QTn+) ] • n+ = 0  .  (19.9) 

Although (19.9) must be valid for arbitrary n+ we cannot conclude that the coefficient of 

n+ vanishes because the coefficient also depends on n+.  However, by using (19.4) and 

expressing the stress vector in terms of the stress tensor and the outward normal we have 

  [ T+ – Q T QT ] • (n+⊗n+) = 0  . (19.10) 

Now, since (19.10) must hold for arbitrary unit vector n+ and the coefficient of n+⊗n+ is 

independent of n+ and is symmetric we may conclude that under SRBM the Cauchy 

stress tensor transforms by 

  T+ = Q T QT  . (19.11) 

It follows from (19.4),(19.8), and (19.11) we may deduce that under SRBM the stress 

vector transforms by 

  t+ = Q t . (19.12) 
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 In order to explain the physical consequences of the assumption (19.7) we use the 

results (19.11) and (19.12) to deduce that 

  t+ • t+ = t • t  ,  T+ • T+ = T • T  .        (19.13a,b) 

This means that the magnitudes of both the stress vector and the Cauchy stress tensor 

remain unchanged by SRBM.  Furthermore, in view of the assumption (19.7) this means 

that the angle between the stress vector t and the unit outward normal n also remains 

unchanged by SRBM.  Consequently, the stress vector and stress tensor which 

characterize the response of the material are merely rotated by SRBM. 

 In view of the above results equation (19.5b) becomes an equation for determining 

b+.  To this end, use (19.1a) and (19.11) to deduce that 

  div+ T+ = ∂T+/∂x j
+ • ej = ∂T+/∂xi (∂xi/∂x j

+) ej = (QTQT),i (Qji ej)  , 

  div+ T+ =  (QT,iQT) (Qei) = QT,i ei   , 

  div+ T+ = Q div T  . (19.14) 

Thus, with the help of (17.5),(19.6), and (19.14), equation (19.5b) demands that under 

SRBM the body force b transforms by 

  b+ = •v + + Q (b – •v )  . (19.15) 

 For later convenience we summarize the transformation relations for kinetic 

quantities as follows 

  ρ+ = ρ  ,  T+ = Q T QT  ,  b+ = •v+ + Q (b – •v )  .   (19.16a,b,c) 

Also, with the help of (18.4a),(18.14a),(18.16a), and (19.16) it can be shown that the 

Piola-Kirchhoff stress vector π , nonsymmetric stress tensor Π , and symmetric stress 

tensor S transform under SRBM by 

  π+ = Q π   ,  Π+ = Q Π  ,  S+ = S  . (19.17a,b,c) 
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20. The Balance of Energy 

 In the previous sections we have focused attention on the purely mechanical theory.  

Although it is not our intention to discuss the complete thermodynamical theory it is 

desirable to introduce the balance of energy which is also called the first law of 

thermodynamics.  In words the balance of energy connects notions of heat and work. In 

order to discuss this balance law it is necessary to introduce the concepts of internal 

energy, rate of heat supply, kinetic energy, and rate of work.  To this end, we assume the 

existence of a scalar function ε(x,t) called the specific (per unit mass) internal energy.  

Then the total internal energy E of the part P of the body is given by 

  E = ∫P ρε dv  .  (20.1) 

Next we assume that heat can enter the body in two ways: either through an external 

specific rate of heat supply r(x,t) that acts at each point x of P or through a heat flux     

h(x,t ; n) per unit present area that acts at each point of the surface ∂P of P.  Thus, the 

total rate of heat  H  supplied to P is given by 

  H  = ∫P ρ r dv   –  ∫∂P h da  .  (20.2) 

We emphasize that the heat flux h is also a function of the unit outward normal n to ∂P 

and that the minus sign in (20.2) is introduced for later convenience. Furthermore, we 

note that the first term in (20.2) represents the rate of heat entering the body through 

radiation and the second term in (20.2) represents the rate of heat entering the body 

through heat conduction. 

 The total kinetic energy K of the part P is given by 

  K  =  ∫P  
1
2  ρ v • v dv  , (20.3) 

where v is the velocity. Also, the total rate of work W  done on the part P is calculated by 

summing the rate of work supplied by the body force b and the stress vector (or surface 

traction) t so that 

  W =  ∫P ρ b • v dv + ∫∂P t • v da  . (20.4) 
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 Now the balance of energy may be expressed in words by the following statement: 

The rate of change of internal energy plus kinetic energy of an 

arbitrary part  of a body equals the rate of supply of work and heat 

to that part. 

The mathematical representation of this statement becomes 

  •E + •K = W + H  . (20.5) 

Following analysis similar to that in section 16 it can be shown by applying the balance 

of energy (20.5) to an elemental tetrahedron that the heat flux h(x,t ; n) must be a linear 

function of n and therefore may be expressed in the form 

  h(x,t ; n) = q(x,t) • n  , (20.6) 

where q(x,t) is a vector function of position and time only that is called the heat flux.  

Thus, H  in (20.2) may be rewritten as 

  H  =  ∫P ρ r dv   –  ∫∂P q • n da  . (20.7) 

It follows from (20.7)  that the vector q indicates the direction in which heat is flowing, 

since a positive value of q • n indicates that heat is flowing out of the part P. 
 In order to derive the local form of the balance of energy we use the transport and 

divergence theorems to obtain 

  
d
dt  ∫P ρ (ε + 

1
2  v • v) dv  

  =  ∫P{ρ (•
ε + v • •v) + (•

ρ + ρ div v) (ε + 
1
2 v • v)}  dv  ,   (20.8a) 

  ∫∂P t • v da =  ∫P { v • div T + T • L } dv  , (20.8b) 

   ∫∂P q • n da =  ∫P div q  dv  . (20.8c) 

where we have used the result that 

  div (v T) = (v T),i • ei = (v T,i) • ei + (v,i T) • ei = v • (T,i ei) + T • (v,i⊗ei) 

  div (v T) = v • div T + T • L  . (20.9) 

It follows from these results that the balance of energy may be rewritten in the form 
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  ∫P {(•
ρ  + ρ div v) (ε + 

1
2  v • v) + v • (ρ •v  – ρ b – div T)  

  + (ρ •ε  – ρ r + div q – T • L)} dv = 0 (20.10) 

Assuming that the integrand in (20.10) is continuous and assuming that (20.10) must hold 

for all arbitrary parts P we may deduce the local equation 

  ( •
ρ  + ρ div v) (ε + 

1
2  v • v) + v • (ρ •v  – ρ b – div T)  

  + (ρ •ε  – ρ r + div q – T • L) = 0  . (20.11) 

However, in view of the conservation of mass (14.7), and the balance of linear 

momentum  (17.5), equation (20.11) reduces to 

  ρ •ε  – ρ r + div q – T • L = 0  . (20.12) 

Furthermore, using the results of balance of angular momentum (17.9a) the term T • L 

becomes 

  T • L = T • D + T • W = T • D  , (20.13) 

where we recall that the inner product of symmetric and skew-symmetric second order 

tensors vanishes.  Thus, (20.12) finally reduces to 

  ρ •ε  – ρ r + div q – T • D = 0  . (20.14) 

 Before closing this section we note that ε and r are assumed to remain unchanged by 

SRBM so that 

  ε+ = ε  ,  r+ = r  . (20.15a,b) 

Furthermore, we assume that q • n also remains unchanged by SRBM  

  q • n = q+ • n+  .  (20.16) 

Thus, with the help of (11.19) we may deduce that under SRBM 

  q+ = Q q  .  (20.17) 
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21. Derivation of Balance Laws From Energy and Invariance Requirements 

 In this section we show that the conservation of mass and the balances of linear and 

angular momentum can be derived directly from the balance of energy and invariance 

requirements under SRBM.  This unique inter relationship shows how fundamental the 

invariance requirements are in the general theory of a continuum.  Specifically , we start 

with the assumption that the balance of energy remains uninfluenced by SRBM so that it 

can be stated relative to the superposed configuration P+ in the form 

  •E+ + •K+ = W+ + H +  , (21.1) 

where the total internal energy E+, kinetic energy K+, rate of work W+ and rate of heat 

supply H+, referred to the superposed configuration are given by 

  E+ = ∫P+  ρ+ε+ dv+  ,  K+  =  ∫P+  
1
2 ρ+ v+ • v+ dv+  ,       (21.2a,b) 

  W+ =  ∫P+ ρ+ b+ • v+ dv+ +  ∫∂P+  t+ • v+ da+  , (21.2c) 

  H + = ∫P+ ρ+ r+ dv+   – ∫∂P+ q+ • n+ da+  .  (21.2d) 

Using the transport theorem, (19.4), the divergence theorem and continuity, it follows  

the local form of (21.1) becomes 

  ( •
ρ+ + ρ+ div+ v+) (ε+ + 

1
2  v+ • v+) + v+ • (ρ+ •v+  – ρ+ b+ – div+ T+)  

  + (ρ+ •ε+  – ρ+ r+ + div+ q+ – T+ • L+) = 0  , (21.3) 

where div+ is the divergence operator relative to x+. 

 Now, with the help of the invariance conditions (11.22b),(11.23a),(19.14), (19.16), 

(20.15),(20.17), as well as the results  

 div+ v+ = ∂v+/∂x j
+ • ej = ∂v+/∂xi (∂xi/∂x j

+) • ej = (•c + Ω  Q x + Q v),i • (Qji ej) 

  = (Ω  Q ei + Q v,i) • (Q ei) = Ω  • (Qei⊗Qei) + v,i • ei  

  =  Ω • (Q ei⊗ei QT) +  div v = Ω • I + div v = div v ,        (21.4a) 

  div+ q+ = div q  ,  (21.4b) 
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  T+ • L+ = QTQT • ( QLQT + Ω  ) = T • L + T • QTΩ  Q  , (21.4c) 

equation (21.3) reduces to 

  ( •
ρ  + ρ div v) (ε + 

1
2  v+ • v+) + v+ • Q(ρ •v  – ρ b – div T)  

  + (ρ •ε  – ρ r + div q – T • L – T • QTΩ  Q) = 0  .   (21.5) 

 Equation (21.5) is assumed to be valid for all SRBM.  In the following we use two 

specific SRBM to derive results that are necessary consequences of (21.5).  To this end, 

let us first consider the case of a trivial SRBM for which 

  c = 0  ,  •c  = 0 ,  Q = I  ,  •Q  = Ω  = 0  ,   (21.6a,b,c,d) 

  x+ = x  ,  v+ = v  . (21.6e,f) 

Substitution of (21.6) into (21.5) we obtain the equation (20.11).  Next, consider the 

special SRBM that represents a constant velocity translation, which is obtained from 

(11.16) and (11.22a) by taking 

  c = 0  ,  •c  = u u  ,  u • u = 1, (21.7a,b,c) 

  Q = I  ,  •Q  = 0  , (21.7d,e) 

where (21.7) represent the instantaneous values at a specified but arbitrary time t.   It 

follows from (11.16) and (11.22a) that at this time 

  x+ = x ,  v+ = v + u u  ,  Ω  = 0  .  (21.8a,b,c) 

The conditions (21.8) indicate that at time t the body occupies the same position as in P,  

but that a translation (without rotation) in the constant direction u with constant velocity 

u  has been superimposed on the motion.  Substituting (21.7d) and (21.8) into (21.5) and 

subtracting (20.11) from the result we deduce that 

  ( •
ρ  + ρ div v) [u u • v + 

1
2  u2] + u u • (ρ •v  – ρ b – div T)  = 0  ,     (21.9) 

must hold for arbitrary u and u.  Since the coefficients of u and u2 in (21.9) are 

independent of u, each of these coefficients must vanish, so we obtain the local form of 

conservation of mass 

  •
ρ  + ρ div v = 0  ,  (21.10) 

and the condition that 
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  u • (ρ •v  – ρ b – div T) = 0  . (21.11) 

Furthermore, since the direction u is arbitrary and the coefficient of u is independent of u 

we also obtain the local form of balance of linear momentum 

  ρ •v  = ρ b + div T  .  (21.12) 

 Now with the help of the results (21.10) and (21.12), equation (20.11) reduces to 

  ρ •ε  – ρ r + div q – T • L = 0  ,  (21.13) 

so that (21.5) yields the equation 

  T • QTΩ Q = 0  .  (21.14) 

However, since Ω  is an arbitrary skew-symmetric tensor,  QTΩ  Q is also an arbitrary 

skew-symmetric tensor.  Thus, since T does not depend on Ω   the Cauchy stress T must 

be symmetric  

  TT = T  ,  (21.15) 

which is the consequence of balance of angular momentum.  Finally, substitution of 

(21.15) into (21.13) and using (20.13) we obtain the reduced energy equation 

  ρ •ε  – ρ r + div q – T • D = 0  .  (21.16) 

 In the above analysis we have proved that the conservation of mass, the balances of 

linear and angular momentum, and the balance of energy, all referred to the present 

configuration P,  are necessary consequences of the balance of energy and invariance 

under SRBM.  Although these results were obtained using special simple SRBM it is 

easy to see using the invariance conditions (19.16),(20.15) and (20.17) that these balance 

laws remain form-invariant under arbitrary SRBM. 
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22. Boundary and Initial Conditions 

 In this section we confine attention to the discussion of initial and boundary 

conditions for the purely mechanical theory.  In general, the number of initial conditions 

required and the type of boundary conditions required will depend on the specific type of 

material under consideration.  However, it is possible to make some general observations 

that apply to all materials. 

 To this end, we recall that the local forms of conservation of mass (14.7) and balance 

of linear momentum (17.5) are partial differential equations which require both initial and 

boundary conditions.  Specifically, the conservation of mass (14.7) is first order in time 

with respect to density ρ so it is necessary to specify the initial value of density at each 

point of the body 

  ρ(x,0) = –ρ(x)   on P for t = 0 . (22.1) 

Also the balance of linear momentum (17.5) is second order in time with respect to 

position x so that it is necessary to specify the initial value of x and the initial value of the 

velocity v at each point of the body 

  x̂(X,0)  = –x(X)   on P  for t =0, (22.2a) 

  v̂(X,0)  = ~v(x,0)  = –v(x)   on P  for t = 0 . (22.2b) 

 Guidance for determining the appropriate form of boundary conditions is usually 

obtained by considering the rate of work done by the stress vector. From (20.4) we 

observe that t • v is the rate of work per unit present area done by the stress vector.  At 

each point of the surface ∂P we can define a right-handed orthogonal coordinate system 

with base vectors { s1 , s2 , n }, where n is the unit outward normal to ∂P and s1 and s2 

are orthogonal vectors tangent to ∂P.  Then with reference to this coordinate system we 

may write 

  t • v = (t • s1) (v • s1) + (t • s2) (v • s2) + (t • n) (v • n)    on  ∂P  . (22.3) 

Using this representation we define three types of boundary conditions 

 

Kinematic:  All three components of the velocity are specified 

  (v • s1)  ,  (v • s2)  ,  (v • n)  specified on ∂P for all t ≥0 ,   (22.4) 



 
 

91 

Kinetic:  All three components of the stress vector are specified 

  (t • s1)  ,  (t • s2)  ,  (t • n)  specified on ∂P for all t ≥0 ,   (22.5) 

Mixed:  Complementary components of both the velocity  and the stress vector are 

specified 

  (v • s1)   or  (t • s1)  specified on ∂P  for all t ≥0,   (22.6) 

  (v • s2)  or  (t • s2)  specified on ∂P  for all t ≥0 ,   (22.6) 

  (v • n)  or  (t • n)  specified on ∂P  for all t ≥0 .   (22.6) 

Essentially, the complementary components (t • s1),(t • s2),(t • n) are the responses to the 

motions (v • s1),(v • s2),(v • n), respectively.  Therefore, it is important to emphasize that 

for example both (v • n) and (t • n) cannot be specified at the same point of ∂P because 

this would mean that both the motion and the stress response can be specified 

independently of the material properties and geometry of the body.  Notice also, that 

since the initial position of points on the boundary ∂P are specified by the initial 

condition (22.2a), the velocity boundary conditions (22.4) can be used to determine the 

position of the boundary for all time.  This means that the kinematic boundary conditions 

(22.4) could also be characterized by specifying the position of points on the boundary 

for all time. 
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23. Linearization 

 In the previous sections we have considered the exact formulation of the theory of 

simple continua.  The resulting equations are nonlinear so they are quite difficult to solve 

analytically.  However, often it is possible to obtain relevant physical insight about the 

solution of a problem by considering a simpler approximate theory.  In this section we 

will develop the linearized equations associated with this nonlinear theory. 

