
Hydrostatic and Stability Calculations with

MATLAB

Adrian B. Biran1

August 29, 2006

Abstract

This paper shows how MATLAB can be used in Naval Architecture
for practical hydrostatic and stability calculations and for teaching these
notions. The applications exemplified in the paper include software for
digitizing curves of statical stability or borders of plane figures, and for
calculating the properties of the areas bounded by the digitized curves.

1 Introduction

1

MATLAB is a high-level programming language and a computing environ-
ment. The name is an acronym for Matrix Laboratory. Initially meant for solving
problems in Linear Algebra, MATLAB soon proved its efficiency in Control and
Electrical Engineering, and shortly afterwards in Mechanical and practically all
other branches of engineering. The basic data type is the array. Operations
on the elements of arrays can be performed directly, without the need to write
loops as in other programming languages. Operations between arrays can be
performed as simply as between numbers. The package provides many mathe-
matical functions. In addition there are many functions that allow immediate
plotting, and there are functions that permit very sophisticated plots. Program-
ming loops or conditional branching is simple. All these features enable rapid
prototyping, but also the writing of complex programs. In addition to the basic
package there are toolboxes with powerful functions for specialized fields. A few
of these additions are SIMULINK, a toolbox for simulating systems described
by block diagrams, and toolboxes for control systems, optimization, signal pro-
cessing, statistics, and symbolic mathematics.

MATLAB has been used in Naval Architecture. There is ample evidence
of hydrodynamic and ship-control calculations in MATLAB. As an outstanding
example, Thor Fossen (1994) uses MATLAB throughout his book on Guidance
and Control of Ocean Vehicles. The author of this paper has used MATLAB

1Technion, Israel Institute of Technology, Faculty of Mechanical Engineering

1

for many years for quick hydrostatic and stability calculations, and for post-
processing the output of university or commercially available hydrostatic pro-
grams. Such applications are illustrated throughout the book Ship Hydrostatics
and Stability (Biran, 2005) and the set of corresponding files can be found on
the sites of the book provided by Elsevier, the publisher of the book, and by
The Mathworks, the distributers of MATLAB.

Programs for Naval-Architectural calculations have been available for many
years, both commercially and in universities. Such programs enable the user
to design a hull surface, or at least to input the offsets of an already designed
hull surface, and to perform hydrostatic calculations for a ship having that hull.
As happens with all programs, they can only do what the programmer ‘taught’
them to do. In certain situations a Naval Architect may be interested in carrying
on other calculations than those for which the software was programmed. Then,
MATLAB can help. Examples of its uses are the reading and pre-processing
of offsets, or the post-processing of the output for comparison with stability
criteria that were not included in the program.

Another category of users that may benefit from using MATLAB is that of
students that have to solve exercises, carry on projects and especially those that
cannot afford a commercially available program. A student’s version of MAT-
LAB is available and it can be used for most courses delivered in a technical
university. As this article shows, students can write in MATLAB their own pro-
grams for hydrostatic calculations. Years ago, this author gave this assignment
as a two-semester project. The students who carried it on were enthusiastic and
the results calculated by them compared well with those yielded by a program
well proven in universities and industry. As the MATLAB facilities have been
considerably enhanced since then, today it should be possible to achieve much
better performances.

Some of the advantages of using MATLAB in Naval Architecture are:

• the possibility of adding functions and programs written by the user;

• easy accessibility of data;

• the transparency of MATLAB programs.

Usually, commercially-available programs are black boxes for the user, while
programs written in MATLAB are transparent. The user can understand the
mathematics behind them and the coding, and, if necessary, modify the software
and add new features. This possibility can be important in universities, both
for students and for researchers.

We begin this article with a simple example of stability calculation that
presents immediately the basic features of MATLAB and shows how simple is
its use. Next, we use MATLAB for standard integrations, an ubiquitous subject
in Naval Architecture. We continue by showing how to write a short program for
checking compliance with a code of stability. We go on to show how MATLAB
enables us to write demos and Graphic User interfaces, shortly GUIs, that can
be used as teaching aids. We give two examples, one that explains the notion

2

of metacentric evolute, the other details the meaning of the curve of statical
stability. We continue by showing how MATLAB can be used to digitize and
to integrate over the digitized data. A first example is that of a program for
digitizing curves of statical stability and calculating the areas under the curve.
As a second example,, we describe a program that digitizes the border of a plane
figure and calculates its area, centroid, principal axes, and moments of inertia.

2 A simple example of stability calculation

l
k

G

Z

K
φ

Figure 1: Definitions used in stability calculations

The following example is similar to that presented in Biran and Breiner
(2002); it allows us to introduce a few of the characteristic features of MATLAB
and to show how easy it is to use this software for routine calculations and
plotting. Let us assume that for a given ship we have the data listed below and
we are asked to calculate and plot the curve of statical stability and the curve
of the heeling arm in turning. The given displacement is ∆ = 3900 t, the length
between perpendiculars, Lpp = 75.95 m, the mean draft, Tm = 5.96 m, the arm
of free-surface effect, FS = 0.03 m, the metacenter above baseline, KM = 5.35
m, the vertical center of gravity, KG = 4.78 m, and the cross-curves values at
the given displacement (arms of stability of form), lk, are shown in Table 1.
Figure 1 explains how some of these points and the lever lk are defined.

