Bias Error

Occur whenever the FFT spacing is too large
narrow band regions of the "true" PSD. Our spacing $\Delta \mathrm{f}$ is the scale resolution at which we try to resolve the PSD, and some averaging within this spacing occurs for peaks much narrower than this spacing.
An approximation for the relative bias error was developed by Bendat, resulting in

$$
e_{b}=\frac{(\Delta f)^{2}}{24} S^{\prime \prime}(f)
$$

the bias error, if not negligible, will result in underestimation of peaks
Thus to avoid large bias errors, an analysis bandwidth which is much smaller than 3 db bandwidth is necessary

Figure 4.14a

Spectral Analysis

Random Errors

* We can only compute an estimate of the PSD
* For random data this may have a bias and variance
* The variance is extremely large
* The variance is independent of N

Figure 4.12a

Note that high variability is independent of N, the data length

Figure 4.12b

Segment averaging

To reduce the variance we attempt to use averages of estimators of the raw PSD. In the method of segment averaging, estimates to be averaged are obtained from different sections of the signal.
The method is based on sectioning the signal into M nonoverlapping segments

$$
\left.x_{j}(i)=x(i)+(j-1) N_{1}\right]
$$

$\mathrm{N} 1=\mathrm{N} / \mathrm{M}$ is the length of each segment, see figure 4.13a

Figure 13a

Random error: Control of Variance

The basic idea is to average estimators

Figure 13b

Spectral Analysis

Figure 13c

The random errors are

$$
\begin{aligned}
& \text { Average }[\hat{S}]=\frac{1}{M} \sum_{i=1}^{M} \hat{S} i \rightarrow S \\
& \operatorname{Variance}[\hat{S}]=\frac{1}{M} \sum_{i=1}^{M}(\hat{S} i-S)^{2} \rightarrow \frac{S^{2}}{M}
\end{aligned}
$$

We thus compute estimates for each segment as

$$
\hat{S}_{j}(k)=\frac{\Delta T}{N_{1}}\left|X_{j}(k)\right|^{2}
$$

With

$$
\begin{aligned}
& x_{j}(i) \leftrightarrow X_{j}(k) \\
& e_{r}=\frac{1}{[M]^{1 / 2}}
\end{aligned}
$$

Overlapping

- We need to increase M to reduce variance
- The analysis time $\mathrm{T}_{\text {max }}>\mathrm{N} . \mathrm{M} . \Delta \mathrm{T}$ could be too large

Spectral Analysis

Overlapping(2)

- Method to decrease total time needed
- But sections are not 'independent' anymore:
- Variance decreses more slowly with N
- The windows make sections independent

Hanning window

Control of errors (1)

The data is unlimited, and any required number of samples can be acquired. Such would be the case for rotating machinery, where the limitation would probably be the existence of a stationary vibratory regime
Specifications for analysis would be
Bandwidth of analysis - setting Δt during acquisition
Frequency resolution - setting N the block length
Random error - setting M, the number of averages
As an example, assume a required bandwidth of 100 Hz , analysis resolution of $\Delta \mathrm{f}_{\text {res }}=0.5 \mathrm{~Hz}$
and a random error of 10%

Control of errors (1) -contnd:

Assuming the existence of a sampling interval of (the exact values will depend on the actual hardware used)
$\Delta \mathrm{t}=1 /\left(2.5 \mathrm{f}_{\text {max }}\right)=1 / 250=4 \mathrm{msec}$
The block length would be
$1 /\left(\Delta \mathrm{t} \Delta \mathrm{f}_{\mathrm{res}}\right)=1 /(0.04 * 0.5)=500$
and we would choose $\mathrm{N}=512$
For a random error of 10% (eq 4.29)
We would choose $\mathrm{M}=100$
And the total number of samples is $\mathrm{NM}=512 * 100=51200$, corresponding to a data duration of $\mathrm{T}=\mathrm{NM} \Delta \mathrm{t}=204.8 \mathrm{sec}$

Control of errors (2)

Assume data was acquired for 60 seconds, ie number of data samples is $60 / \Delta t=15000$. As now $M^{*} N$ is constant, we can only control one error, the bias via N , or the random one via M .
Case 1: Random error fixed, $\mathrm{M}=100, \mathrm{~N}=150$. Thus we may choose
$\mathrm{N} 1=128$ with a resultant resolution $\Delta \mathrm{f}=1.95 \mathrm{~Hz}$ (and the actual $\mathrm{M}=117, \varepsilon_{\mathrm{r}}=9.3 \%$)
$\mathrm{N} 2=256$ with the resultant resolution of $\Delta \mathrm{f}=0.95 \mathrm{~Hz}$ (and the actual $\mathrm{M}=58, \varepsilon_{\mathrm{r}}=13.1 \%$)

Case 2: Resolution fixed as in scenario 1: $\mathrm{N}=512$ With $\mathrm{M}=15000 / 512=29$ and $\varepsilon_{\mathrm{r}}=18.6 \%$

Thus for a-priori fixed data length, the random error can only be balanced by the bias error.

Spectral Analysis

Spectral Analysis

	Computation	EU	Voltage Units
FT	$\Delta T X$	V -sec	
FS	$\frac{X}{N}$	V	
S(PSD)	$\frac{\Delta T}{N}\|X\|^{2}$	$\mathrm{V}^{2} / \mathrm{Hz}=$ $=\mathrm{V}^{2}-\sec$	$\mathrm{V} / \sqrt{\mathrm{Hz}}$
S_{E} (ESD)	$\Delta \mathrm{T}^{2}\|\mathrm{X}\|^{2}$	$\mathrm{~V}^{2}-\sec ^{2}$	V -sec
Power in bin	$\mathrm{S}_{\mathrm{E}} \Delta \mathrm{f}=\frac{\Delta \mathrm{T}}{\mathrm{N}}\|\mathrm{X}\|^{2}$	$\mathrm{~V}^{2}$	
Energy in bin	$\mathrm{S}_{\mathrm{E}} \mathrm{Af}=\frac{\Delta \mathrm{T}}{\mathrm{N}}\|\mathrm{X}\|^{2}$	$\mathrm{~V}^{2}$-sec	
Total Power (frequency)	$P_{f}=\frac{1}{N^{2}} \sum\|X\|^{2}$	$\mathrm{~V}^{2}$	
Total Power (time)	$P_{\mathrm{t}}=\frac{1}{N} \sum x^{2}$	$\mathrm{~V}^{2}$	
Total Energy (frequency)	$\mathrm{E}_{\mathrm{f}}=\Delta \mathrm{T} \sum \mathrm{x}^{2}$	$\mathrm{~V}^{2}$-sec	
Total Energy (time)	$\mathrm{E}_{\mathrm{t}}=\Delta \mathrm{T} \sum \mathrm{x}^{2}$	$\mathrm{~V}^{2}$-sec	

Overlapping

- We need to increase M to reduce variance
- The analysis time $\mathrm{T}_{\text {max }}>\mathrm{N} . \mathrm{M} . \Delta \mathrm{T}$ could be too large

Spectral Analysis

To retain the statistical independence of the raw PSDs, the segments are windowed, so as to give less weights to the overlapped points. The analysis of Welch suggest an overlap of 50% in conjunction with a Hanning window, and the PSD of each section is thus modified to

$$
\hat{S}_{j(k)}=\frac{\Delta T}{N_{1}}\left|X_{j}(k) W(k)\right|^{2}
$$

Overlapping(2)

- Method to decrease total time needed
- But sections are not 'independent' anymore:
- Variance decreses more slowly with N
- The windows make sections independent

Hanning window