 We first note that a tensor u is said to be of order εn [ O(εn) ] if there exists a real 

finite number C, independent of ε, such that 

  |u| < C εn  as   ε → 0  .  (23.1) 

In what follows we will linearize various kinematical quantities as well as the 

conservation of mass and the balance of linear momentum and boundary conditions by 

considering small deviations from a reference configuration in which the body is stress-

free, at rest, and free of body force.  To this end, we assume that the density ρ is of order 

1 [ O(ε0) ] 

  ρ = ρ0 + O(ε)  , (23.2) 

and that the displacement u, body force b, Cauchy stress T, nonsymmetric Piola-

Kirchhoff stress Π, and symmetric Piola-Kirchhoff stress S are of order ε 

  { u , b , T , Π  , S } = O(ε)  . (23.3) 

The resulting theory will be a linear theory if ε is infinitesimal 

  ε << 1  .  (23.4) 

Kinematics:  Recalling from  (7.30b) that the position x of a material point in the present 

configuration may be represented by 

  x = X + u  , (23.5) 

the deformation gradient F becomes 

  F = ∂x/∂X = I + ∂u/∂X . (23.6) 

In what follows we use (23.6) to derive a number of kinematical results.  For this purpose 

it is convenient to separate the displacement gradient into its symmetric part ε  and its 

skew-symmetric part ω, such that 

  ∂u/∂X = ε  + ω  ,  (23.7a) 
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  ε  = 
1
2 [∂u/∂X + (∂u/∂X)T] = εT , ω = 

1
2 [∂u/∂X – (∂u/∂X)T] = – ωT ,  (23.7b,c) 

where we note that both ε  and ω are of order ε.  Now with the help of (23.6) and (23.7) it 

follows that  

  F = I + ∂u/∂X = I + ε  + ω  , (23.8a) 

  F–1 = I – ∂u/∂X + O(ε2) = I – ε  – ω + O(ε2)  , (23.8b) 

  C = FTF = I + 2 ε  + O(ε2)  , (23.8c) 

  E = 
1
2  (C – I)  = ε  + O(ε2)  , (23.8d) 

  M = C1/2 = I + ε  + O(ε2)  , (23.8e) 

  M–1 = I – ε +O(ε2)  , (23.8f) 

  R = FM–1 = I + ω + O(ε2)  , (23.8g) 

which indicates that ε  is the linearized strain measure and ω is the linearized rotation 

measure.  Furthermore, we may use (23.8) to deduce that 

  ∂u/∂x = (∂u/∂X) F–1 = ∂u/∂X + O(ε2)  , (23.9a) 

  e = 
1
2  (I – F–TF–1)  =  ε + O(ε2)  , (23.9b) 

so that for the linear theory where terms of order ε2 are neglected there is no distinction 

between the strain measures E and e.  To determine the linearized expression for the 

change in volume we recall the Cayley-Hamilton theorem for C which states that C 

satisfies its own characteristic equation and write 

  – C3 + (C • I) C2 – 
1
2  [(C • I)2 – C2 • I] C + I3 I = 0  . (23.10) 

Now, taking the inner product of (23.10) with I we have 

  I3 = det C = 
1
3 [ C3 • I – 

3
2 (C • I) (C2 • I) + 

1
2 (C • I)3]  . (23.11) 

However, with the help of (23.8c) we may deduce that 

  C • I = 3 + 2 ε  • I + O(ε2) , (23.12a) 

  C2 • I = 3 + 4 ε • I + O(ε2) ,  (23.12b) 

  C3 • I = 3 + 6 ε • I + O(ε2) ,  (23.12c) 
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so that (23.11) yields 

  I3 = 1 + 2 ε  • I + O(ε2)  ,  J = I 3
1/2  = 1 + ε • I + O(ε2)  .        (23.13a,b) 

Thus, the trace of the linearized strain ε  is the relative increase in volume 

  
dv
dV   – 1 =  

dv – dV
dV    = ε  • I  , (23.14) 

and  

  •J /J = div v = D • I = •ε   • I + O(ε2)  .  (23.15) 

Kinetics:  It follows from (23.2) and (23.15) that the conservation of mass (14.7) for the 

linear theory becomes 

  •
ρ  + ρ0 (

•
ε   • I) = 0  , (23.16) 

where we have neglected terms of order ε2.  Also, since the stresses T,Π ,S are related by 

the equations (18.13a),(18.14a) and (18.16a) it follows that 

  Π  = FS = S + O(ε2)  ,  T = J–1 Π  FT = S + O(ε2)  .  (23.17a,b) 

This means that for the linear theory where we neglect terms of order ε2 there is no 

distinction between the three types of stresses 

  T ≈ Π  ≈ S  . (23.18) 

This is of course consistent with the fact that for the linear theory the geometry of the 

present configuration is only slightly different from the geometry of the reference 

configuration.  Further in this regard we note that 

  div T = ∂T/∂xi • ei = (∂T/∂XA) (∂XA/∂xi) • ei = ∂T/∂XA (δiA) • ei + O(ε2)  

  = ∂T/∂XA • eA + O(ε2) = Div T + O(ε2) ,  (23.19a) 

  Div Π  = Div S + O(ε2)  ,  (23.19b) 

so that the balance of linear momentum (17.5) or (18.5a) yield 

  ρ0
••u = ρ0 b + Div T  , (23.20) 

where again we have neglected terms of order ε2. 

Boundary Conditions:  The boundary conditions (22.4)-(22.6) are expressed in terms of 

values of functions of order ε that are evaluated at points on the boundary ∂P of the 
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surface in the present configuration.  The linearized form of these boundary conditions 

can be determined by considering an arbitrary function f of order ε and using a Taylor 

series expansion to deduce that 

  f(x,t) = f(X + u,t) = f(X,t) + ∂f/∂x • u + O(ε3) = f(X,t) + O(ε2)  . (23.21) 

This means that for the linear theory the distinction between the Lagrangian and Eulerian 

representations of any function of order ε vanishes.  Thus, to within the order of accuracy 

of the linear theory the boundary conditions can be evaluated at points on the reference 

boundary ∂P0 instead of on the present boundary ∂P.  

 Finally, we emphasize that the linear theory derived from a given nonlinear theory is 

unique but not vice versa.  This means that an infinite number of nonlinear theories exist 

which when linearized yield the same linear theory.  Consequently, a linear theory 

provides little guidance for developing an appropriate nonlinear theory. 
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24. Material dissipation 

 Within the context of the purely mechanical theory it is possible to define the rate of 

material dissipation D by the equation 

  ∫P D dv = W – •K – •U  , (24.1) 

where the kinetic energy K and the rate of work W done on the body are defined by 

(20.3) and (20.4), respectively, and U represents the total energy associated with the 

strain energy function Σ 

  U = ∫P ρ Σ dv . (24.2) 

Next, using (14.9), (20.3), (20.4) and (20.8b) and the local forms of the conservation of 

mass and the balances of linear and angular momentum, it follows that the rate of work 

W  can be rewritten in the form 

          W = ∫P ρ b • v dv +  ∫∂P t • v da   = ∫P [ ρ b + div T ] • v dv + ∫P T • L dv ,  

  W =  ∫P ρ •v  • v dv + ∫P T • D dv ,  

  W = •K +  ∫P T • D dv . (24.3) 

Also, it can be shown that 

  •U = ∫P ρ •Σ dv  . (24.4) 

and that that local form of the rate of dissipation becomes 

  D = T • D – ρ •Σ ≥ 0  , (24.6) 

where the condition has been imposed that for general material response the rate of  

material dissipation must be nonnegative.   Moreover, it is observed form (24.1) that for a 

dissipative material (D > 0) the rate of work supplied to the body is greater than the rates 

of change of  kinetic and strain energies that can be stored in the body.
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25. Nonlinear Elastic Solids 

 In this section we derive constitutive equations for a nonlinear elastic solid within the 

context of the purely mechanical theory.  In general a constitutive equation is an equation 

that characterizes the response of a given material to deformations or deformation rates.  

An elastic material is a very special material because is exhibits ideal behavior in the 

sense that it has no material dissipation.  One of the most important features of an elastic 

material is that it is characterized by a strain energy function.   

 An elastic material is characterized by the following four assumptions: 

Assumption 1:  The rate of material dissipation (24.6) vanishes (D = 0) 

  D = 0  ⇒  ρ •Σ  = T • D  .  (25.1) 

Assumption 2:  The strain energy Σ is a function of the deformation gradient F and 

reference position X only 

  Σ = ~Σ(F;X)   , (25.2) 

where we have included dependence on the reference position X to allow for the 

possibility that the material may be inhomogeneous in the reference configuration. 

Assumption 3:  The strain energy Σ is invariant under superposed rigid body motions 

(SRBM) 

  Σ+ = Σ   .  (25.3) 

Assumption 4:  The Cauchy stress T is independent of the rate of deformation L. 

 In order to explore the physical consequences of the assumption 1 we define the total 

strain energy U by 

  U = ∫P ρ Σ dv  , (25.4) 

and use the transport theorem, the conservation of mass, and (25.1) to deduce that 

  •U =  ∫P ρ •Σ  dv = ∫PT • D  dv .  (25.5) 

Thus, using (24.1) and (25.1) it is possible to derive the following theorem: 

  W = •K + 
•U ,  (25.6) 
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which states that for an elastic material the rate of work done on the body due to body 

forces and contact forces equals the rate of change of kinetic and strain energies.  Since Σ  

depends on the present configuration through the present value of F only the value of the 

strain energy Σ is independent of the particular loading path which caused F.  

Consequently, the total work done on the body vanishes for any closed cycle in which the 

values of velocity v and deformation gradient F are the same at the beginning and end of 

the cycle. 

 The assumption (25.3) places restrictions on the functional form (25.2).  To see this 

we recall that under SRBM F+=QF so that (25.3) requires 

  Σ+ = ~Σ(F+;X)  = ~Σ(QF;X)  = ~Σ(F;X)   ,     (25.7) 

to hold for arbitrary proper orthogonal Q.  However, with the help of the polar 

decomposition theorem F=RM we deduce the restriction that 

  ~
Σ(F;X)  = ~Σ(QF;X)  = ~Σ(QRM;X)   , (25.8) 

must hold for arbitrary values of the proper orthogonal tensor Q.  Since the deformation 

may be inhomogeneous the rotation tensor R may be a function of position X.  However, 

for a given value of X, say X1 we may choose Q=RT(X1) so that (25.8) yields 

  ~
Σ(F;X)  = ~Σ(RT(X1)RM;X)  .  (25.9) 

Now, evaluating (25.9) at X1 we deduce that locally 

  ~
Σ(F;X1)  = ~Σ(M;X1)  = Σ̂(C;X1)  .  (25.10) 

Thus, a necessary condition for the strain energy Σ to be locally invariant under SRBM is 

that the strain energy function Σ can depend on the deformation gradient F only through 

its dependence on the deformation tensor C.  It is easy to see that this condition is also a 

sufficient condition because under SRBM C+=C.  However, since X1 is an arbitrary 

material point we conclude that for each point X the strain energy Σ can depend on F 

only through its dependence on C 

  ~
Σ(F;X)  =  Σ̂(C;X)  . (25.11) 

 Now, with the help of (25.8) equation (25.1) yields 
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  T • D = ρ 
∂Σ
∂C  • •C  = ρ 

∂Σ
∂C  • 2 FTDF =  2ρ F 

∂Σ
∂C  FT • D  ,           (25.12a) 

  ( T – 2ρ F 
∂Σ
∂C  FT) • D = 0  . (25.12b) 

However, since the coefficient of D in (25.12b) is independent of the rate D and is 

symmetric it follows that for any fixed values of F,X the coefficient of D is fixed and yet 

the D can be an arbitrary symmetric tensor.  Therefore, the necessary condition that 

(25.12b) be valid for arbitrary motions is that the Cauchy stress be given by a derivative 

of the strain energy 

  T = 2ρ F 
∂Σ
∂C  FT  . (25.13) 

Using the conservation of mass (14.5) and the relationship (18.16a) the symmetric Piola-

Kirchhoff stress S becomes 

   S = 2ρ0 
∂Σ
∂C    . (25.14) 

Notice that the results (25.13) and (25.14) are automatically properly invariant under 

SRBM.  Also, notice that the result (25.14) is similar to the result for a simple spring that 

the force is equal to a derivative of the potential (strain) energy. 
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26. Material Symmetry 

 In order to continue our discussion of an elastic material it is desirable to first 

consider the notion of material symmetry.  To this end, consider a general elastic material 

which is referred to a reference configuration with base vectors eA.  Then, with reference 

to another orthogonal set of base vectors eA
*  let us machine a tension specimen from the 

material that is oriented in the e1
*  direction. In general the response of this tension 

specimen will be different for different choices of the direction e1
* .  If this is true then the 

material is called anisotropic.  On the other hand if the response of the material is the 

same for all choices of the direction e1
*  then the material is called isotropic. 

 In order to make these notions more precise let us consider an arbitrary deformation 

C from the reference configuration which is defined by its components CAB relative to 

the reference axes such that  

  C = CAB eA⊗eB  .  (26.1) 

Now consider another deformation C* relative to the same reference configuration which 

is related to C and is defined by 

  C* = CAB eA
*  ⊗eB

*   .  (26.2) 

Since the components of C* relative to the axis eA
*  are the same as the components of C 

relative to the axes eA, C* represents the same deformation as C but relative to a different 

set of material axes.  This means that by comparing the responses to C and C* we can 

compare the responses associated with different material orientations.  More specifically 

we say that the response to the deformations C and C* is the same if the value of the 

strain energy Σ is the same for all values of CAB 

  Σ̂ (C)  = Σ̂ (C*)   . (26.3) 

 In general we can define the orientation of the material axes eA
*  relative to eA by the 

orthogonal transformation H defined by 

  H = eA⊗eA
*   ,  HHT = HTH = I  .  (26.4a,b) 

It follows from (26.4) that 
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  eA = H eA
*   ,  eA

*  = HT eA  ,  (26.5a,b) 

so that C* is related to C and H by the formula 

  C* = CAB HT eA⊗ HT eB = HT (CAB eA⊗eB) H = HT C H  .    (26.6) 

 Now with the help of (26.3) and (26.6) it follows that the response of the material to 

arbitrary deformations associated with different material orientations will be the same 

provided that 

  Σ̂ (C)  = Σ̂ (HTCH)   .  (26.9) 

In other words, the functional form of the strain energy Σ remains form-invariant to a 

group of orthogonal transformations H which characterize the material symmetries 

exhibited by a given material.For the case of crystalline materials these symmetry groups 

can be related to the different crystal structures. 

 For the most general anisotropic elastic material the material has no symmetry so the 

group of H contains only the identity I, whereas an isotropic elastic material has 

complete symmetry so the group of H is the full orthogonal group.  Furthermore it is 

important to emphasize that the notion of material symmetry is necessarily connected 

with the chosen reference configuration because H in (26.4a) is defined relative to fixed 

material directions in this reference configuration. 