We first write the data at the command prompt, À:

Lpp = 75.95;
Tm = 5.96;

3

Table 1: Cross-curves values

10o 20o 30o 45o 60o 75o 90o

0.936 1.823 2.610 3.708 4.540 4.931 4.931

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
∆ = 3900 t, KG = 4.78 m

Heel angle, degrees

Le
ve

r
ar

m
s

Figure 2: Checking stability in turning

Displ = 3900;
KM = 5.35;
KG = 4.78;
FS = 0.03;

If we do not enter a semi-column, ‘;’, after each input, MATLAB returns us
the input. This may be desirable for more complex data, such as matrices. In
continuation we enter the heel angles in an array delimited by square brackets,
‘[]’, and called heel,

heel = [0 10 20 30 45 60 75 90];

Similarly we enter the cross-curve values in an array lk,

lk = [0 0.936 1.823 2.610 3.708 4.540 4.931 4.9431];

We calculate the righting arm ,GZ, with the command

4

GZ = lk - KG*sind(heel);

Here we call the new MATLAB function sind that yields sine values for
arguments measured in degrees. In the statement shown above we use a re-
markable feature of MATLAB, vectorization. In a single line we defined the
multiplication of an array by a scalar, and the subtraction of two arrays. In this
case the arrays are row vectors. In other computer languages, these operations
are carried on repetitively, in loops.

The separation of the values stored in the arrays heel and GZ is too wide to
obtain a good plot. Therefore, we use the MATLAB function spline to carry
on a cubic-spline interpolation over the given values. To do so we first define
an axis of closer-spaced angle values

heeli = 0: 5: 90;

where the result of the command is an array of numbers beginning with 0, with
the increment 5, and ending with 90. Now we call the function spline with
three arguments

GZi = spline(heel, GZ, heeli);

and plot the interpolated righting-arm values against the axis of closely-separated
angle values

plot(heeli, GZi, ’k-’), grid

Above, the plotting argument ‘k-’ says that the curve should be plotted in
black as a solid line. This argument is supplied between quotes, ‘’, that is as
a string argument. The command grid superimposes a grid over the plot. We
add now a title and label the axis with the commands

title(’\Delta = 3900 t, KG = 4.78 m’)
xlabel(’Heel angle, degrees’)
ylabel(’Lever arms’)

The command \Delta is taken from the LATEXdesk-publishing package and
produces the Greek letter ∆, that is the displacement symbol. We want to add
now the tangent in origin. To tell MATLAB that we want to superimpose this
line over the existing plot, and not begin a new plot, we enter the command

hold on

Next, we calculate the metacentric height and we plot a line with one
x−coordinate in the origin, 0, and the other at 1 radian, that is at 180/π.
We use here the MATLAB command pi that yields the value of π :

GM = KM - KG;
plot([0 180/pi], [0 GM], ’k-’)

5

Until now we neglected the free-surface effect. We take it into consideration
with the following commands that calculate the effective righting-arm, the effec-
tive metacentric height, and plot the respective curve and its tangent in origin
in black, dashed lines:

GZeff = GZi - FS*sind(heeli);
plot(heeli, GZeff, ’k--’)
GMeff = GM - FS;
plot([0 180/pi], [0 GMeff], ’k--’)

To calculate the heeling arm in turning, lT , we begin by converting the
service speed of 16 knots to ms−1, apply the formula prescribed by the IMO
code of safety, and plot in red the heeling-arm curve over the curve of statical
stability.

V0 = 0.5144*16;
lT = 0.02*(V0^2/Lpp)*(KG - Tm/2)*cosd(heeli);
plot(heeli, lT, ’r-’)

The complete plot appears in Figure 2. Instead of trying to appreciate
visually the value of the angle of statical stability, at the intersection of the lT
and GZeff curves, we can use another MATLAB feature, the ginput function

[phi_st GZst] = ginput(1)

A crosshair appears over the curve. We drag it with the mouse over the
intersection of the curves and click the left-button. We read an angle of 3.2
degrees. The readers may find slightly different values. If the reader wants to
continue with other plots, it is necessary to stop plotting over the same figure.
To do this we enter the command

hold off

3 Numerical integration

Naval Architects have to integrate many functions defined by a small number of
tabulated values and not by analytic expressions. Among the numerical methods
used for this, the trapezoidal and Simpson’s rule are the favorites. The subject
is so characteristic to Naval Architecture that traditional books usually begin
with it. In Biran (2005) we preferred to delay the treatment to Chapter 3, after
motivating the reader by showing why numerical integrations are necessary.
MATLAB has several functions that perform integration. To exemplify one of
them, trapz, and also a few additional features of MATLAB, let us suppose
that we have to calculate the area of the design waterline of a given ship, in this
case the model called Carena 752 bis in INSEAN (1963). We read the offsets of
the waterline in the body plan. The length between perpendiculars is divided
into 20, with a few additional intermediary stations. To calculate the interval
of integration we enter the length between perpendiculars and divide it by 20

6

Lpp = 120.395;
dL = Lpp/20;

Next, we enter the numbers of the stations in an array called stations.
Thus, for station -1/2 we enter -0.5, for the station corresponding to the aft
perpendicular we enter 0, for the station corresponding to the forward perpen-
dicular we enter 20.

stations = [-0.5 0 0.5 1 1.5 2:18 18.5 19 19.25 19.5 19.75 20]

To spare work, by the middle of the above array we wrote 2:18. This expressions
produces the numbers 2, 3,...18. Now we calculate the distances of stations from
AP, that is their x−coordinates,

x = dL*stations;