 
 

102 

27. Isotropic Nonlinear Elastic Material 

 If an elastic material is isotropic in its reference configuration then the strain energy Σ  

must remain form-invariant for the full orthogonal group of H in (26.9).  It follows that Σ  

must be an isotropic function of C, which in turn means that Σ must depend on C only 

through its invariants.  Recalling that the principal invariants of C are the same as the 

invariants of B and are given by 

  I1 = C • I  = B • I ,  (27.1a) 

  I2 = 
1
2  [ (C • I)2 – C • C ] =  

1
2  [ (B • I)2 – B • B ] , (27.1b) 

  J2 = I3 = det C = det B , (27.1c) 

it follows that for an isotropic elastic material the strain energy Σ can be an arbitrary 

function of the invariants I1,I2,J 

  Σ = Σ (I1,I2,J)  . (27.2) 

Furthermore, from (27.1) we may deduce that 

       •I1 = I • •C   ,  •I2 = [ (C • I) I – C ] • •C    ,  •J = J I • D = 
1
2 J C–1 • •C . (27.3a,b,c) 

Thus, (25.14) and (25.13) yield 

  S = 2ρ0 ⎣
⎢
⎡

⎦
⎥
⎤

 
∂Σ
∂I1

 + (C • I) 
∂Σ
∂I2

   I – 2ρ0 ⎣
⎢
⎡

⎦
⎥
⎤

 
∂Σ
∂I2

   C + ρ0 ⎣⎢
⎡

⎦⎥
⎤∂Σ

∂J  J C–1 ,   (27.4a) 

    T = 2ρ0J–1
  ⎣
⎢
⎡

⎦
⎥
⎤

 
∂Σ
∂I1

 + (B • I) 
∂Σ
∂I2

   B – 2ρ0J–1
 ⎣
⎢
⎡

⎦
⎥
⎤

 
∂Σ
∂I2

   B2 + ρ0 ⎣⎢
⎡

⎦⎥
⎤∂Σ

∂J   I .  (27.4b) 

Also, with the help of (18.17) and (18.18) we may deduce that the pressure p, the deviator 

T', and the tensor S' are given by 

 p = – 
2
3 ρ0J–1 ⎣

⎢
⎡

⎦
⎥
⎤∂Σ

∂I1
 + (B • I) 

∂Σ
∂I2

 B • I + 
2
3 ρ0J–1

 ⎣
⎢
⎡

⎦
⎥
⎤∂Σ

∂I2  B2 • I – ρ0 ⎣⎢
⎡

⎦⎥
⎤∂Σ

∂J   , (27.5a) 

  S' = 2ρ0 ⎣
⎢
⎡

⎦
⎥
⎤∂Σ

∂I1
 + (C • I) 

∂Σ
∂I2

 ⎣
⎡

⎦
⎤I – 

1
3 (C • I) C–1   

  – 2ρ0 ⎣
⎢
⎡

⎦
⎥
⎤∂Σ

∂I2
 ⎣
⎡

⎦
⎤C – 

1
3 (C2 • I) C–1

 ,   (27.5b) 
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  T' = 2ρ0J–1 ⎣
⎢
⎡

⎦
⎥
⎤

 
∂Σ
∂I1

 + (B • I) 
∂Σ
∂I2

  ⎣
⎡

⎦
⎤B – 

1
3 (B • I) I    

  – 2ρ0J–1
 ⎣
⎢
⎡

⎦
⎥
⎤

 
∂Σ
∂I2

  ⎣
⎡

⎦
⎤B2 – 

1
3 (B2 • I) I    . (27.5c) 

 Notice from (27.5a) that all three invariants I1,I2,J contribute to the determination of 

the pressure.  This is because the invariants I1 and I2 are not pure measures of distortional 

deformation.  However, recalling from (7.23) that C' is a pure measure of distortional 

deformation [ det C'=1 ] it follows that C' has only two nontrivial invariants which can be 

written in the forms 

   α1 = C' • I = B'• I ,  α2 = C' • C' = B' • B' .          (27.6a,b) 

where B' is the distortional part of B defined by 

  B' = J–2/3 B  ,  det B' = 1  . (27.7a,b) 

Thus, a general isotropic elastic material can be characterized by the alternative 

assumption that the strain energy function Σ  depends on the invariants {α1,α2,J} in stead 

of on {I1,I2,J} so that 

  Σ = Σ̂ (α1,α2,J) . (27.8) 

Now in order to determine expressions similar to (27.5) associated with the assumption 

(27.8) we note that 

  •
α1 = J–2/3 ⎣

⎡
⎦
⎤I – 

1
3 (C • I) C–1   • •C   , (27.9a) 

  •
α2 = 2 J–4/3 ⎣

⎡
⎦
⎤C – 

1
3 (C2 • I) C–1   • •C   .  (27.9b) 

Then, using these results we have 

  p = – ρ0 
∂Σ̂
∂J   , (27.10a) 

  S' = 2 J–2/3 ρ0 
⎣⎢
⎢⎡

⎦⎥
⎥⎤ 

∂Σ̂
∂α1

    ⎣
⎡

⎦
⎤I – 

1
3 (C • I) C–1    

  + 4 J–4/3ρ0 ⎣⎢
⎢⎡

⎦⎥
⎥⎤ 

∂Σ̂
∂α2

    ⎣
⎡

⎦
⎤C – 

1
3 (C2 • I) C–1   ,           (27.10b) 
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  T' = 2 J–2/3 ρ0J–1 
⎣⎢
⎢⎡

⎦⎥
⎥⎤ 

∂Σ̂
∂α1

    ⎣
⎡

⎦
⎤B – 

1
3 (B • I) I    

  + 4 J–4/3 ρ0J–1
 ⎣⎢
⎢⎡

⎦⎥
⎥⎤ 

∂Σ̂
∂α2

    ⎣
⎡

⎦
⎤B2 – 

1
3 (B2 • I) I   .           (27.10c) 

Now, notice that the pressure is related to the derivative of Σ with respect to the dilatation 

J and the deviatoric stress T' is related to derivatives of Σ with respect to the distortional 

measures of deformation α1 and α2, but also depends on the dilatation J.  However, this 

does not mean that the pressure is independent of (α1,α2) because the derivative ∂Σ̂ /∂J 

may retain dependence on  (α1,α2). 

 Significant advances in the theory of finite elasticity were made studying the response 

of natural rubber and modeling the material by a Neo-Hookean strain energy 

  ρ0 Σ = C1 (I1 – 3)  , (27.11) 

or a Mooney-Rivlin strain energy 

  ρ0 Σ = C1 (I1 – 3) + C2 (I2 – 3)  ,  (27.12) 

where C1 and C2 are material constants.  Also, in these studies rubber was modeled as an 

incompressible material using the constraint that 

  J = 1  . (27.11) 

In general for a constrained theory the stress T is separated additively into a part T̂ 

determined by constitutive equations of the type (27.5) or (27.10) and another part –T, 

called a constraint response which is assumed to do not work and is determined by the 

equations of motion and boundary conditions.  Thus, in a constrained theory the Cauchy 

stress T is given by 

  T = T̂  + –T   ,  –T  • D = 0  .  (27.12a,b) 

For the specific case of incompressibility it may be shown that the constraint response 

becomes 

  –T  = – –p  I  .  (27.13) 
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Consequently, since –p  is not determined by a constitutive equation the total pressure p is 

also not determined by a constitutive equation.  
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28. Linear Elastic Material 

 For a linear elastic material the stress S is a linear function of the strain E.  

Consequently, from  the result (25.14) we observe that the strain energy is a quadratic 

function of the strain E.  For example, let K be a constant fourth order tensor that 

characterizes the elastic properties of the material such that the strain energy is defined by 

  ρ0 Σ = 
1
2  K • (E ⊗ E)  .  (28.1) 

It follows from (28.1) that since the strain E is symmetric and the fourth order tensor 

E⊗E is symmetric [ (E⊗E)T(2) = LT(2)(E⊗E) = (E⊗E) ], the tensor K has the following 

symmetries 

  K = KT = LTK = KT(2)  .  (28.2) 

Thus, it follows from (25.14), (28.1), and (28.2) that  

  S = ρ0 
∂Σ
∂E   = K • E  . (28.3) 

Letting EAB, SAB , KABCD be the Cartesian components of E, S, K, respectively, 

equations (28.1),(28.2) and (28.3) may be written in the component forms 

  ρ0 Σ = 
1
2 KABCD EAB ECD  ,  (28.4a) 

  KABCD = KABDC = KBACD = KCDAB  , (28.4b) 

  SAB = KABCD ECD  .  (28.4c) 

 Material symmetry considerations of the functional form (28.1) define a group of 

orthogonal transformations H for which 

  K • (E ⊗ E) = K • (HTEH ⊗ HTEH)  , (28.5a) 

  KABCD EAB ECD = KMNRS (HAMEABHBN) (HCRECDHDS)   . (28.5b) 

However, since (28.5b) must be valid for arbitrary values of the strain EAB and since 

KABCD and HAB are independent of the strain we deduce that 

  KABCD = HAM HBN HCR HDS KMNRS   . (28.6) 

 In the following we consider four Cases of materials: 

Case I (General Anisotropic):  If the material posseses no symmetry then the symmetry 

group consists only of H=I and the 81 constants KABCD are restricted only by the 
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symmetries (28.2) and the number of independent constants reduces to 21 which are 

given by 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞K1111 K1112 K1113 K1122 K1123 K1133 K1212

K1213 K1222 K1223 K1233 K1313 K1322 K1323
K1333 K2222 K2223 K2233 K2323 K2333 K3333

    (28.7) 

Case II:  If the material possesses symmetry about the X3=0 plane then we may take 

  HAB = 
⎝
⎜
⎛

⎠
⎟
⎞1 0 0

0 1 0
0 0 –1

   , (28.8) 

so that from (28.6) and (28.7) it follows that any component in which the index 3 appears 

an odd number of times must vanish 

 K1113 = K1123 = K1213 = K1223 = K1322 = K1333 = K2223 = K2333 = 0  .   (28.9) 

Thus, the remaining 13  independent constants are given by 

  ⎝⎜
⎛

⎠⎟
⎞K1111 K1112 K1122 K1133 K1212 K1222 K1233

K1313 K1323 K2222 K2233 K2323 K3333
    (28.10) 

Case III:  If the material possesses symmetry about the X3=0 and X2=0 planes then in 

addition to (28.8) we may take 

  HAB = 
⎝
⎜
⎛

⎠
⎟
⎞1 0 0

0 –1 0
0 0 1

   , (28.11) 

so that from (28.6) and (28.10) it follows that any component in which the index 2 

appears an odd number of times must vanish 

  K1112 = K1222 = K1233 = K1323  = 0  . (28.12) 

Thus, the remaining 9 independent constants are given by 

  ⎝⎜
⎛

⎠⎟
⎞K1111 K1122 K1133 K1212 K1313 K2222 K2233

K2323 K3333
   . (28.13) 

Notice from (28.13) that the index 1 only appears an even number of times so that the 

material also possesses symmetry about the X1=0 plane.  This material is called 

orthotropic. 

Case IV:  If the material possesses symmetry with respect to the full orthogonal group 

then the material is called isotropic with a center of symmetry.  Using the results of 
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Appendix E it follows that the material is characterized by only two independent 

constants λ and µ, called Lame's constants, such that 

  K1111 = K2222 = K3333 = λ + 2µ  ,  K1122 = K1133 = K2233 = λ  ,  (28.14a,b) 

  K1212 = K1313 = K2323 = µ  .  (28.14c) 

Thus, the fourth order tensor K may be expressed in the forms 

  KABCD = λ δAB δCD + µ [ δAC δBD + δAD δBC ]  ,  (28.15a) 

  K = λ I ⊗ I + µ [ eM⊗eN⊗eM⊗eN + eM⊗eN⊗eN⊗eM ]  .          (28.15b) 

It follows that the strain energy (28.1) and the stress (28.3) may be written in the forms 

  ρ0 Σ = 
1
2   λ (E • I)2 + µ E • E ,  (28.16a) 

  S = λ (E • I) I + 2µ E  .  (28.16b) 

Notice that the strain energy (28.16a) is a function of the invariants of E as it should be 

for an isotropic material. 

 In the above we have characterized an elastic material which has a strain energy that 

is a quadratic function of strain E and a stress S that is a linear function of strain E.  If E 

is the exact Lagrangian strain then the formulation is exact and in particular is valid for 

large rotations.  Of course it represents a special constitutive equation that should be 

expected to be reasonably accurate for small values of strain.  In order to obtain the fully 

linearized theory we restrict the displacement u to be small.  This forces the rotations also 

to remain small and the strain E to be approximated by the linear strain ε . 

 From physical considerations we expect that any strain should cause an increase in 

strain energy.  Mathematically, this means that the strain energy function is positive 

definite 

  Σ > 0   for any  E ≠ 0  . (28.17) 

Recalling that the strain E may be separated into its spherical and deviatoric parts 

  E = 
1
3 (E • I)  I + E'  ,  E' • I = 0  ,       (28.18a,b) 

it follows that the strain energy  may be rewritten in the form 

  ρ0 Σ = 
1
2 ⎝⎜
⎛

⎠⎟
⎞3λ + 2µ

3  (E • I) 2 + µ E' • E'  . (28.19) 



 
 

109 

Since the terms (E • I) and E' • E' are independent of each other we may deduce that the 

strain energy will be positive definite whenever 

  3λ + 2µ > 0  ,  µ > 0  . (28.20a,b) 

 Finally, we note that an isotropic elastic material can be characterized by any two of 

the following material constants: λ (Lame's constant); µ (shear modulus); E (Young's 

modulus); ν (Poisson's ratio); or k (bulk modulus), which are related in Table 28.1.  

Furthermore,  using Table 27.1 it may be shown that the restrictions (28.20) also require 

that 

  k > 0  ,  E > 0  ,  – 1 < ν < 
1
2   . (28.21a,b,c) 
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(3λ+E)+ (3λ+E)2–4λE
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29. Viscous and Inviscid Fluids 

 Within the context of the purely mechanical theory a general viscous fluid is 

characterized by the constitutive assumption that the Cauchy stress T is a function of the 

dilatation J, the velocity v, and the velocity gradient L.  However, for convenience it is 

desirable to separate L into its symmetric part D and its skew-symmetric part W and 

write 

  T = ~T(J, v, D, W).  (29.1) 

 In the following we will use invariance under superposed rigid body motions (SRBM) 

to develop restrictions on the functional form (29.1).  To this end, recall that since (29.1) 

must hold for all motions it must also hold for SRBM so that 

  T+ = ~T(J+, v+, D+, W+)  . (29.2) 

However, under SRBM the Cauchy stress T transforms by 

  T+ = QTQT  , (29.3) 

where Q is a proper orthogonal tensor function of time only.  Thus, the functional form 

(29.1) must satisfy the restrictions 

  ~T(J+, v+, D+, W+) = Q~T(J, v, D, W)QT  .   (29.4) 

 Recalling that under SRBM  

  J+ = J  ,  v+ = •c  + Ω  Qx + Qv  ,  •Q  = ΩQ  ,  (29.5a,b,c) 

  D+ = QDQT   ,  W+ = QWQT + Ω  , (29.5d,e) 

equation (29.4) becomes 

  ~T(J, •c  + Ω  Qx + Qv, QDQT, QWQT + Ω) = Q~T(J, v, D, W)QT .   (29.6) 

Since (29.6) must hold for all motions we can obtain necessary restrictions on the 

functional form ~T  by considering special SRBM.  Specifically, consider the simple 

SRBM characterized by a superposed rigid body translational velocity for which 

  •c  ≠ 0  ,   Q = I  ,  Ω  = 0  .  (29.7a,b,c) 

Substituting (29.7) into (29.6) we have 

      ~T(J, •c  + v, D, W) = ~T(J, v, D, W)  .  (29.8) 
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However, since we can choose the value of •c arbitrarily and the right hand side of (29.8) 

is independent of •c it follows that the Cauchy stress cannot depend on the velocity v.  