To obtain the values of the offsets measured in the given body plan we must
calculate the scale. The given molded beam, B, is 17.078 m, while its value
measured in the body plan is 203 mm. We calculate

scale = 17.078/203

We enter the measured offsets, in mm, in an array called measured and we
obtain the offsets, in m, by multiplying this array by scale

measured = [10.5, 28, 42, 55, 66, 75, 88.5, 96.5, 100, 101.5,...
101.5, 101.5, 101.5, 101.5, 101.5, 101.5,...
101.5, 101.5, 101.5, 100, 92.5, 75, 62, 46, 37.5, 28, 19, 10];

offsets = scale*measured

Above the array was to long to be entered in one line. Therefore, we used the
continuation device, ‘...’. If we want to check for input errors we may plot the
offsets against their distances from AP. To force the same scale on the two axes
we use the command axis equal

plot(x, offsets), axis equal

Finally, we use the MATLAB function trapz to calculate the area of the de-
sign waterline by means of the trapezoidal rule. In this case we call the function
with two input arguments, the distances from AP, that is the x−coordinates,
and the offsets, that is the y−coordinates.

Aw = 2*trapz(x, offsets)
Aw = 1.7966e+003

and obtain the area 1796.6 m2. To check the result we may calculate the water-
plane coefficient

Cw = Aw/(Lpp*17.078)

7

where 17.078 is the given molded beam. Our result is 0.8738, the one appearing
in the INSEAN publication is 0.839.

We spent some time in measuring and calculating the offsets. The more
calculations we have to perform with these numbers, the more our investment is
worth. For example, let us suppose that we must calculate also the Longitudinal
center of flotation, LCF. We calculate the moments of the various stations, we
integrate them over the ship length and divide by the corresponding area

Moments = x.*offsets;
LCF = trapz(x, Moments)/trapz(x, offsets)
LCF = 59.4923

We can check our result by calculating LCF/Lwl and comparing it with the
value published by INSEAN

Lwl = 125.14;
LCF/Lwl
ans =

0.4754

INSEAN gives the value 0.490.
Above we used the trapezoidal rule that does not impose restrictions on

the spacing of stations. When the offsets are given for pairs of equally-spaced
stations, one can use Simpson’s rule. A function that performs integration by
Simpson’s rule, for functions defined in tabular form, is described in Biran and
Breiner (2002, pp. 496–7).

4 Checking compliance with codes of safety

The stability of ships and other floating bodies must be checked in accordance to
regulations issued or adopted by the bodies that approve their design or permit
them to sail. CAD systems for ship design can include procedures for doing
the job. If the available program does not contain such a procedure, or it is
necessary to use a criterion differing from that provided, the Naval Architect
has to check the stability manually. As MATLAB allows quick prototyping, it
is easy to write programs for any given criteria of stability. Biran (2005), pp.
233-6 , describes an example tailored for the stability regulations BV 1003 of the
German Navy. In this section we show how to write a script file that checks the
stability of sail vessels according to the UK Maritime and Coastguard Agency
(Maritime 2001). The philosophy behind this code is explained in Biran (2005,
pp. 192-4).

To explain the code of practice we refer to Figure 3, which shows the GZ
curve of the same training yacht that is exemplified in Biran (2005). The code
assumes that the wind arms are proportional to cos1.3 φ, where φ is the heeling
angle. Given the flooding angle, φd, we assume that this angle is reached under

8

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5
Sail−vessel stability acc. to UK Maritime and Coastguard Agency

Heel angle, deg

Le
ve

r
ar

m
s,

 m

Angle of steady heel = 35.7719 deg

WLO

Downflooding angle

GZ
Gust wind
Steady wind

Figure 3: Checking the stability of a sail vessel

a gust wind. If the downflooding angle is not given or is greater than 60o, it is
assumed equal to 60o. The gust-wind arm at zero heel is calculated as

WLO =
GZf

cos1.3 φ

where GZf is the righting arm at the angle φd.
Further, the code assumes that the gust-wind speed does not exceed 1.4

times the steady-wind speed. Therefore, the steady-wind arm at zero heel is
WLO/2. The resulting curve

WLO

2
cos1.3 φ

intercepts the GZ curve at an angle that we call angle of steady heel. If the
master of the ship sails so that the heeling angle is less than the angle of steady
heel, the heel angle under a wind gust will not reach the downflooding angle.

Listing 1, at the end of this article, shows a function that checks stabil-
ity according to the above criterion. The listing should be written on a file
SailCode.m. The function can be called with one output and three or four
input arguments

9

SteadyHeel = SailCode(stability, KG, GM, downflood)

Obviously, the user can choose other argument names, but must respect their
order. For the training yacht exemplified in Figure 3 the first input argument
is a 2-by-n array of heel angles, in degrees, and cross-curve values, in m, that is
written in MATLAB as

stability = [0 5 10 ... 85 90
0 0.308 0.611 ... 3.249 3.216];

The other data are KG = 2.037 m, GM = 1.5 m, and the downflooding
angle 55o.

The first line of the code states that the file contains a function, that it has
one output argument, that the name of the function is SailCode, and that it
can be called with four input arguments. In continuation, a number of lines are
marked as comments by means of the percent symbol, ‘%’; they form the help
part of the function. Typing help SailCode on the command line produces a
display of the help.

The statement

heel = stability(1, :);

creates an array, heel, consisting of the first line, all columns of the array
stability, that is an array of heel-angle values. The next statement creates
an array, l k, consisting of the second line, all columns of the array stability.

The command

heeli = 0: 2.5: heel(end);

creates an array of interpolating heel angles, from 0 to the maximum heel angle,
with 2.5-degree intervals.

The command

GZi = spline(heel, l_k, heeli);

interpolates over the function l k(heel) at the points defined in the array heeli.
In continuation we see a conditional construct. It says that if the number

of input arguments is smaller than 4, that is if the dowflooding angle is not
defined, then its value is set by default to 60o.

The plotting and labelling statements may be self-evident. Let us explain
the line

[phi_st, GZst] = ginput(1);

A haircross appears on the screen and the user has to bring it over the
intersection of the righting-arm and steady wind-arm curves. By pressing the
left mouse button the user picks up the angle value, phi st, and the righting-
arm value at this angle. The former is displayed on the plot by a text statement.
As the picked-up value is numerical, it is first converted to a string of characters
by the command num2str and is next displayed on the plot by the command
text.

10

5 Teaching aids

5.1 A demo that describes the B and M curves

Two great features of MATLAB can be used for writing teaching aids. One
is the possibility of animating graphs. The other is the possibility of writing
Graphic User Interfaces, shortly GUIs.

W
0

L
0

B

M

Figure 4: Displaying B and M in upright condition

In this section we describe a demo that shows the evolution of the center of
boyancy, B, and of the metacenter, M, while the ship heels at constant displace-
ment, between 0 and 90 degrees. The full program, B Curve, and two auxiliary
files are shown in Subsection 10.2 as Listings 2. We call B-curve the projection
on a transversal section of the trajectory of the center of buoyancy, and M-curve
the projection on the same plane of the trajectory of the metacenter. The data
that produced the Figures 4 to 6 belong to an actual vessel that was also exem-
plified several times in Biran (2005). Figure 4 shows the initial display, that is
the situation in upright condition. Pressing Enter starts a sequence of displays
of the water line and of the points B, and M for 15o, 30o, . . . 90o, heel angles.
The complete picture appears in Figure 5. Pressing once again Enter connects
the various metacenters by a yellow line, as in Figure 6.

Let Bφ be the center of buoyancy, and Mφ the metacenter corresponding to
the heel angle φ. The sequence of displays shows that the normals BφMφ to the
B-curve in Bφ are tangent to the M-curve in Mφ. In other words, the M-curve
is the evolute of the B-curve and, therefore, it is called metacentric evolute.

The program B Curve must be written on a file B Curve.m. It calls two other
files, lido9.m and rotate.m that must stay in the same folder as the calling
file. The file lido9.m stores the data of the vessel exemplified by the demo.
The file rotate.m contains a function that performs rotation of the coordinate
axes. It is possible to include the vessel data in the main file. We preferred to
use a separate file and allow thus to run the demo with the data of other ships.
As to the file rotate.m, this a function of general use and it is worth keeping
it separately. In fact, we reuse this function in the GUI described in the next

11

W
0

L
0

B

M

15o

15o

30o

30o

45o

45o

60o

60o

75o

75o

90o

90o

Figure 5: Displaying the B curve and the corresponding metacenters

subsection.
In the listing B Curve we meet a new MATLAB feature. The line

Hf_fig = figure

retrieves the handle Hf_fig assigned to the object called figure. This handle is
used in the next line to assign to the property NumberTitle of the object figure
the value off, and to the property Name the value B and M curve. This means
that instead of the default title Figure 1, the figure window will display the title
B and M curve.

The command lido9 loads the data stored in the file lido9.m. The com-
mand that separates the display into several frames is pause. We meet it at
the end of the program segment PLOT MIDSHIP SECTION. The program run
stops here enabling the user to view the display corresponding to the upright
condition. To go further the user has to press Enter. Then, the program enters
a For-loop that is repeated k − 1 times, where k is the number of heel angles
stored in the array heel. The lines to be executed are contained between the
statements for l = 2:k and end. At each repetition, l = 2, 3 . . . k, the pro-
gram performs operations involving the l-th elements of the called arrays, x0,
yo, heel, etc. The command pause(1) written before end, causes the program
to stop for one second before executing the next repetition. After completing
l repetitions, a new command pause freezes the display until the user presses
again Enter Then, the last program segment displays the metacentric evolute
and the text ‘The M-curve is the evolute of the B-curve.’

12

W
0

L
0

B

M

15o

15o

30o

30o

45o

45o

60o

60o

75o

75o

90o

90o

The M−curve is the evolute of the B−curve

Figure 6: Displaying the B and M curves

5.2 A GUI that explains the curve of statical stability

With the tools of the basic MATLAB package it is possible to build graphical
user interfaces composed of control and display units. The interactive control
is carried on by means of menus, buttons, sliders and editable text boxes. The
display blocks are plotting windows and text boxes.

As an example we describe a GUI, GZdemo, that explains the meaning of
the curve of statical stability. One instance appears in Figure 7. The plot in
the upper, left-hand side of the figure shows the midship outline of the ship
exemplified in the preceding subsection, the waterlines in upright condition and
at 13o degrees of heel, and the center of buoyancy in upright condition, B0, the
center of buoyancy at 13o heel, B13o , the center of gravity, G, metacenter in
upright condition, M0, and the metacenter at 13o heel, M13o . The righting arm
at 13o is GZ.

The lower part of the figure shows a plot of the curve of statical stability
and its tangent in the origin. A colored patch shows the value of the righting
arm at 13o.

Under the curve of statical stability we see a slider. To move this control
element the user can either pick up the slider with the mouse and drag it, or
click on the arrows at the two slider extremities. By doing so the user changes
the heel angle. Figure 8 shows the display after dragging the slider to 30o. The
position of the waterline, of the center of buoyancy, of the metacenter and of
the point Z changes also in the upper, left-hand plot.