Thus, T must be expressed as another function –T of J,D,W only  

  T = –T(J, D, W)  , (29.9) 

and the restriction (29.6) becomes 

  –T(J, QDQT, QWQT + Ω) = Q–T(J, D, W)QT  . (29.10) 

 Next consider the special case of rigid body rotation for which at time t we specify 

  Q = I  ,  •Q  = Ω   . (29.11) 

Substituting (29.11) into (29.10) we require 

  –T(J, D, W + Ω) = –T(J, D, W). (29.12) 

However, Ω  can be an arbitrary skew-symmetric tensor and the right hand side of (29.12) 

is independent of Ω  so we may conclude that the Cauchy stress cannot depend on the 

spin tensor W.  This means that the most general viscous fluid is characterized by the 

constitutive equation 

  T = T̂(J) + 
v
T(J, D)  , (29.13) 

where T̂(J) characterizes the elastic response due to dilatation and 
v
T(J, D) characterizes 

the viscous response.  Also, these constitutive equations must satisfy the restrictions that 

  T̂(J) = QT̂(J)QT  ,   
v
T(J, QDQT) = Q

v
T(J, D)QT . (29.14a,b) 

 

Reiner-Rivlin Fluid:  Since the restrictions (29.14b) must hold for all proper orthogonal 

Q the function 
v
T is called an isotropic tensor function of its argument D.  This notion of 

an isotropic tensor  function  should not be confused with the notion of an isotropic tensor 

as discussed in appendix E.  Furthermore, since the restriction (29.14b) is unaltered by 

the interchange of Q with –Q it follows that 
v
T is a hemotropic function of D (isotropic 



 
 

113 

with a center of symmetry).  Now, using a result from the theory of invariants it follows 

that the most general form of  
v
T can be expressed as 

  
v
T = d0 I + d1 D + d2 D2   , (29.15) 

where d0,d1,d2 are scalar functions of J and the three invariants of D.  This functional 

form characterizes what is called a Reiner-Rivlin fluid.  Moreover, the strain energy is 

taken to be a function of the dilatation 

  Σ = Σ̂(J)   , (29.16) 

and the elastic stress T̂ and the rate of material dissipation (24.6) are given by 

  T̂(J) = – p̂(J) I  ,   p̂(J) = – ρ0 
∂Σ̂
∂J  ,  D = 

v
T • D ≥ 0  , (29.17a,b,c) 

which places restrictions on the functional form for the viscous stress 
v
T. 

 

Newtonian Viscous Fluid:  A Newtonian viscous fluid is a special case of a Reiner-Rivlin 

fluid in which the viscous stress 
v
T is a linear function of the rate of deformation D.  For 

this case, 
v
T reduces to 

  
v
T = λ (D • I) I + 2µ D  ,  (29.18) 

where λ and µ are scalar functions of J only.  It follows that 
v
T can be rewritten in the 

alternative form     

  T = – p̂(J) I + 
v
T  ,   

v
T = – 

v
p I + 2µ D'  ,   (29.19a) 

  p = – 
1
3 T • I = p̂ + 

v
p  ,  

v
p = – 

1
3 

v
T • I = – (λ + 

2
3  µ) (D • I) ,  (29.19b,c) 

  D' = D – 
1
3 (D • I)  I  (29.19d) 

which shows that the total pressure p has an elastic part p̂ and a viscous part 
v
p that 

depends on the rate of volume expansion (D • I).  Moreover, the rate of material 

dissipation (29.17c) is satisfied provided that 
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  (λ + 
2
3  µ) ≥ 0  ,  µ ≥ 0  . (29.20) 

   

Inviscid Fluid:  For an inviscid fluid the Cauchy stress is independent of the rate of 

deformation D so that 
v
T vanishes and the Cauchy stress is given by 

  T = T̂(J) = – p(J) I  .  (29.21) 

This means for an inviscid fluid the stress vector t always acts normal to the surface on 

which it is applied 

  t = T n = – p n  .  (29.22) 
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30. Elastic-Plastic Materials 

 In this section we summarize the main features of constitutive equations which model 

the rate-independent elastic-plastic response of a typical metal.  A good review of the 

linear theory for elastic-plastic materials may be found in an article by Naghdi (1960).  

Here, we consider the nonlinear theory and use the strain space formulation of plasticity 

which was proposed by Naghdi and Trapp (1975).  
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Fig. 30.1: (a)  Stress-Strain Response Of A Typical Metal To Uniaxial Stress; 

(b) Idealization Of The Stress-Strain Response Of A Metal To Uniaxial Stress 

 

 Fig. 30.1a shows that stress-strain response of a typical metal to uniaxial stress 

loading.  The quantity S11 is the (11) component of the symmetric Piola-Kirchhoff stress 

S and the quantity E11 is the (11) component of the Lagrangian strain E.  The material is 

loaded in tension along the path OABCD, unloaded along DE, reloaded along EFGH, 

unloaded along HI, and reloaded in compression along IJKL. Inspection of the points 

C,E, and L in Fig. 30.1a reveals that the stress in an elastic-plastic material can have 

significantly different values for the same value of strain E11.  This means that the 

response of an elastic-plastic material depends on the past history of deformation (i.e. the 

responses to the deformation histories OABC, OAB–E, and OAB–L are different). 
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 The points A,F, and J in Fig. 30.1a represent points on the loading paths beyond 

which the stress-strain relationship becomes nonlinear.  These points are called the 

proportional limits.  Although the curve OABCD is nonlinear we cannot determine 

whether the response is elastic or elastic-plastic until we considering unloading.  Since 

the response shown in Fig. 1a does not unload along the same loading path we know that 

the response is not elastic but rather is elastic-plastic.  Consequently, the points B,G, and 

K represent the points on the loading paths beyond which some detectable value of strain 

(normally taken to be 0.2%) remains when the material is unloaded to zero stress.  These 

points are called the yield points and deformation beyond them causes permanent 

changes in the response of the material.  It is also important to mention that the paths 

BCD, GH, and KL represent strain hardening paths where the stress increases with 

increasing strain. 

 To model the material response shown in Fig. 30.1a it is common to separate the 

response into two parts: elastic response which is reversible and plastic response which is 

irreversible.  Also, we idealize the material response as shown in Fig. 30.1b by making 

the following assumptions: 

(a) There is a distinct yield point that forms the boundary between elastic 

and plastic response. 

(b) Unloading along DE and and reloading along EF follow the same path. 

 For the constitutive model we introduce a symmetric positive definite second order 

tensor Cp called the plastic deformation, and a scalar measure of work hardening κ, both 

of which are functions of the material point X and time t.  Furthermore, we assume that 

the boundary between elastic and plastic response is characterized by a yield function 

g(C,Cp,κ), which depends on the variables 

  { C , Cp , κ }  . (30.1) 

The yield function is also assumed to be continuously differentiable with respect to its 

arguments and at yield it is assumed to satisfy the equation 

  g(C,Cp,κ) = 0  . (30.2) 

Since g=0 determines the boundary between elastic and plastic response, we can without 

loss in generality take g to be negative for elastic response. 
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 The plastic deformation is specified by a flow rule which is an equation for the rate of 

change of plastic deformation of the form 

  •Cp = Γ A  , (30.3) 

and the hardening is specified by an evolution equation of the form 

  •
κ  = Γ K  . (30.4) 

In (30.3) and (30.4), A is a symmetric tensor, K is a scalar, and both are functions of the 

variables (30.1).  Also, Γ is a scalar function of the variables (30.1) and the rate •C  which 

characterizes loading and unloading.  To motivate the form for Γ we differentiate the 

yield function (30.2) to deduce that 

  •g  = ĝ  – Γ –g   , (30.5a) 

  ĝ  = 
∂g
∂C   • •C  ,  –g  = – [ 

∂g
∂Cp

  • A + 
∂g
∂κ  K] . (30.5b,c) 

Notice that when Γ vanishes plastic deformation rate and hardening rate also vanish so 

the response should be elastic.  Under these conditions the sign of ĝ  indicates whether 

the yield surface tends to grow or shrink.   Consequently, when g=0 and the material is at 

its elastic-plastic boundary, the sign of ĝ  determines whether the material response will 

correspond to loading into the plastic region or unloading into the elastic region.  

Furthermore, since we require the material response to be rate-independent the scalar Γ 

must be homogeneous function of order one in the time rate of change of tensors. 

 Therefore, with this background in mind we specify the loading and unloading 

conditions by taking Γ in the form 
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Γ = 

⎩⎪
⎨
⎪⎧

 

 

 

0    during elastic response  (g < 0)    (29.6a) 

0    during unloading  (g = 0 and ĝ  < 0)    (29.6b) 

0    during neutral loading  (g = 0 and ĝ  = 0)   (30.6c) 

–
Γ ĝ   during loading  (g = 0 and ĝ > 0)    (29.6d) 

where 
–
Γ  is a function of the variables (30.1) which is determined by the consistency 

condition that g remains zero during plastic loading.  Thus, substituting (30.6d) into 

(30.5a) and requiring that during plastic loading g=0 and •g =0, we obtain the result that 

 

  
–
Γ  = 

1
–g
   . (30.7) 

 The constitutive equations (30.2)-(30.7) are called rate type constitutive equations 

because the evolution of the quantities Cp and κ are specified by constitutive equations 

for their time rate of change instead of for the variables themselves. As mentioned above, 

the specification (30.6d) causes the equations (30.3) and (30.4) to be homogeneous in 

time so that the response is to any specified deformation path is insensitive to the rate that 

the path is traversed.  Also, we mention that Cp and κ are assumed to be unaltered by 

superposed rigid body motions 

  Cp
+ = Cp  ,  κ+ = κ  , (30.8) 

so the quantities {g,A,Γ,K} are also unaltered by superposed rigid body motions. 

 There is a general consensus that the constitutive equations (30.2)-(30.4) cannot be 

specified totally arbitrarily.  However, there is no consensus about the specific form of 

appropriate constitutive restrictions.  For example, within the context of the 

thermodynamical theory it is necessary to ensure that the elastic response is consistent 

with the notion that a strain energy exists and the plastic response is dissipative.   Using 

the work of Green and Naghdi (1965,1966) it can be shown that for a strain energy 

function Σ of the form 
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  Σ = Σ (C,Cp,κ)  , (30.9) 

that the symmetric Piola-Kirchhoff stress S must be related to Σ by the equation 

 

  S = 2ρ0
∂Σ
∂C   , (30.10) 

and plastic deformation will be dissipative whenever the material dissipation (24.6) is 

nonnegative 

 

  D = – ρ ⎝
⎜
⎛

⎠
⎟
⎞∂Σ

∂Cp
 • •Cp + 

∂Σ
∂κ •κ   > 0  .  (30.11) 

 A simple specific set of constitutive equations that is valid for large deformations can 

be characterized by the assumptions 

  g = 
σe
κ    – 1  ,   σe

2 = 
3
2   T' • T'  ,        (30.12a,b) 

 

  A = 
⎣⎢
⎡

⎦⎥
⎤

⎝⎜
⎛

⎠⎟
⎞3

Cp
–1 • C  C – Cp    ,  K  = m1 (Z1 – κ)  ,        (30.12c,d) 

 

  2ρ0Σ = 2 f(J) + µ0 (α1 – 3)  ,  α1 = Cp
–1 • C'  ,        (30.12e,f) 

where σe is the Von Mises stress; m1, Z1, µ0 are material constants; and f(J) is a function 

of the dilatation J.  The specification (30.12c) is consistent with the notion of plastic 

incompressibility because 

  I3p = det Cp = 1 ,  •I3p = I3p Cp
–1 • •C p = 0  . (30.13a,b) 

Consequently, the scalar α1 defined by (30.12f) is a pure measure of elastic distortion.  

Also, the functional form (30.12d) indicates that hardening tends to saturate when κ 

attains the value Z1.  Now, using (30.10) and (30.11) we obtain 

  S = – p J C–1 + S'  ,  p = – 
df
dJ   ,        (30.14a,b) 
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  S' = µ0 J–1/3
 [Cp

–1 – 
1
3 (C • Cp

–1)  C–1 ]  , (30.14c) 

  D = – J–1ρ 0 
∂Σ
∂Cp • 

•Cp = 
1
2 J–1 µ0 Cp

–1C'Cp
–1 • Γ A . (30.14d) 

Furthermore, introducing a tensorial measure Be' of elastic distortional deformation 

  Be'  = F'Cp
–1F'T  ,  det Be'  = 1  , (30.15a,b) 

the deviatoric part T' of the Cauchy stress and the rate of plastic dissipation become 

 

  T' = J–1µ0 [Be'  – 
1
3 (Be'  • I) I ]  , (30.16a) 

 

           D = – J–1ρ 0 
∂Σ
∂Cp • 

•Cp = 
1
2 J–2/3 µ0

 Γ ⎣⎢
⎡

⎦⎥
⎤

⎝⎜
⎛

⎠⎟
⎞3

Be'  • I  (Be'  • Be' ) – (Be'  • I)   .    (30.16b) 

 An alternative approach to plasticity has been developed by Eckart (1948) and 

Leonov (1976) for elastically isotropic elastic-plastic materials, and by Besseling (1966) 

for elastically anisotropic materials.  Also, a plasticity theory formulated in terms of 

physically based microstructural variables, which is motivated by these previous works, 

has been proposed by Rubin (1994).  In this alternative approach, there is no need to 

introduce a measure of plastic deformation.  Instead, attention is focused on the evolution 

of an elastic deformation tensor and the effects of plasticity are introduced only through 

the rate of relaxation that plasticity causes on the evolution of elastic deformation.  

 For the simple case of elastically isotropic elastic-plastic response the elastic 

deformation is characterized by the scalar measure J of dilatation and a unimodular tensor 

Be'  which is a measure of elastic distortional deformation.  Also, for generality, a measure 

of isotropic hardening κ is introduced.  These quantities are determined by the following 

evolution equations 

  •J = J D • I ,  •κ = Γ K  , (30.17a,b) 

  •Be'  = LBe'  + Be'  LT – 23 (D • I) Be'   – Γ Ap  , (30.17c) 
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where Γ is a scalar to be determined.  The scalar function K and tensor Ap require 

constitutive equations.  First of all it is noted that when Γ vanishes the evolution equation 

(27.17c) can be integrated to obtain 

  Be'  = B' = F'F'T ,  F' = J–1/3 F  . (30.18a,b) 

This indicates that Be'  becomes the usual measure of elastic distortional deformation that 

is used in describing isotropic nonlinear elastic materials.  This also means that the term 

ΓAp determines the relaxation effects of plasticity on the evolution of elastic 

deformation.  Moreover, since Be'  must remain a unimodular tensor it follows that  

  •Be'  • Be'
–1 = 0  , (30.19) 

so that Ap must be restricted by the condition 

  Ap •  Be'
–1 = 0  . (30.20) 

 Now, the stress response is determined by a strain energy function of the form 

  Σ = Σ(J,α1,α2,κ)  ,  α1 = Be'  • I  ,  α2 = Be'  • Be'   , (30.21a,b,c) 

where α1 and α2 are the two nontrivial invariants of Be' .  Using the fact that 

  •
α1 = 2 [Be'  – 13 (Be'  • I) I ] • D – Γ Ap • I   , (30.22a) 

  •
α2 = 4 [Be'

2 – 13 (Be'
2 • I) I ] • D – 2 Γ Ap • Be'   , (30.22b) 

it can be shown that 

  
•
Σ = [J 

∂Σ
∂J  I + 2 

∂Σ
∂α1

 {Be'  – 13 (Be'  • I) I} + 4 
∂Σ
∂α2

 {Be'
2 – 13 (Be'

2 • I) I}] • D 

  + Γ [∂Σ∂κ K –  { ∂Σ∂α1
 I + 2 

∂Σ
∂α2

  Be'} • Ap ] . (30.23) 

Also, for this theory the Cauchy stress T is given by 

  T = – p I + T'  ,  p = – ρ0 
∂Σ
∂J  , (30.24a,b) 

  T' = 2ρ 
∂Σ
∂α1

 [Be'  – 13 (Be'  • I) I] + 4ρ 
∂Σ
∂α2

 [Be'
2 – 13 (Be'

2 • I) I]  , (30.24c) 
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and the rate of dissipation (24.6) due to plastic deformation must satisfy the inequality 

  D = – Γ ρ [∂Σ∂κ K –  { ∂Σ∂α1
 I + 2 

∂Σ
∂α2

  Be'} • Ap ] ≥ 0  . (30.25) 

 In general, the yield surface for rate-independent plasticity is assumed to be a 

function of the same variables as the strain energy function 

  g = g(J,α1,α2,κ)  . (30.26) 

Thus, it can be shown that 

  •g = ĝ – Γ –g, (30.27a) 

    ĝ = [J 
∂g
∂J  I + 2 

∂g
∂α1

 {Be'  – 13 (Be'  • I) I} +  4 
∂g
∂α2

 {Be'
2 – 13 (Be'

2 • I) I}] • D , (30.27b) 

  –g = – 
∂g
∂κ K + [ ∂g

∂α1
 I + 2 

∂g
∂α1

  Be'  ] • Ap  . (30.27c) 

Moreover, the yield function is chosen so that –g is positive whenever the material state is 

at the onset of plasticity g=0  

  –g > 0  whenever  g = 0  . (30.28) 

Then, the function Γ is determined by the expressions (30.6) and the consistency 

condition (30.7).  

 In particular, notice that the deviatoric stress T' vanishes when the elastic distortional 

deformation Be'  equals I.  This suggests that the relaxation effects of plasticity cause the 

elastic distortional deformation to evolve toward the unity tensor.  Thus, the tensor Ap is 

taken in the form 

  Ap = Be'  – [ 3
Be'

–1 • I ] I  , (30.29) 

where the coefficient of I has been chosen so that the restriction (30.20) is satisfied. 

 As a simple special case, the strain energy function Σ and the rate of hardening 

function K are specified by 

  2ρ0Σ = 2 f(J) + µ0 (α1 – 3)  ,  K  = m1 (Z1 – κ)  , (30.30) 
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where the function f(J) determines the response to dilatation, µ0 is the positive reference 

value of the shear modulus, m1 is a positive constant controlling the rate of hardening and 

Z1 is the saturated value of hardening.  Then, using this strain energy function it follows 

that the stress if given by 

  p = – 
df
dJ  ,   T' = J–1 µ0 [Be'  – 13 (Be'  • I) I]  , (30.31) 

and the restriction (30.25) on the rate of plastic dissipation requires 

  D = – Γ ρ  = 
1
2 J–1µ0 I • ΓAp = 

1
2 J–1 µ0 Γ [Be'  • I – { 9

Be'
–1 • I }] ≥ 0  . (30.32) 

Since Be'  is a symmetric unimodular tensor it can be shown by expressing it in its spectral 

form in terms of its positive eigenvalues {β1, β2, 1/β1β2} that 

  Be'  • I = β1 + β2 + 
1

β1β2
  ≥ 3  , (30.33a) 

  Be'
–1 • I = 

1
β1

 + 
1
β2

 + β1β2 ≥ 3  , (30.33b) 

so that the dissipation inequality (30.32) is automatically satisfied. 

 The main advantage of this alternative approach to plasticity theory is that the initial 

values of {J, Be' , κ} required to integrate the evolution equations (30.17) can be measured 

in the present configuration.  This means that all relevant information about the past 

history of deformation can be measured in the present state of the material.  This is 

important from a physical point of view because knowledge of the state of the material in 

the present configuration does not reveal sufficient information to determine the value of 

plastic strain that has been measured relative to a reference configuration, which itself 

cannot be determined in the present configuration.  In other words, the initial condition 

on plastic deformation Cp required to integrate the evolution equation (30.3) cannot be 

determined from knowledge of the present configuration only.  This fact causes an 

arbitrariness to be introduced into the more classical theory of plasticity that is not 

present in this alternative theory. 
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Appendix A: Eigenvalues, Eigenvectors, and Principal Invariants of a Tensor 

 In this appendix we briefly review some basic properties of eigenvalues and 

eigenvectors.  The vector v is said to be an eigenvector of a real second order symmetric 

tensor T with the associated eigenvalue σ if 

  T v = σ v  ,  Tij vj = σ vi  .           (A1a,b) 

It follows that the characteristic equation for determining the three values of the 

eigenvalue σ is given by 

  det (T – σI) = – σ3 + σ2 I1 – σ I2 + I3 = 0  , (A2) 

where I1,I2,I3 are the principal invariants of an arbitrary real tensor T  

  I1(T) = T • I = tr T = Tmm  ,  (A3a) 

  I2(T) = 
1
2  [(T • I)2 – (T • TT)] = 

1
2  [(Tmm)2 – TmnTnm]  , (A3b) 

  I3(T) = det T = 
1
6  εijkεlmnTilTjmTkn .  (A3c) 

It can be shown that since T is a real symmetric tensor the three roots of the cubic 

equation (A2) are real.  Also, it can be shown that the three independent eigenvectors v 

obtained by solving (A1) can be chosen to form an orthonormal set of vectors. 

 Recalling that T can be separated into its spherical part T I and its deviatoric part T' 

such that 

  T = T I + T'  ,  Tij = T δij + Tij'  ,           (A4a,b)  

  T = 
1
3 (T • I)  = 

1
3 (Tmm)   ,  T' • I = Tmm' = 0  ,  (A4c,d) 

it follows that when v is an eigenvector of T it is also an eigenvector of T' 

  T' v = (T – T I) v = (σ – T) v = σ' v  , (A5) 

with the associated eigenvalue σ' related to σ by 

  σ = σ' + T  . (A6) 

However since the first principal invariant of T' vanishes we may write the characteristic 

equation for σ' in the form 

  det (T' – σ'I) = – (σ')3  + σ'(
σe

2

3  ) + J3 = 0  , (A7) 
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where we have defined the alternative invariants σe and J3 by 

  σe
2 = 

3
2 T' • T' = – 3 I2(T')  ,  J3 = det T' = I3(T')  .             (A8a,b) 

Note that if σe vanishes then T' vanishes so that from (A7) σ' vanishes and from (A6) it 

follows that there is only one distinct eigenvalue 

  σ = T  . (A9) 

On the other hand, if σe does not vanish we may divide (A7) by (σe/3)3 to obtain 

  
⎝
⎜
⎛

⎠
⎟
⎞3σ'

σe

3
  – 3 

⎝
⎜
⎛

⎠
⎟
⎞3σ'

σe
  – 2 Ĵ3 = 0  , (A10) 

where the invariant Ĵ3 is defined by 

  Ĵ3 = 
27 J3
2 σe

3  .  (A11) 

Since (A10) is in the standard form for a cubic, the solution can be obtained easily using 

the trigonometric form 

  sin 3β = – Ĵ3  ,  – 
π
6  ≤ β ≤ 

π
6  , (A12a) 

  σ1'  = 
2σe
3  cos (

π
6  + β)  , (A12b) 

  σ2'  = 
2σe
3  sin (β)  , (A12c) 

  σ3'  = – 
2σe
3  cos (

π
6  – β)  , (A12d) 

where the eigenvalues σ1' ,σ2' ,σ3'  are ordered so that 

  σ1'  ≥ σ2'  ≥ σ3'   .  (A13) 

Once these values have been determined the three values of σ may be calculated using 

(A6). 
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 Furthermore, we note that the value of β or Ĵ3 may be used to identify three states of 

deviatoric stress denoted by: triaxial compression (TXC); torsion (TOR); and triaxial 

extension (TXE); and defined by 

  β = 
π
6  ,  Ĵ3 = – 1  ,  (TXC)  , (A14a) 

  β = 0 ,  Ĵ3 = 0  ,  (TOR)  , (A14b) 

  β = – 
π
6  ,  Ĵ3 =  1  ,  (TXE)  . (A14c) 
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Appendix B: Consequences of Continuity 

 A function φ(x,t) is said to be continuous with respect to position x in a region R if for 

every y in R and every ε > 0 there exists a δ > 0 such that 

  | φ(x,t) – φ(y,t) | < ε  whenever  | x – y | < δ  . (B1) 

Theorem:  If φ(x,t) is continuous in R and 

  ∫P φ dv = 0  , (B2) 

for every part P in R, then the necessary and sufficient condition for the validity of (B1) 

is that φ vanishes at every point in R 

  φ = 0   in  R  . (B3) 

Proof (Sufficiency):  If φ=0 in R then (B2) is trivially satisfied. 

Proof (Necessity):  (Proof by contradiction).  Suppose that a point y  in R exits for which 

φ(y,t)>0.  Then, by continuity of φ  there exists a region Pδ defined by the delta sphere 

such that 

  | φ(x,t) – φ(y,t) | < 
1
2  φ(y,t)  whenever  | x – y | < δ  .     (B4) 

Alternatively, (B4) may be written as 

  – 
1
2  φ(y,t) < φ(x,t)  – φ(y,t) < 

1
2  φ(y,t)  whenever  | x – y | < δ  ,    (B5a) 

  
1
2  φ(y,t) < φ(x,t) < 

3
2  φ(y,t)  whenever  | x – y | < δ  .   (B5b) 

Since the volume Vδ of the region Pδ is positive 

  Vδ = ∫Pδ
 dv > 0  , (B6) 

it follows from (B5b) and (B6) that 

   

  ∫Pδ
 φ dv  > ∫Pδ

 
1
2 φ(y,t) dv = 

1
2  φ(y,t) Vδ > 0  , (B7) 
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which contradicts the condition (B2) so that φ in R cannot be positive.  Similarly, we 

realize that if φ(y,t)<0, then by continuity of φ there exists a region Pδ defined by the 

delta sphere such that 

  | φ(x,t) – φ(y,t) | < – 
1
2  φ(y,t)  whenever  | x – y | < δ  ,    (B8a) 

  
1
2  φ(y,t) < φ(x,t)  – φ(y,t) < – 

1
2  φ(y,t)  whenever  | x – y | < δ  ,   (B8b) 

  
3
2  φ(y,t) < φ(x,t) < 

1
2  φ(y,t)  whenever  | x – y | < δ  .   (B8c) 

Hence, 

  ∫Pδ
 φ dv  < ∫Pδ

 
1
2 φ(y,t) dv = 

1
2  φ(y,t) Vδ < 0  , (B9) 

which contradicts the condition (B2) so that φ in R cannot be negative.  Combining the 

results of (B7) and (B9) we deduce that φ must vanish at each point of R, which proves 

the necessity of (B3). 
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Appendix C: Lagrange Multipliers 

Special Case:  Let f=f(x1,x2,x3) be a real valued function of the three variables xi and 

assume that f is continuously differentiable.  We say that f has a stationary value 

(extrememum) at the point x0 if 

  df = 
∂f
∂x1

 dx1 +  
∂f
∂x2

 dx2 +  
∂f
∂x3

 dx3 = 0  at  x0  . (C1) 

If the variables xi are independent of each other then from (C1) we may conclude that 

  
∂f
∂x1

 = 
∂f
∂x2

 = 
∂f
∂x3

 = 0  at  x0  . (C2) 

 Let us now consider the problem of finding the points x0 which make f stationary and 

which satisfy the constraint condition that 

  φ(x1,x2,x3) = 0  . (C3) 

In other words, from the set of all points which satisfy the constraint (C3) we search for 

those x0 which also make f stationary.  To this end, we differentiate (C3) along paths on 

the constraint surface to obtain 

  dφ = 
∂φ
∂x1

 dx1 +  
∂φ
∂x2

 dx2 +  
∂φ
∂x3

 dx3 = 0  . (C4) 

The condition for f to be stationary is again given by (C1) but now we can no longer 

conclude the results (C2) because xi are dependent and must satisfy (C3). 

 The method of Lagrange multipliers suggests that we multiply (C4) by an arbitrary 

scalar λ and then subtract the result from (C1) to obtain 

  ⎝
⎜
⎛

⎠
⎟
⎞∂f

∂x1
 – λ 

∂φ
∂x1

 dx1 +  ⎝
⎜
⎛

⎠
⎟
⎞∂f

∂x2
 – λ 

∂φ
∂x2

 dx2 +  ⎝
⎜
⎛

⎠
⎟
⎞∂f

∂x3
 – λ 

∂φ
∂x3

 dx3 = 0    at  x0 . (C5) 

In order for the constraint (C3) to be active we require that at each point at least one of 

the partial derivatives ∂φ/∂xi ≠ 0.  For simplicity we assume that  

  
∂φ
∂x3

 ≠ 0  .  (C6) 

Next we can choose λ so that the coefficient of dx3 in (C5) vanishes 
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∂φ
∂x3

 λ  = 
∂f
∂x3

  ,  (C7) 

so that equation (C5) reduces to 

  ⎝
⎜
⎛

⎠
⎟
⎞∂f

∂x1
 – λ 

∂φ
∂x1

 dx1 +  ⎝
⎜
⎛

⎠
⎟
⎞∂f

∂x2
 – λ 

∂φ
∂x1

 dx2 = 0    at  x0 .          (C8) 

Now since ∂φ/∂x3≠0 we can choose dx3 so that equation (C4) is satisfied for arbitrary 

choice of dx1 and dx2.  Hence, the values of dx1 and dx2 may be specified independently 

in (C8) so we may conclude that 

  
∂f
∂xi

 = λ 
∂φ
∂xi

  at x0  ,     (C9) 

where we have also used the specification (C7).  In summary, we say that of all the points 

satisfying the constraint (C3), the ones that correspond to stationary values of f are the 

ones for which x0 and λ are determined by the four equations (C3) and (C9). 

 Another way of examining the same problem is to write the function f and the 

constraint φ in the forms 

  f = f(xα,x3)  ,  φ = φ(xα,x3) = 0  ,  (C10a,b) 

where a Greek index is assumed to take only the values 1,2.  Since ∂φ/∂x3≠0, the implicit 

function theorem states that a function g(xα) exists such that when x3 = g(xα) the 

constraint (C10b) is satisfied     

  φ(xα,g(xα)) = 0  for all xα  . (C11) 

Substituting the value x3=g(xα) into (C10a) we obtain a function of xα only which 

determines the value of f only for those points that satisfy the constraint condition (C10b)    

  f = f(xα , g(xα))  . (C12) 

Since xα are independent variables in (C12) it follows that the stationary values are 

determined by the equation 

  df = 
⎝⎜
⎛

⎠⎟
⎞∂f

∂xα + 
∂f
∂x3

 
∂g
∂xα  dxα = 0  . (C13) 

Thus, for stationary points  
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∂f
∂xα = – 

∂f
∂x3

  
∂g
∂xα  .  (C14) 

However, since the constraint (C10b) is satisfied for all values of xα we have 

  dφ = ⎝
⎜
⎛

⎠
⎟
⎞∂φ

∂xα + 
∂φ
∂x3

 
∂g
∂xα  dxα = 0  ⇒  – 

∂g
∂xα =  ⎝

⎜
⎛

⎠
⎟
⎞∂φ

∂xα  / ⎝⎜
⎛

⎠
⎟
⎞∂φ

∂x3
. (C15a,b) 

Substituting (C15b) into (C14) we obtain 

  
∂f
∂xα = 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

∂f
∂x3
∂φ
∂x3

 
∂φ
∂xα = λ 

∂φ
∂xα  ,  λ =  

⎝⎜
⎜⎛

⎠⎟
⎟⎞

∂f
∂x3
∂φ
∂x3

  , (C16a,b) 

so that the conditions (C14) and (C16a) may be summarized by the conditions 

  
∂f
∂xi

 = λ 
∂φ
∂xi

  , (C17) 

which are seen to be the same conditions as (C9).  Note that geometrically this means that 

the gradient of f is parallel to the gradient of φ at a stationary point of f which satisfies the 

constraint (C3). 