13

G

13o

13o

B13o

M13o

ZW
0

L
0

B
0

M
0

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

Heel angle, deg

G
Z

, m

Figure 7: A GUI that explains the curve of statical stability, 13-degree situation

Another slider is shown at top, right. By dragging this slider or clicking on
the arrows at its extremities, the user can raise or lower the center of gravity.
The display on the left of the slider shows the height of the metacenter above
baseline, in upright condition, KM0, the vertical center of gravity, KG, and the
metacentric height, GM.

To appreciate the effect of a GM change, we refer to Figure 9 in which the
heeling angle is again 30o, but the metacentric height is reduced to 1.616 m.
The reader is invited to examine the changes.

It is possible to program a GUI by writing explicitly its code. The MAT-
LAB package, however, includes also a GUI Layout Editor appropriately called
GUIDE that simplifies the work.

6 Developing a digitizer

6.1 Why digitizers

Many engineering problems require the coordinates of points on a drawing, map
or graph. Typical examples can be found in Naval Architecture where one needs
the offsets of a ship to perform hydrostatic calculations, or points on a curve of
statical stability to calculate the area under it. Before the advent of computers
such data were measured manually. When computers were introduced in engi-

14

G

30o

30o

B30o

M30o

Z

W
0

L
0

B
0

M
0

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

Heel angle, deg

G
Z

, m

Figure 8: A GUI that explains the curve of statical stability, 30-degree situation

neering, the task was performed with the aid of instruments called digitizers,
or digitizing tablets, and appropriate software. This software was part of many
CAD packages.

The web describes or advertises software designed for digitizing features
appearing in graphic files. To mention just two examples we can refer to the
Engauge Digitizer - Digitizing software (http://digitizer/sourceforge.net/), or
to Digitize (http://www.rockware.com/catalog/pages/digitize.html).

MATLAB enables us to import a graphic file containing the lines or graph
that must digitized and to pick up the coordinates of points on the lines we are
interested in.

6.2 Importing and processing images in MATLAB

Graphic files can be produced by scanning drawings, maps or graphs. The
resulting file can be read into the MATLAB workspace by using the command
A = imread(’myfile.jpg’), where instead of ‘myfile’ the actual file name
will appear. We obtained good results with the format jpg. Therefore, we use
this file type. When the file is in the workspace it can be displayed with the
command imag(A).

MATLAB provides functions for processing the imported file. What interests
us is that we can pick up points of the image and we can print on the image.
The next subsections show how to do this.

15

G

30o

30o

B30o

M30o
Z

W
0

L
0

B
0

M
0

0 10 20 30 40 50 60 70 80 90
−0.5

0

0.5

1

1.5

2

Heel angle, deg

G
Z

, m

Figure 9: A GUI that explains the curve of statical stability, the situation after
reducing the metacentric height

6.3 The digitizer

Let us suppose that we want to digitize a body plan. After displaying its image
we start by calibrating it. In this phase we pick up, with the mouse, three non-
collinear points whose actual coordinates are known and input these coordinates.
The computer uses the above information to find the axes and the scale of
the figure. Next, we pick up the points we want to digitize. To explain the
mathematics involved we use the qualifier ‘real-world ’ for the true coordinates
of a point, and ‘screen’ for the coordinates of the same point measured in the
image to be digitized.

Let xi, yi, i ∈ [1, 2; 3] be the real-world coordinates of the calibrating
points, and ξi, ηi their screen coordinates. Assuming that the sets xi, yi and
ξi, ηi are related by affine transformations, namely translation, rotation and
scaling, we write

16

a1x1 + a2y1 + a3 = ξ1 (1)
b1x1 + b2y1 + b3 = η1

a1x2 + a2y2 + a3 = ξ2

b1x2 + b2y2 + b3 = η2

a1x3 + a2y3 + a3 = ξ3

b1x3 + b2y3 + b3 = η3

Putting these equation in matrix form we write

∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣

∣∣∣∣∣∣

a1 b1

a2 b2

a3 b3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ξ1 η1

ξ2 η2

ξ3 η3

∣∣∣∣∣∣
(2)

or, shorter,

XC = S (3)

where X is the matrix of homogeneous real-world coordinates, C is the matrix
of transformation coefficients, and S, the matrix of screen coordinates.

Knowing the screen and the real-world coordinates of three non-collinear
points, the coefficients ai, bi can be found by Gaussian elimination. In MATLAB
this operation is written as

C = X\S

where the backslash operator, ‘ \’, symbolizes division at left.
After calibration, the user may digitize as many points as necessary, let’s

say n. The screen coordinates of those points are stored in a 2-by-n array and
are related to the real-world coordinates by

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣
∣∣∣∣

x1 x2 . . . xn

y1 y2 . . . yn

∣∣∣∣ =
∣∣∣∣

(ξ1 − a3) (ξ2 − a3) . . . (ξn − a3)
(η1 − b3) (η2 − b3) . . . (ηn − b3)

∣∣∣∣ (4)

where we reuse the notations xi, yi, ξi, ηi, but we refer now to the points
digitized for future use, and not to the calibration points.

Using MATLAB notation we define

A2 =
∣∣∣∣

a1 a2

b1 b2

∣∣∣∣

and obtain it in MATLAB as a submatrix of C

17

A2 = C(1:2, :);

which means rows 1 to 2 of C, all columns. The screen coordinates of the
digitized points are collected in a matrix called DIGin MATLAB

DIG =
∣∣∣∣

ξ1 xi2 . . . ξn

η1 η2 . . . ηn

∣∣∣∣

We create a matrix of the same size as DIG, with n identical columns

∣∣∣∣
a3

b3

∣∣∣∣ ,

using the MATLAB command

C2 = C(3, :)*ones(1, n);

Then, the right-hand side of Equation 4 is obtained in MATLAB with

B2 = DIG - C2;

Our aim is to obtain the matrix of real world coordinates of the digitized
points. We call this matrix REAL and calculate it with the help of the backslash
operator

REAL = A2\B2

The calibrating and digitizing processes are guided interactively by dialog
boxes predefined in MATLAB. In our digitizer we use the following dialog boxes:

uigetfile - that allows the user to choose a graphic file from a given folder;

msgbox - that tells the user what is the next step;

inputdlg - that prompts the user to enter the real-world coordinates of the
calibrating points.

A full digitizing function is shown at the end of this article, in the first part of
Listing 3, that is up to and including the program segment called ‘CALCULATE
THE REAL-WORLD COORDINATES OF DIGITIZED POINTS’.

7 A digitizer-integrator for curves of statical sta-
bility

The digitizer can be combined with an integrator. To give a simple example let
us assume that we are given a curve of statical stability and are asked to check if
the areas under this curve satisfy the requirements of some code of stability. In

18

the trivial solution we could measure the coordinates of a few points on the curve
and use a rule for numerical integration. To ‘mechanize’ this process and obtain
more results, we developed the function scdigitizer whose full listing is shown
as Listing 3 at the end of this article. To use the function it is necessary to scan
the given curve of statical stability and to invoke the function together with the
graphic file. The listing begins with instructions of use written as comments,
that is preceded by the percent symbol ‘%’. Together, these comments form the
help part of the file. To read these instructions it is sufficient to type on the
command line help scdigitizer.

0 10 20 30 40 50 60 70
0

0.2

0.4

GM = 0.76 m

Curves of statical and dynamical stability for file StaticCurve.jpg

Heel angle, deg

Le
ve

r
ar

m
s,

 m

0 10 20 30 40 50 60 70
0

0.2

0.4

A
re

a
un

de
r

cu
rv

e,
 m

 ⋅
ra

d

Figure 10: Curves of statical and dynamical stability plotted by the function
scdigitizer

The first part of the function is a digitizer built as described in the preceding
section. To calibrate the curve the user has to pick up three points whose
real-world coordinates are known. Most suitable will be a point on the lever-
arm axis, the origin of the axes, and a point on the heel-angle axis. After
calibration the user is asked to pick up points on the curve of statical stability.
In continuation, if the value of GM is known, the user is prompted to enter its
numerical value. Alternatively, the user can digitize the point on the tangent
in origin that corresponds to a heel angle of 1 radian. The mode of entering
the metacentric height is chosen interactively with the help of the dialog box
listdlg.

19

The program uses the MATLAB function spline to interpolate points on
the curve, at 2.5o intervals and store them in an array GZi. Next, the program
uses the MATLAB cumsum function that returns the cumulative sum of the
elements of the argument array. In our case, given an array of righting-arm
values , GZ, and a corresponding array of heeling-angle values, φi, we use the
cumsum function to calculate in an economic way the array of areas under the
curve of statical stability, from zero to each angle φi,

Si =
∫ φi

0

GZdφ

The algorithm is described in Biran (2005, pp. 80-3) and is implemented in
the program segment called AREA UNDER THE GZ CURVE.

The last program segment prints the results on a file scdigitizer.out. The
line

fid = fopen(’scdigitizer.out’, ’w’)

opens a file named scdigitizer.out, with permission for writing only, and
assigns a file identifier to fid. The commands fprintf belong to the C pro-
gramming language. Below we see an example of results printed on the file
scdigitizer.out:

Curves of statical and dynamical stability calculated with the
function SCDIGITIZER for file StaticCurve.jpg

Heel angle GZ Area
Degrees m m.rad

0.0 0.00 0.000
2.5 0.04 0.001
5.0 0.07 0.003
7.5 0.10 0.007

...
62.5 0.05 0.206
65.0 0.02 0.207

8 Developing a digital integrator

Usually, the digitized points define a plane figure whose geometrical properties
must be calculated. This task can be performed by numerical integration us-
ing, for example, the trapezoidal or Simpson’s rule. Since the invention of the
planimeter by Amsler, around 1854, Naval Architects used mechanical analog
computers, specifically planimeters, integrators and integraphs to calculate the
geometrical properties by following a closed contour on the lines drawing or on
intermediate, specially-prepared graphs. In this section we show how to develop
functions that imitate the integrators.

20

8.1 Green’s theorem

In hydrostatic calculations we are interested in the geometrical properties of
plane figures, such as waterplanes or transversal sections known as stations.
The geometrical properties — areas, moments and moments of inertia — are
defined as double integrals over the areas of the figures. Textbooks of Ship
Hydrostatics (see, for example, Lewis, 1988, Rawson and Tupper, 2002, Chapter
2, Biran 2005, Chapter 4) show how to approximate these area integrals in Naval
Architecture by using methods like the trapezoidal or Simpson’s rule. When
the figure we are interested in is defined by points on its border, it may be
more convenient to convert the double integral into a line integral by means
of Green’s theorem. A common statement of this theorem, as can be found in
many textbooks (see, for example, Finney, 1988, Kreyszig, 2005, O/Neil 2003)
is

∫∫

S

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∮

C

(F1dx + F2dy) (5)

where S is the area of the plane figure and C, its border. This theorem, which
has very important applications in physics, has been proposed and used for
purposes such as those described in this section. By an appropriate choice of
the functions F1 and F2 it is possible to calculate all the geometrical properties
of a given figure. We use here some of the functions proposed by Turkowski
(1997). Thus, to calculate the area, A, we choose F1 = −y, F2 = 0, and
transform the double integral into a line integral as follows