General Case:  For the general case let f be a real valued function of m+n variables 

  f = f(xi,yj)  ,  i=1,2,...,m  ,  j=1,2,...,n (C18) 

and consider n constraint equations of the form 

  φr = φr (xi,yj) = 0   r=1,2,...,n  . (C19) 

Furthermore, assume that f and φr are continuously differentiable and that all the 

constraints φr are active so that 

  det ⎝
⎜
⎛

⎠
⎟
⎞∂φr

∂yj
 ≠ 0  r = 1,2,...,n  . (C20) 

 Now form the auxiliary function h defined by 

  h = f – λr φr  , (C21) 

where λr are scalars called Lagrange multipliers that are independent of xi and yj and 

summation is implied over the repeated index r.  The method of Lagrange multipliers 
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suggests that the points which satisfy the n constraints (C19) and which make the 

function f stationary are determined by solving the m+n equations 

  
∂h
∂xi

 = 
∂f
∂xi

 – λr 
∂φr
∂xi

 = 0  i=1,2,...,m  , (C22a) 

  
∂h
∂yj

 = 
∂f
∂yj

 – λr 
∂φr
∂yj

 = 0  j=1,2,...,n  , (C22b) 

together with the n constraints (C19) for the m+2n unknowns xi, yj, λr.  This method 

produces a necessary condition for f to have a stationary value.  However, each stationary 

point must be checked individually to determine if it is a maximum, minimum or point of 

inflection. 
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Appendix D: Stationary Values of Normal And Shear Stresses 

Stationary Values of Normal Stress:Letting Tij  be the components of the Cauchy stress T 

relative to a fixed rectangular Cartesian coordinate system, recall that the normal stress σ 

acting on the plane defined by the unit outward normal nj is given by 

  σ = t • n = T • (n ⊗ n) = Tij ninj  . (D1) 

For a given value of stress Tij  at a point we want to find the planes nj for which σ is 

stationary.  Since n is a unit vector we require nj to satisfy the constraint equation 

  φ = njnj – 1 = 0  . (D2) 

Using the method of Lagrange multipliers described in Appendix C we form the function 

h   

  h = σ – λ φ = Tij ninj – λ (njnj – 1)  ,  (D3) 

and solve for nj and λ using the constraint (D2) and the three equations 

  
∂h
∂nk

   = 2 (Tkj – λ δkj) nj = 0  . (D4) 

It follows from (D2) and (D4) that the stationary values of σ occur when 

  T n = λ n  ,  n • n = 1  .  (D5a,b) 

This means that σ attains its stationary values on the three planes that are defined by n 

parallel to the principal directions of the stress tensor T.  The associated stationary values 

of σ are the principal values of the stress tensor T.  Since T is a real and symmetric tensor 

these principal values and directions are real so the principal values σi may be ordered 

with 

  σ1 ≥ σ2 ≥ σ3  . (D6) 

 For later convenience we take the base vectors pi of the Cartesian coordinate system 

to be parallel to the principal directions of T so that T may be represented in the diagonal 

form 

       T = σ1 p1 ⊗ p1 + σ2 p2 ⊗ p2 + σ3 p3 ⊗ p3  ,  Tij =⎝
⎜
⎛

⎠
⎟
⎞σ1 0 0

0 σ2 0
0 0 σ3

   .  (D7a,b) 
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It then follows that for this choice and a arbitrary value of n we have 

  t = T n = σ1 n1 p1 + σ2 n2 p2 + σ3 n3 p3  , (D8a) 

  σ(nj) = σ1 n1
2 + σ2 n2

2 + σ3 n3
2  . (D8b) 

Thus, from (D6) and (D8b) we may deduce that 

  σ1 = σ1(n1
2 + n2

2 + n3
2) ≥ σ1 n1

2 + σ2 n2
2 + σ3 n3

2 = σ(nj)  , (D9a) 

  σ(nj) = σ1 n1
2 + σ2 n2

2 + σ3 n3
2 ≥ σ3(n1

2 + n2
2 + n3

2) = σ3  , (D9b) 

  σ1 ≥ σ(nj) ≥ σ3 . (D9c) 

This means that the normal stress σ assumes its maximum value σ1 on the plane defined 

by the principal direction p1 and its minimum value on the plane defined by the principal 

direction p3.  The value σ2 is called a minimax and is assumed by σ on the plane defined 

by the principal direction p2. 

Stationary Values of Shear Stress:  Recalling that the shear stress ts with magnitude τ is 

defined such that 

  ts = t – (t • n) n   ,  τ2 = ts • ts = t • t – σ2  ,          (D10a,b) 

we may use the representation (D8) to deduce that 

  τ2 = σ1
2 n1

2 + σ2
2 n2

2 + σ3
2 n3

2 – (σ1 n1
2 + σ2 n2

2 + σ3 n3
2)2  .       (D11) 

In order to determine stationary values of τ subject to the constraint (D2) we use the 

method of Lagrange multipliers and form the function h  

  h = τ2 – λ (njnj – 1)  . (D12) 

Then the stationary values are found by solving the constraint (D2) and the three 

equations 

  
∂h
∂n1

   = 2n1 [ σ1
2 – 2 σ1(σ1 n1

2 + σ2 n2
2 + σ3 n3

2) – λ ] = 0  , (D13a) 

  
∂h
∂n2

   = 2n2 [ σ2
2 – 2 σ2(σ1 n1

2 + σ2 n2
2 + σ3 n3

2) – λ ] = 0  , (D13b) 

  
∂h
∂n3

   = 2n3 [ σ3
2 – 2 σ3(σ1 n1

2 + σ2 n2
2 + σ3 n3

2) – λ ] = 0  . (D13c) 
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One solution of (D2) and (D13) is given by 

  n = ± p1  ,  τ = 0  ,  σ = σ1  ,  (D14a) 

  n = ± p2  ,  τ = 0  ,  σ = σ2  , (D14b) 

  n = ± p3  ,  τ = 0  ,  σ = σ3  .  (D14c) 

Hence, the shear stress τ assumes its absolute minimum value of zero on the planes 

whose normals are in the principal directions of stress.  Furthermore, we note that on 

these same planes the normal stress σ assumes its stationary values.  A second solution of 

(D2) and (D13) is given by 

  n = ± 
1
2 (p1 ± p3)   ,  τ = 

σ1 – σ3
2    ,  σ = 

σ1 + σ3
2    ,   (D15a) 

  n = ± 
1
2 (p1 ± p2)   ,  τ = 

σ1 – σ2
2    ,  σ = 

σ1 + σ2
2    ,  (D15b) 

  n = ± 
1
2 (p2 ± p3)   ,  τ = 

σ2 – σ3
2    ,  σ = 

σ2 + σ3
2    .   (D15c) 

Note that the maximum value of shear stress is equal to one half the difference of the 

maximum and minimum values of normal stress and it occurs on the plane whose normal 

bisects the angle between the normals to the planes of maximum and minimum normal 

stress. 
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Appendix E: Isotropic Tensors 

 Let ei and ei' be two sets of orthonormal base vectors that are connected by the 

orthogonal transformation A 

  A = em⊗em'   , (E1a) 

  Aij = A • (ei ⊗ ej) = ei' • ej  , Ai'j = A • (ei' ⊗ej') = ei' • ej  . (E1b,c) 

Furthermore, let  T be a tensor of any order whose components referred to ei are Tij...m 

and whose components referred to  ei' are Ti'j...m. Since T is a tensor, its components 

Tij...m and Ti'j...m are connected by the transformation relations 

  Ti'j...m = AirAjs...Amt Trs...t  . (E2) 

Isotropic Tensor:  A tensor is said to be isotropic if its components relative to any two 

right-handed orthonormal coordinate systems are equal.  Mathematically, this means that 

  Ti'j...m = Tij...m  , (E3) 

holds for all proper orthogonal transformations A (det A = + 1).  If (E3) holds for all 

orthogonal transformation (i.e. including those with det A = – 1) then the tensor is said to 

be isotropic with a center of symmetry. 

Zero Order Isotropic Tensor:  By definition, scalar invariants satisfy the restriction (E3) 

so they are zero order isotropic tensors. 

First Order Isotropic Tensor:  The only first order isotropic tensor is the zero vector 

  Ti = 0  . (E4) 

Proof:  For a first order tensor  (E2) becomes 

  Ti'  = AirTr  . (E5) 

Taking Aij to be 

  Aij = 
⎝
⎜
⎛

⎠
⎟
⎞–1 0 0

0 –1 0
0 0 1

   and   Aij = 
⎝
⎜
⎛

⎠
⎟
⎞1 0 0

0 –1 0
0 0 –1

   , (E6a,b) 

we obtain the restrictions 

  T1 = – T1  ,  T2 = – T2  ,  T3 = – T3  ,  (E7a,b,c) 

so that the only solution is (E4). 
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Second Order Isotropic Tensor:  The most general second order isotropic tensor has the 

form 

  Tij = λ δij  , (E8) 

where λ is a scalar invariant. 

Proof:  For a second order tensor  (E2) becomes 

  Ti'j = AirAjsTrs  . (E9) 

Taking Aij to be 

  Aij = 
⎝
⎜
⎛

⎠
⎟
⎞0 0 1

1 0 0
0 1 0

   , (E10) 

we obtain the restrictions 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T11 T12 T13

T21 T22 T23
T31 T32 T33

  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T33 T31 T32

T13 T11 T12
T23 T21 T22

   . (E11) 

Also, taking Aij to be 

  Aij = 
⎝
⎜
⎛

⎠
⎟
⎞0 0 –1

–1 0 0
0 1 0

   ,  (E12) 

we obtain the additional restrictions 

  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T11 T12 T13

T21 T22 T23
T31 T32 T33

  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T33 T31 –T32

T13 T11 –T12
T23 –T21 T22

   . (E13) 

Thus, from (E11) and (E13) we have 

  T11 = T22 = T33 = λ  ,  all other Tij = 0  , (E14a,b) 

which may be rewritten in the form (E8).  

Third Order Isotropic Tensor:  The most general third order isotropic tensor has the form 

  Tijk = λ εijk  ,  (E15) 

where λ is a scalar invariant. 

Proof:  For a third order tensor  (E2) becomes 

  Ti'jk = AirAjsAktTrst  .  (E16) 

Denoting Tijk by 
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  Tijk = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T111 T112 T113 T121 T122 T123 T131 T132 T133

T211 T212 T213 T221 T222 T223 T231 T232 T233
T311 T312 T313 T321 T322 T323 T331 T332 T333

   , (E17) 

and specifying Aij by (E10) we obtain 

  Tijk =
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T333 T331 T332 T313 T311 T312 T323 T321 T322

T133 T131 T132 T113 T111 T112 T123 T121 T122
T233 T231 T232 T213 T211 T212 T223 T221 T222

   . (E18) 

Also, specifying Aij by (E12) we obtain 

 Tijk = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞–T333 –T331 T332 –T313 –T311 T312 T323 T321 –T322

–T133 –T131 T132 –T113 –T111 T112 T123 T121 –T122
T233 T231 –T232 T213 T211 –T212 –T223 –T221 –T222

   .   (E19) 

Then, using (E17)-(E19) we deduce that 

  Tijk = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0 0 0 0 0 T123 0 T132 0

0 0 T213 0 0 0 T231 0 0
0 T312 0 T321 0 0 0 0 0

   , (E20a) 

  T123 = T312 = T231  ,  T132 = T321 = T213  .  (E20b,c) 

Next we specify Aij by 

  Aij = 
⎝
⎜
⎛

⎠
⎟
⎞0 0 1

0 1 0
–1 0 0

   ,  (E21) 

to deduce that 

  T123 = – T321   . (E22) 

Thus, Tijk  may be rewritten in the form (E15). 

Fourth Order Isotropic Tensor:  The most general fourth order isotropic tensor has the 

form 

  Tijkl = λ δij δkl  + µ δik δjl + γ δil δjk ,  (E23) 

where λ, µ, γ, are scalar invariants. 

Proof:  For a fourth order tensor  (E2) becomes 

  Tijkl = AirAjsAktAluTrstu  . (E24) 
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By specifying Aij in the forms (E6a,b) it can be shown that the 81 components of Tijkl 

reduce to only 21 nonzero components which are denoted by –Tijkl with 

  –Tijkl = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T1111 T1122 T1133 T1212 T1221 T1313 T1331

T2112 T2121 T2211 T2222 T2233 T2323 T2332
T3113 T3131 T3223 T3232 T3311 T3322 T3333

   . (E25) 

Specifying Aij by (E10) we obtain the restrictions 

  –Tijkl = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T3333 T3311 T3322 T3131 T3113 T3232 T3223

T1331 T1313 T1133 T1111 T1122 T1212 T1221
T2332 T2323 T2112 T2121 T2233 T2211 T2222

   . (E26) 

Also, specifying Aij by 

  Aij = 
⎝
⎜
⎛

⎠
⎟
⎞0 0 1

0 1 0
1 0 0

   , (E27) 

 we obtain the additional restrictions 

  –Tijkl = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T3333 T3322 T3311 T3232 T3223 T3131 T3113

T2332 T2323 T2233 T2222 T2211 T2121 T2112
T1331 T1313 T1221 T1212 T1133 T1122 T1111

   . (E28) 

Then, from (E25),(E26) and (E28) we have 

  T1111 = T2222 = T3333  , (E29a) 

  T1122 = T3311 = T2233 = T3322 = T2211 = T1133 = λ  , (E29b) 

  T1212 = T3311 = T2323 = T3232 = T2121 = T1313 = µ  , (E29c) 

  T1331 = T3223 = T2112 = T3113 = T2332 = T1221 = γ  . (E29d) 

Next, specifying Aij by 

  Aij = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

1/ 2 1/ 2 0
– 1/ 2 1/ 2 0

 0 0 1
   , (E30) 

we obtain 

  T1111 = A1rA1sA1tA1u Trstu  , (E31a) 

 T1111 = 
1
4 (T1111 + T1122 + T1212 + T1221 + T2112 + T2121 + T2211 + T2222)  ,  (E31b) 
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so that using (E29) and (E31) we may deduce that 

  T1111 = T2222 = T3333 = λ + µ + γ . (E32) 

Thus, with the help of (E29) and (E32) we may rewrite Tijkl in the form (E23).  Notice 

that Tijkl in (E23) automatically has the symmetries 

  Tijkl = Tklij  ,  TT(2) = T  . (E33a,b) 

Special Case:  As a special case, if we further restrict the isotropic tensor Tijkl to be 

symmetric in its first two indices  

  Tijkl = Tjikl  ,  
LTT = T  , (E34a,b) 

then we may deduce that 

  γ = µ  ,  (E35) 

so that Tijkl becomes 

  Tijkl = λ δij δkl + µ (δik δjl + δilδjk) . (E36) 

Then it can be seen from (E36) that Tijkl has the additional symmetries 

  Tijlk = Tijkl   ,  TT = T  .  (E37) 
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PROBLEM SET 1 

Problem 1.1:  Expand the following equations for an index range of three: 

   (a)   ai + bi = ci  ,   

 (b)   ti = Tij nj  ,   

 (c)  I = cij xi xj  ,   

 (d)  φ = Ajj Bkk  ,   

 (e)   A = Aij Aij ,  

 (f)  How many distinct equations are there in cases (a), (b), (c), respectively? 

 (g)  How many terms are there on the right-hand sides of (c) and (d)? 