A =
∫∫

S

(0 + 1)dxdy =
∫∫

S

dxdy = −
∮

C

ydx (6)

To calculate the first moment about the y−axis we let F1 = 0, F2 = x2/2
and obtain

My =
∫∫

S

(x− 0)dxdy =
∫∫

S

xdxdy =
1
2

∮

C

x2dy (7)

For the first moment about the x−axis we choose F1 = y2/2; F2 = 0, and
write

Mx =
∫∫

S

(0− y)dxdy = −
∫∫

S

ydxdy =
1
2

∮

C

y2dy

and take

Mx = −1
2

∮

C

y2dy (8)

21

For the moment of inertia about the y−axis we choose F1 = −y3/3, F2 = 0
and obtain

Ix =
∫∫

S

(0 + y2)dxdy =
∫∫

S

y2dxdy = −1
3

∮

C

y3dx (9)

For the moment of inertia about the y−axis we choose F1 = 0, F2 = x3/3
and have

Iy =
∫∫

S

(x2 − 0)dxdy =
∫∫

S

x2dxdy =
1
3

∮

C

x3dx (10)

To calculate the product of inertia about the x and y−axes we assume F1 =
0, F2 = x2y/2 and get

Ixy =
∫∫

S

(xy − 0)dxdy =
∫∫

S

xydxdy =
1
3

∮

C

x2ydx (11)

8.2 Parametrization of the border curve

To carry on the integration of the equations described in the previous section
we need an analytic expression of the boundary C. In principle any curve, for
example splines of various kinds, can be used. Examples and relevant references
can be found in Sheynin and Tuzikov (2003). As in Turkowski (1997), for
the purposes of this article we choose to approximate the actual boundary by
straight-line segments. Such an approximation may appear as rough, but it
avoids the disadvantages of more sophisticated approximations. For example, if
we want to describe by splines a body plane of a boat with chine lines, we must
specify the points where a spline ends and another one begins. Obviously, this
is no serious problem, but it may obscure the presentation of the solution. In
picturesque language, we prefer to reduce the number of trees to let the reader
view the forest.

We assume that the border C is defined by a number of appropriately chosen
points. The order of the points is defined by running along the border so as
to have always the enclosed area, S, on the left. Let the coordinates of the
first point be x1, y1 and the coordinates of the i−th point be xi, ii. The last
segment must end at point 1, or, in other words, we must close the border. We
approximate the curve segment between the point i and the point i + 1 by a
straight-line segment whose parametric equations are

x = xi(1− t) + xi+1t

y = yi(1− t) + yi+1t (12)

The parameter t runs from 0 to 1. Differentiating Equations 12 we obtain

22

dx = (xi+1 − xi)dt

dy = (yi+1 − yi)dt (13)

Substituting Equations 12 and 13 into Equations 6 to 11 we develop formulae
valid for the successive straight-line segments that approximate the border. The
sums of the results for individual segments yield the geometrical properties of
the enclosed area.

As an example, let us use of the above relationships to find the basic formula
for calculating the area according to Equation 6:

Ai =
1
2

∫ xi+1

xi

ydx =
1
2

∫ 1

0

[yi(1− t) + yi+1t] (xi+1−xi)dt =
xi+1 − xi

2
·yi+1 + yi

2
(14)

In this result we may recognize the trapezoidal rule. We do not show how
the other basic formulae are derived, but they can be recognized in the listing
of the function digint shown as Listing 4 in Subsection 10.4.

8.3 A general digitizer-integrator

Subsection 10.4 contains part of the listing of a general digitizer-integrator based
on the theory explained above. The listing should be written on a file called
digint.m. The first part of the program, immediately after the help part, is not
shown because it is identical to the segment of scdigitizer contained between
the statement clf and the title POST-PROCESSING.

After completing the digitizing process, the user is prompted to choose one of
five possibilities of postprocessing the data, or exit the program. Following this
choice the program enters the corresponding branch of a conditional construct
called in MATLAB jargon switch yard. Schematically, this structure can be
described as

switch criterion
case 1

statements
case 2

statements
...
case 6

statements
end

The available possibilities and the resulting output are described in the help
part of Listing 4. As an example, we show in Figure 11 a Z-shaped figure

23

Figure 11: Figure produced by the function digint

used in the textbook of Beer and Johnston (1998). The dimensions are in m.
After digitizing the figure and choosing the option ‘Geometric properties’, the
program plots the digitized figure and shows on it the centroid and the principal
axes. An instance of the output file is

Properties of geometric figure calculated with the function DIGINT
Area, ... 4.5460
Perimeter19.0093
First moment about the y axis 1.0890
First moment about the x axis 9.0933
x-coordinate of centroid 0.2395
y-coordinate of centroid 2.0003
Moment of inertia about given y-axis 7.2975
Moment of inertia about given x-axis28.7790
Product of inertia about given axes-4.5082
Moment of inertia about barycentric y-axis 7.0366
Moment of inertia about barycentric x-axis10.5899
Product of inertia about barycentric axes-6.6865
Radius of gyration about barycentric y-axis 1.2441
Radius of gyration about barycentric x-axis 1.5263
Angle of rotation of principal axes37.5599 deg
Maximum principal moment15.7317

24

Minimum principal moment 1.8948
Maximum radius of gyration about principal axis . 1.8603
Minimum radius of gyration about principal axis . 0.6456
Check tensor invariants
Trace before rotation17.6265
Trace after rotation17.6265
Determinant before rotation29.8082
Determinant after rotation29.8082

For comparison, the exact area is 4.5 m2, the x−coordinate of the centroid,
0.25 m, the y−coordinate of the centroid, 2 m, the angle of the principal axes is
37.726 degrees, and the principal moments of inertia are 15.452 and 1.892 m4.
Obviously, another digitization can result in slightly different results.