 

Problem 1.2:  Expand and simplify the following expressions: 

 (a)    δij aj  ,   

 (b)   δij xi xj  ,   

 (c)   aij xi xj  with aij  = aji  (symmetric)  , 

 (d)   aij xi xj    with aij = – aji  (skew-symmetric)  ,   

 (e)   ti = – p δij nj 

 

Problem 1.3:  Verify the identities 

 (a)   δii = 3  ,   

 (b)   δij δij = δii  ,  

 (c)  δij ajk = aik  . 

 

Problem 1.4:  Letting a comma denote partial differentiation with respect to position 

such that 

  f,j = 
∂f
∂xj

   , (P1.4) 

 (a)  Verify that  xi,j = δij  . 

 (b)  Using the result of part (a) write a simplified indicial expression for (xi xi),j  . 
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 (c)  Using the result of part (a) write a simplified indicial expression for (xi xi),jj  . 

 

Problem 1.5: Simplify the following expression without expanding the indices 

  (δij + cij) (δik + cik) – δjk – δmn cmj cnk  . (P1.5) 

 

Problem 1.6:  Let A be a second order tensor with components Aij which is represented 

by 

  A = Aij ei⊗ej  . (P1.6a) 

Using the formula (3.27b) show that the components Aij
T of AT are given by 

  Aij
T = AT • (ei⊗ej) = Aji  .  (P1.6b) 

 

Problem 1.7:  Let A and B be second order tensors with components Aij and Bij, 

respectively.  Using the representation 

  AB = AimBmj ei⊗ej  ,  (P1.7a) 

Prove that 

  (AB)T = BTAT  . (P1.7b) 

 

Problem 1.8:  Using (3.31) prove the validity of (3.32). 
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PROBLEM SET 2 

Problem 2.1:  Let  

  A(ij) = 
1
2 (Aij + Aji)   ,  A[ij] = 

1
2 (Aij – Aji)   .  (P2.1a,b) 

 (a)  Demonstrate that A(ij) is symmetric and hence A(ij) = A(ji). 

 (b)  Demonstrate that A[ij] is skew-symmetric and hence A[ij] = – A[ji]. 

 (c)  Show that an arbitrary square array Aij can always be expressed as the sum of its 

symmetric and skew-symmetric parts, i.e., 

  Aij = A(ij) + A[ij]  .  (P2.1c) 

 (d)  With the help of (P2.1a,b) above show that 

  Aii = A(ii)  . (P2.1d) 

 (e)  Given arbitrary square arrays Aij and Bij, show that 

  (i)  A(ij) Bij = A(ij) B(ij)   ,  (ii)  A[ij] Bij = A[ij] B[ij]  ,  (P2.1e,f) 

  (iii)  Aij Bij = A(ij) B(ij) + A[ij] B[ij]  . (P2.1g) 

 

Problem 2.2:  Suppose that Bij is skew-symmetric and Aij is symmetric.  Show that 

  Aij Bij = 0  . (P2.2) 

  

Problem 2.3:  Let T be a third order tensor and let a, b, c be arbitrary vectors.  Prove that 

  T • (a⊗b⊗c) = a • [T • (b⊗c)] = [(a⊗b) • T] • c = (a⊗b⊗c) • T  .   (P2.3) 

 

Problem 2.4:  Using (P2.3) and the definition (3.34) of the permutation tensor ε  show 

that the components of ε  are given by 

  ε  • (ei⊗ej⊗ek) = ei × ej • ek = εijk . (P2.4) 

 

Problem 2.5:  Using the properties (3.34) and (3.36) of the permutation tensor ε  and the 

result  (P2.3) with T replaced by ε , prove the permutation property of the scalar triple 

product of three vectors 

  ε  • (a⊗b⊗c) = a • b × c = a × b • c  . (P2.5) 
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Problem 2.6:  Let a and b be two vectors and define c by the vector product 

  c = a × b  .  (P2.6a) 

 (a)  Show that when a and b are referred to the rectangular Cartesian basis ei then the 

components ci of c are related to the components ai, bi of a and b, respectively, by the 

expression 

  ci = εijk aj bk  . (P2.6b) 

 (b) What is the indicial counterpart of the vector product a × a = 0?  (Show your 

work). 

 

Problem 2.7:  Let a, b, c be three vectors and recall that the vector triple product may be 

expanded in the form 

  a × (b × c) = (a • c) b – (a • b) c  . (P2.7a) 

Using this result and the properties (3.34) and (3.36) of the permutation tensor ε  prove 

that 

 (a) [ε  • (ei⊗ej)] • [ε  • (er⊗es)] = εmij εmrs =  δir δjs – δis δjr  . (P2.7b) 

 (b) (ε  ej) • (ε es)  = εmij εmis = 2 δjs  . (P2.7c) 

 (c) ε  • ε  = εmij εmij = 6  . (P2.7d) 

 

Problem 2.8:  Prove that for an arbitrary vector a 

  ε  • (ε  a) = 2 a  . (P2.8) 

Problem 2.9:  Show that 

  εT = – ε   ,  LTε  = – ε  ,  LT(εT) = ε   .  (P2.9a,b) 

 

Problem 2.10:  Let W be a second order tensor defined by the vector ω through the 

equation 

  W = – ε ω  .  (P2.10a) 

 (a)  Using (3.17) and (P2.9b) show that W is a skew-symmetric tensor 
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  WT = – W  . (P2.10b) 

 (b) Using (3.34) and (P2.10a) show that for an arbitrary vector a 

  W a = ω × a  . (P2.10c) 

 (c) Using (P2.8) show that (P2.10a) may be solved for ω to obtain 

  ω = – 
1
2   ε  • W  .  (P2.10d) 

Note that ω is called the axial vector of the skew-symmetric tensor W. 

 

Problem 2.11:  Prove the validity of (3.44). 

 

Problem 2.12:  Let T be a second order tensor.  Determine the restrictions on the 

components Tij of T imposed by the vector equation 

  ej × Tej = 0  .  (P2.12) 

 

Problem 2.13:  Prove the validity of (4.12a,b,c,d). 

 

Problem 2.14:  Let v and w be vectors and A and B be second order tensors.  Prove that 

  (A v) • (B w) = v • (ATB w) = (BTA v) • w  . (P2.14) 

 

Problem 2.15:  Recall that the determinant det T of the second order tensor T with 

components Tij may be expressed in the form 

  det T = 
1
6   εijk εrst TirTjsTkt . (P2.15a) 

Prove that the determinant of T may also be expressed in the form 

  det T = 
1
6  (T × T) • T  . (P2.15b) 

 

Problem 2.16:  Let L be a second order tensor with components Lij  and let s be a vector 

with components si.   

 (a)  Show that 
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  L • (s ⊗ s) = s • L s = si Lij sj  . (P2.16a) 

 (b) Let W be a skew-symmetric second order tensor with components Wij.  Show that 

  W • (s ⊗ s) = 0  . (P2.16b) 
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PROBLEM  SET  3 

Problem 3.1:  Let T' be the deviatoric part of a symmetric second order tensor T and 

define the scalar σe by the formula 

  σe
2  = 32  T' • T'  ,  T' = T – 13 (T • I)  I  . (P3.1a,b) 

 (a)  Write an expression for σe
2  in terms of T. 

 (b)  Expand this expression in terms of the rectangular Cartesian components Tij of T 

to deduce that 

      σe
2  = 12  [(T11 – T22)2 + (T11 – T33)2 + (T22 – T33)2] + 3 [T12

2   + T13
2   + T23

2  ] . (P3.1b) 

 

Problem 3.2:  Using (5.4) the transformation tensor A may be expressed in the form 

  A = Aij ei⊗ej  . (P3.2a) 

Show that the component forms of the orthogonality conditions 

  AAT = I  ,  ATA = I  , (P3.2b,c) 

may be written in the forms, respectively, 

  AimAjm = δij  ,  AmiAmj = δij  . (P3.2d,e) 

 

Problem 3.3:  Define the base vectors ei'  by 

  e1'   = – 
1
2  e1 + 

1
2 e3  , (P3.3a) 

  e2'   = 
1
2  e1 + 

1
2  e2 + 

1
2  e3  , (P3.3b) 

  e3'   = – 
1
2  e1 + 

1
2  e2 – 

1
2  e3  , (P3.3c) 

Calculate the components of Aij and show that A satisfies the orthogonality condition 

(P3.2b). 

 

Problem 3.4:  Let vi = ei • v and vi'  = ei'  • v be the components of the vector v such that 

  vi = Ami vm'    ,  vi'  = Aim vm  . (P3.4a,b) 
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Prove that 

  vi vi = vi'  vi'   , (P3.4c) 

which verifies that v • v is a scalar invariant. 

 

Problem 3.5:  Let Tij be the components of a second order tensor T referred to the 

Cartesian base vectors ei and let Tij'   be the components of the same tensor referred to 

another set of Cartesian base vectors ei' .  Prove that 

  Tii = Tii'    ,  TijTij = Tij'  Tij'    , (P3.5a,b) 

which verifies that the trace of T (denoted by tr T = T • I) and the magnitude squared T • 

T are scalar invariants. 

 

Problem 3.6:  Let φ(x) be a scalar function and u(x) be a vector function of position x.  

Obtain the indicial counterparts of  

  curl (grad φ) = 0  ,  div (curl u) = 0  . (P3.6a,b) 

 

Problem 3.7:  Recalling the divergence theorem in the form (3.46) show that 

  ∫∂P  x • n da = 3 v  , (P3.7) 

where v is the volume of the region P and x is the position vector of a point in P. 

 

Problem 3.8:  Let v be a vector and T be a second order tensor and use the divergence 

theorem (3.46) to show that 

  ∫∂P v • Tn da = ∫P ( ∂v/∂x • T + v • div T )  dv  . (P3.8a) 

As a special case take v to be the position vector and show that 

  ∫∂P  x • Tn da = ∫P ( I • T + x • div T )  dv  . (P3.8a) 

 

Problem 3.9:  Let XA and xi be the Cartesian components of X and x, respectively.  

Consider the motion defined by 
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  x1 = X1 cosθ + X2 sinθ  ,  x2 = – X1 sinθ + X2 cosθ  ,  x3 = X3  , (P3.9a,b,c) 

where θ(t) is a function of time only. 

 (a)  Calculate the inverse mapping (i.e. express XA in terms of xi and θ). 

 (b)  Calculate the deformation gradient F and show that 

  C = FTF = I  . (P3.9d) 

 (c)  Explain the physical meaning of the result (P3.9d). 

 (d)  Calculate the Lagrangian representation v̂i(XA,t) of the velocity. 

 (e)  Calculate the Eulerian representation ~vi(xj,t) of the velocity. 

 (f)  Show that the velocity v = vi ei may also be expressed in the form 

  v = ω × x  ,  ω = – 
•
θ  e3  ,  x = xi ei   . (P3.9e,f,g) 

 (g)  Calculate the components Dij of the deformation tensor D and the components 

Wij of the spin tensor W. 

 (h)  Using the Eulerian representation of the velocity developed in part (e) calculate 

the components ai = •vi of the acceleration a. 

 (i)  Show that the results obtained in part (h) are consistent with the expression 

  a = •v  = •
ω  × x + ω × v  . (P3.9h) 
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PROBLEM SET 4 

Problem 4.1: Taking the material derivative of (7.17) and using the properties of the 

scalar triple product between three vectors, show that 

  •J =  (Fe2×Fe3) • •F e1 +  (Fe3×Fe1) • •F e2 + (Fe1×Fe2) • •F e3  . (P4.1) 

 

Problem 4.2: Thinking of J=det F as a function of F, the chain rule of differentiation 

yields 

  •J = (∂J/∂F) •  •F  . (P4.2a) 

Next, using (7.13) and the result (P4.1), show that  

  ∂J/∂F = J F–T.         (P4.2b) 

 

Problem 4.3:  With the help of the results (P4.2a,b) and equation (9.2), show  that 

  •J  = J div v = J L • I = J D • I  . (P4.3) 

 

Problem 4.4:  Using the chain rule of differentiation we have 

  (∂x/∂X) (∂X/∂x) = ∂x/∂x = I  , (P4.4a) 

It follows from (P4.4a) and the definition of the deformation gradient F that 

  F = ∂x/∂X  ,  F–1 = ∂X/∂x  ,  FF–1 = I  .      (P4.4b,c,d) 

Using (9.3a) and taking the material derivative of (P4.4d) show that 

  
--------•
∂X/∂x  = 

-----•
F–1   = – F–1L  ,  

-----•
F–T  = – LTF–T  ,  (P4.4e,f) 

 

Problem 4.5:  Let φ be a scalar function of position and let Grad φ =∂φ/∂X be the 

gradient of φ with respect to the reference position X and let grad φ = ∂φ/∂x be the 

gradient of φ with respect to the present position x.  Using the chain rule of differentiation 

and the result (3.28b) show that 

  ∂φ/∂X = ∂φ̂(X) /∂X = FT∂~φ(x) /∂x = FT(∂φ/∂x)  . (P4.5a) 

Multiplying (P4.5a) by F–T on the left it follows that 

  ∂φ/∂x =  F–T (∂φ/∂X)  .  (P4.5b) 
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Problem 4.6:  Derive the following formula 

  
•---------∂φ/∂X   = ∂•

φ /∂X  ,  
•------(φ,A)  = 

•----------∂φ/∂XA  = ∂•
φ /∂XA = (•

φ ),A  .  (P4.6a,b) 

 

Problem 4.7:  Using (P4.5b) and (P4.6) derive the following formula 

  
•---------∂φ/∂x   = ∂•

φ /∂x – LT(∂φ/∂x)  ,  
•------(φ,i)   = (•

φ ),i – vj,i φ,j  . (P4.7a,b) 

 

Problem 4.8:  Recalling that the material derivative •f  of the Eulerian representation 

~f(xi,t)  of a function may be expressed in the form  

  •f  = 
∂~f(xi,t)
∂t    + ~f(xi,t) ,m vm  , (P4.8) 

derive the result (P4.7b) directly by setting f=φ,i. 

 

Problem 4.9:  Consider the deformation characterized by 

  x1 = X1  ,  x2 = X2 ,  x3 = X3 + k X2
2  .  (P4.9a,b,c) 

 (a) Find the inverse mapping. 

 (b) Calculate the components of CAB and cij = (B–1)ij. 

(c) Derive the expression for determining the stretch λ of a line element dx in the 

present configuration in the direction s 

  
1
λ2   = B–1 • (s⊗s)  . (P4.9d) 

(d) Determine the stretch λ of a material line element dx in the present configuration 

at the position x and in the direction s where x and s are given by 

  xi = (0,1,1)  ,  si = (0, 
1
2  , 

1
2  )  . (P4.9e,f) 

(e) Determine the direction S of the line element dX in the reference configuration 

which is associated with the dx  at point x in part (d). 



 
 

154 

(f) Determine the stretch of the line element dX in the direction S of part (e) using the 

formula 

  λ2 = C • (S⊗S)  , (P4.9g) 

and compare your result with that derived in part (d). 

Problem 4.10:  Recalling from (7.9),(7.34), and (7.20b) that 

  ds = λ dS  ,  n da = J F–T N dA  ,  dv = J dV  ,    (P4.10a,b,c) 

calculate expressions for 

  
•-----ds / ds  ,   

•----da / da  ,  
•-----dv / dv ,     (P4.10d,e,f) 

in terms of the rate of deformation tensor D and the direction s.  It is important to 

emphasize that the direction s of the material line element in the formula for (P4.10d) is 

different from the normal n to the material surface in the formula for (P4.10e). 

Problem 4.11:  Consider the velocity field defined by 

           v1 = a x2 (x1
2 + x2

2)  ,  v2 = – b x1 (x1
2 + x2

2)  , v3 = d (x3 – ct) , (P4.11a,b,c) 

where a,b,c,d are constants. 

 (a)  Calculate the components of the acceleration •vi. 

 (b)  Calculate the components of the velocity gradient Lij. 

 (c)  Calculate the components of the rate of deformation tensor Dij. 

 (d)  Calculate the components of the spin tensor Wij. 

 (e)  Does the deformation preserve volume? 

Problem 4.12:  The velocity field associated with rigid body motion is given by 

  v = •c  + ω × (x – c)  ,  (P4.12a) 

where c and ω are vector functions of time only. 

 (a)  Write the component form of equation (P4.12a). 

 (b)  Calculate the components of the velocity gradient Lij. 

 (c)  Calculate the components of the rate of deformation tensor Dij. 

 (d)  Calculate the components of the spin tensor Wij. 

 (e)  What is the physical meaning of the result in part (c)? 
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PROBLEM SET 5 

Problem 5.1:  Consider the motion described by 

  x1 = X1(1 + a sin ωt)  ,  x2 = X2 + b sin k(x1 – ct)  ,  x3 = X3  , (P5.1a,b,c) 

where a,ω,b,k,c are constants.  Let X2=X3=0 define a string (material fiber) in space. 

(a)  Calculate the velocity of the material point on the string which was initially 

(t=0) located at X1=L. 

(b)  Calculate the velocity of the material point on the string which at time t is 

located at x1=L. 

(c)  Calculate the vertical (e2 direction) velocity of the string as measured by an 

observer fixed at x1=L (i.e. the velocity of the intersection of the string with 

the fixed plane x1=L). 

Problem 5.2: 

 Consider a line element dX=SdS in the reference configuration which is mapped to 

dx=sds in the present configuration, where S and s are unit vectors and recall that 

  λ s = F S  ,  λ = 
ds
dS   .  (P5.2a,b) 

(a)  Show that 

  
•
λ
λ  s + •s = L s  , (P5.2c) 

 where L is the velocity gradient. 

(b)  Also show that 

  
•
λ
λ  = D • (s⊗s)  .  (P5.2d) 

(c)  Use equations (P4.4e) and the chain rule of differentiation to show that 

  L = ∂v/∂x = ∂v/∂X F–1  ,  •L  = ∂•v /∂x – L2  . (P5.2e,f) 

(d)  Differentiating (P5.2c) show that 

  ••
λ + λ s • ••s  = λ ∂•v/∂x • (s⊗s)  , (P5.2g) 

 and that 
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••
λ
λ  = •s • •s + ∂•v/∂x • (s⊗s)   . (P5.2h) 

Problem 5.3: 

 Given the velocity field 

  v1 = ex3–ct  cos ωt  ,  v2 = ex3–ct  sin ωt  ,  v3 = c = constant  ,    (P5.3a,b,c) 

 (a) Show that the speed of every particle is constant. 

 (b) Calculate the acceleration components •vi. 

(c) Find the logarithmic stretching 
•
λ/λ for a line element which in the present 

configuration has the direction s = 
1
2 (e1 + e3)  at x = 0. 

 

Problem 5.4: 

 Let ~φ(x,t)  be a scalar function of position x and time t.  Prove the transport theorem 

  
d
dt ∫P ~φ(x,t) dv = ∫P (•

φ + φ div v) dv , (P5.4) 

indicating all steps of the proof in detail. 

 

Problem 5.5: 

 Put φ=1 in (P5.4) and use the divergence theorem to show that the rate of change of 

the volume of the part P is given by 

  •v  = 
d
dt ∫P dv = ∫∂P v • n da  .  (P5.5) 

Discuss the physical meaning of the formula (P5.5). 

 

Problem 5.6: 

 Let σ1 ≥ σ2 ≥ σ3 be the principal values and p1,p2,p3 be the unit principal directions 

of the Cauchy stress T, so that T admits the representation 

  T = σ1 p1⊗p1 + σ2 p2⊗p2 + σ3 p3⊗p3  . (P5.6a) 
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Recall the T may be separated into its spherical part  –p I and its deviatoric part T' such 

that 

  T = – pI + T'  ,  T' • I = 0  . (P5.6b,c)  

(a)  Show that the pressure p in (P5.6a) is given by 

  p = – 
1
3  T • I = – 

1
3 (σ1 + σ2 + σ3)   . (P5.6d) 

(b)  Show that the deviatoric stress is given by 

  T' = σ1'  p1⊗p1 + σ2'  p2⊗p2 + σ3'  p3⊗p3  . (P5.6e) 

  σ1'  = σ1 + p = 
1
3 (2σ1 – σ2 – σ3)  ,  (P5.6f) 

  σ2'  = σ2 + p =  
1
3 (– σ1 + 2σ2 – σ3)  ,  (P5.6g) 

  σ3'  = σ3 + p =  
1
3 (– σ1 – σ2 + 2σ3)  . (P5.6h) 

(c) The unit normal n to the octahedral plane is defined by 

  n = 
1
3  (p1 + p2 + p3)   .  (P5.6i) 

 Show that the stress vector t acting on the octahedral plane is given by 

  t = 
1
3  (σ1 p1 + σ2 p2 + σ3 p3)   . (P5.6j) 

(d)  In general the stress vector t acting on a plane n admits the representation 

  t = σ n + τ s  ,  σ = t • n  , (P5.6k,l) 

  τ = |t – σ n|  ,  s = 
t – σ n
|t – σ n|   ,  (P5.6m,n) 

 where σ is the normal component of t, τ is the shearing component of t and s is the 

direction of shearing on the plane defined by the normal n.  Show that for the 

octahedral plane 

  σ = – p  ,  τ s = T'n = 
1
3 (σ1'  p1 + σ2'  p2 + σ3'  p3)   ,         (P5.6o,p) 

  τ = 
1
3  [ ](σ1' )

2 + (σ2' )
2 + (σ3' )

2  1/2  . (P5.6q) 
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 Note that in this sense the octahedral plane is special because the normal stress σ 

equals minus the pressure p. 

(e)  Use (P5.6e) to show that the octahedral shear stress τ in (P5.6q) can also be written in 

the invariant form  

  τ = 
1
3 [T' • T']1/2

 .  (P5.6r) 

(f)  Use the results in Appendix A to show that the Von Mises stress σe is related to the 

octahedral stress τ by 

  σe = 
3
2   τ  ,  (P5.6s) 

 and that a deviatoric state of torsion is characterized by 

  σ2'  = 0  .  (P5.6t) 

 

Problem 5.7: 

 Consider two surfaces S and S' through the same point x in the present configuration 

and let n and n' be the normals to these surfaces, respectively.  Recall that the stress 

vector t(n) acting on the surface shows outward normal is n is related to the symmetric 

Cauchy stress T.  Show that the component of t(n') along the direction n is equal to the 

component of t(n) along the direction n' 

  t(n) • n' = t(n') • n  .  (P5.7) 
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PROBLEM SET 6 

Problem 6.1:  Let the Cauchy stress T at a point be given by 

  T = – p I  . (P6.1) 

 (a)  Calculate the stress vector t acting on the surface defined by the unit normal n. 

 (b)  Calculate normal component t • n of this stress vector. 

 (c)  Calculate the shearing stress ts = t – (t • n) n acting on this plane. 

 

Problem 6.2: Let the Cartesian components Tij of the Cauchy stress T referred to the 

base vectors ei be given by 

  Tij = – p δij + Ti'j   , Ti'j = 
⎝
⎜
⎛

⎠
⎟
⎞σ1' 0 0

0 –(σ1'+σ3' ) 0
0 0 σ3'

 ,         (P6.2a,b) 

  σ1'  ≥ σ3'   .  (P6.2c) 

 (a)  Calculate the stress vector t acting on the octahedral plane defined by 

  n = 
1
3 (e1 + e2 + e3)   .  (P6.2d) 

 (b)  Show that the normal component t • n of this stress vector is given by 

  t • n = – p  .  (P6.2e) 

 (c)  Calculate the shearing stress ts acting on this plane and show that 

  ts = T' n  .  (P6.2f) 

(d)  Calculate an expression for the Von Mises Stress σe in terms of σ1'  and σ3' . 

(e)  Show that the magnitude of ts is given by 

  | ts | = 
2

3    σe   .  (P6.2g) 

(f)  Define the base vectors 

  –e1 = 
1
6 (– e1 + 2 e2 – e3)  ,  –e2 =  

1
3 (e1 + e2 + e3)   ,         (P6.2h,i) 

  –e3 = 
1
2 (e1 – e3)   .  (P6.2j) 

 Show that the shearing stress vector ts may be expressed in the form 
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  ts = 
2

3    σe (cosβ –e3 + sinβ –e1) ,  (P6.2k) 

 and derive expressions for cosβ and sinβ in terms of σ1'  and σ3' .  Note that β 

defines the angle that the shear stress ts makes with the direction –e3 

(g)  By substituting (A12b,d) into your results of part (f) show that β in (P6.2k) is 

the same as β in (A12a). 

 

Problem 6.3:  Consider uniaxial strain in the e1 direction which is given by 

  x1 = x1(X1,t)  ,  x2 = X2  ,  x3 = X3  . (P6.3a,b,c) 

Letting a=∂x1/∂X1, show that for uniaxial strain the components T11 of the Cauchy 

stress, Π11 of the nonsymmetric Piola-Kirchhoff stress, and S11 of the symmetric Piola-

Kirchhoff stress are related by 

  T11 = Π11 = a S11  .  (P6.3d) 

 

Problem 6.4:  Consider the deformation given by 

  x1 = a X1  ,  x2 = b X2  ,  x3 = c X3  ,  (P6.4a,b,c) 

where a,b, and c are constants.  Assuming that the components of the Cauchy stress Tij  

are restricted such that 

  T12 = T13 = T23 = 0  , (P6.4d) 

determine expressions for the components ΠiA and SAB of the Piola-Kirchhoff stresses Π  

and S. 

 

Problem 6.5:  Show that under superposed rigid body motions the shearing component ts 

of the stress vector t transforms by  

  ts
+ = Q ts  .  (P6.5b) 

Problem 6.6:  Starting with the assumption (20.16) prove the result (20.17).  Be sure to 

carefully state the important points in your proof. 



 
 

161 

PROBLEM SET 7 

Problem 7.1: Using the relationship (18.18a) between the Cauchy stress T and the 

symmetric Piola-Kirchhoff stress S, and the invariance relations (19.16b) prove that S is 

trivially invariant (19.17c). 

 

Problem 7.2:  Recall that the material derivative of a scalar function φ(x,t) may be 

expressed in the form 

  •
φ  = 

∂φ
∂t   + ∂φ/∂x • v  . (P7.2a) 

Also recall that under superposed rigid body motions the material point  that is located at 

position x at time t moves to the position x+ at time t+, such that 

  x+ = x+(x,t) = c(t) + Q(t) x  ,  t+= t+(t) = t + a  ,         (P7.2b,c) 

  QQT = I  ,  det Q = + 1  ,  •Q  = Ω  Q ,       (P7.2d,e,f) 

  v+ = •x+ = •c  + Ω  Q x + Q v  ,  (P7.2g) 

where a is a constant and c and Q are functions of time only.  Consider the function           

~
φ+(x+,t+) and think of it as a function of x,t such that 

  φ+ = ~φ+(x+,t+) = ~φ+(x+(x,t) , t+(t)) = φ̂+(x,t)  . (P7.2h) 

Calculate the partial derivatives ∂φ̂+/∂t  and ∂φ̂+/∂x in terms of the function ~φ+ and show 

that the material derivative of φ+ may be expressed in the form 

  
•~φ+ = 

∂~
φ+

∂t+  + ∂~φ+/∂x+ • v+  .  (P7.2i) 

 

Problem 7.3: Using the linearized form of (23.8e) for M and the equation C=M2 derive 

the linerized form (23.8c) for C. 

 

Problem 7.4:  Prove that for the linearized theory R given by (23.8g) is an orthogonal 

tensor. 
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Problem 7.5:  Recalling that C'=I3
–1/3C is a pure measure of distortion (det C'=1) we may 

define a pure measure of distortional strain G' by 

  G' = 
1
2 (C' – I)   .  (P7.5a) 

Using (23.8c) and (23.13b) show that the linearized form of G' is given by 

  G' = ε ' = ε  – 
1
3 (ε  • I)  I  ,  (P7.5b) 

where here ε ' is the defined as the deviatoric part of the linear strain ε. 

 

Problem 7.6:  Taking the inner product of (18.5a) with the velocity v, follow the 

derivation in section 24 and show that for the referential description the strain energy Σ is 

related to the mechanical power by 

  ρ0 
•
Σ  = Π  • •F   .  (P7.6) 

 

Problem 7.7:  Assuming that for an elastic material the strain energy Σ and the stress Π  

depend on the deformation gradient F and are independent of the rate  •F, use (P7.6) to 

derive the result that 

  Π  = ρ0 
∂Σ
∂F   . (P7.7) 

Is this form of Π automatically properly invariant under superposed rigid body motions? 

 

Problem 7.8:  Given a nonlinear elastic material characterized by the strain energy 

function 

  2ρ0Σ = 2 k0 [ (J – 1) – ln J ] + µ0 (α1 – 3)  , (P7.8a) 

  J = det F = I3
1/2 ,  α1 = J–2/3 C • I  ,  (P7.8b,c) 

where k0 and µ0 are constants. Show that pressure p and the deviatoric Cauchy stress T' 

are given by 

  p = k0 (
1
J   – 1)  ,  T' = µ0J–1 [ B' – 

1
3 (B' • I)  I ]  ,         (P7.8d,e) 
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  B' = J–2/3 B = J–2/3 FFT  .  (P7.8f) 

 

Problem 7.9:  Consider simple shear  

  x1 = X1 + γ X2  ,  x2 = X2  ,  x3 = X3  ,  (P7.9a,b,c) 

where γ is a function of time only, and show that the stresses associated with the 

nonlinear elastic material of problem 7.8 become 

  p = 0  ,  T12 = µ0 γ  , (P7.9d,e) 

  T11 = 
2
3  µ0γ

2  ,  T22 = T33 =  – 
1
3  µ0 γ2  .          (P7.9f,g) 

Notice that the normal stresses are quadratic function of the shear γ whereas the shear 

stress is a linear function of γ. 

 

Problem 7.10:  Consider simple shear (P7.9a,b,c) of the Reiner-Rivlin fluid characterized 

by (29.15) and show that the stresses become 

  p = – 
1
3  (3d0 + 

1
2 d2 •γ2)   ,  T1' 2  = 

1
2  d1 •γ   ,       (P7.10a,b) 

  T1' 1  = 
1

12  d2 
•
γ 

2  ,  T2' 2 = 
1

12  d2 •γ 2  , T3' 3 = – 
2

12  d2 •γ 2  ,    (P7.10c,d,e) 

where p is the pressure and Ti'j are the components of the deviatoric stress T'.  Notice that 

the normal components of stress are quadratic function of the shearing rate •γ  whereas the 

shear stress is a linear function of •γ . 

 

Problem 7.11:  An attempt is made to develop a constitutive equation for an anisotropic 

viscous fluid by assuming that the Cauchy stress Tij is related to J=det F and the rate of 

deformation Dij  by the constitutive equation 

  Tij = T̂ij(J,Dmn) = Âij(J) + Âijmn(J) Dmn , (P7.11a) 

where Aij and Aijkl are tensor functions of J only which have the symmetries 

  Aij = Aji  ,  Aijmn = Ajimn = Aijnm  .  (P7.11b,c) 
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By requiring that the constitutive equation (P7.11a) be properly invariant under 

superposed rigid body motions prove that Aij and Aijmn must be isotropic tensors of the 

forms 

          Aij = – p1(J) δij  ,   Aijmn = λ(J) δijδmn + µ(J) (δimδjn + δinδjm)  ,   (P7.11d,e) 

so that the Cauchy stress T must reduce to the form 

   T = – p1 I + λ (D • I) I+ 2µ D  .  (P7.11f) 

Note that since T in (P7.11f) is an isotropic function of its arguments the proposed form 

(P7.11a) did not work because the resulting fluid response cannot be anisotropic. 