9 Simulating roll

SIMULINK is probably the most famous MATLAB toolbox. It is the only
one supplied in the students’ package. SIMULINK enables the user to simulate
complex dynamical systems that are described by block diagrams. The software
transforms the diagrams into computer code that can be run easily to produce
various outputs.

To give a simple example of how SIMULINK works, let us simulate the roll
motion, under a wind gust, governed by the equation

φ̈ +
g

i2
GZ − Ww(zA − 0.5Tm)

g∆
· pw(0.25 + 0.75 cos3 φ = 0 (15)

where Aw s the sail area in m2; zA, the height coordinate of the sail-area centroid,
in m, measured from the same line as the mean draft; Tm, the mean draft,
in m; pw, the wind pressure in kN/m2; g∆, the ship displacement in kN. In
Equation 15 we take into account a non-linear restoring-force arm and a non-
linear heeling arm, but we neglect added masses and damping. The assumed
wind arm is that prescribed by the stability regulations BV 1033 of the German
Navy (see Biran, 2005, pp. 221–37). We consider this assumption more realistic
than others because it yields a non-zero heeling arm at 90o.

References

Beer, F.P., and Johnston, E.R. Jr 1998, Vector mechanics for engineers, 3d SI
metric edition, McGraw-Hill Ryerson, Toronto, Canada.

Biran, A. 2005 Ship hydrostatics and stability, revised reprint with a Span-
ish index and amendments by Rubin Lopez-Pulido, Butterworth-Heinemann,
Oxford, England.

25

Biran, A., and Breiner, M. 2002 MATLAB 6 for Engineers, 3d edition,
Pearson Education, Harlow, England. There are German, French and Greek
translations.

Finney, R.L. 1988, Calculus and analytic geometry, 7th ed., Addison Wesley
publishing Company, Reading-Massachusetts, U.S.A.

Fossen, T.I. 1994 Guidance and control of ocean vehicles, John Wiley & Sons.
Kreyszig, E. 2005 Advanced engineering mathematics, 9th edition, John Wi-

ley & Sons.
INSEAN, 1963 Carene di petroliere, Quaderno n. 2, Roma: INSEAN (Vasca

Navale).
Lewis, E.V. (ed) 1988 Principles of Naval Architecture – Second Revision,

Vol. I – Stability and Strength. Jersey City, N.J.: The Society of Naval Archi-
tects and Marine Engineers.

Maritime and Coastguard Agency 2001 The code of practice for safety of
large commercial sailing & motor vessels, 4th impression, London: The Sta-
tionery Office.

O’Neil, P.V. 2003 Advanced engineering mathematics, 5th ed., Thomson
Brooks/Cole, Pacific Grove - CA, U.S.A.

Rawson, K.J. & Tupper, E.C. 1996 Basic Ship Theory, Vol. 1, Harlow,
England: Longman.

Sheynin, S. and Tuzikov, A. 2003 Moment computation for objects with spline
curve boundary, in IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, Vol. 25, No. 10, October, pp. 13-17–

Turkowski, K. 1997, Computing 2D polygon moments using Green’s Theo-
rem, http://www.worldserver.com/turk/computergraphics/Moments.pdf.

10 Listings

10.1 Listing 1 - Function SailCode

function SteadyHeel = SailCode(stability, KG, GM, downflood)

%STEADYHEEL Checks stability of sail vessel in accordance to the ‘Code of
% practice for safety of small commercial sailing & pilot boats’
% issued by the UK Maritime and Coastguard Agency. Call as
% SteadyHeel = sailcode(stability, KG, GM, downflood)
% INPUT
% stability - 2-by-n array of heel angles, in deg, and
% cross-curves , in m, in the format
% [heel angles; levers]
% KG - vertical centre of gravity, m
% GM - metacentric heigth, m
% downflood - downflooding angle, in deg. This argument is
% optional. If not entered, the default value is 60 deg.
% OUTPUT

26

% SteeadyHeel - maximum admissible angle of heel under steady
% wind, deg.
% This output is obtained after pointing the haircross over
% the intersection of the GZ and steady-wind curves.
% Written by Adrian Biran as complementary software to the book
% ‘Ship Hydrostatics and Stability’, revised reprint 2005,
% Butterworth Heinemann. Copyright 2006 by Adrian B. Biran.

% separate heel angles and lever arms
heel = stability(1, :); % heel angles, deg
l_k = stability(2, :); % lever arm of form stability (cross-curves)
GZ = l_k - KG*sind(heel);
% calculate curve of statical stability at 2.5 deg intervals
heeli = 0: 2.5: heel(end); % interpolation axis
GZi = spline(heel, GZ, heeli); % interpolated righting arms
% calculate gust arm
if nargin < 4

downflood = 60;
end
GZf = spline(heel, GZ, downflood); % righting arm at downflood angle
WLO = GZf/cosd(downflood)^1.3; gust = WLO*cosd(heeli).^1.3;
% calculate steady-wind arm
steady = gust/2;
% plot curves
plot(heeli, GZi, ’k-’, heeli, gust, ’r--’, heeli, steady, ’g-.’)
grid
t = ’Sail-vessel stability according to UK Maritime and Coastguard Agency’;
title(t)
xlabel(’Heel angle, deg’)
ylabel(’Lever arms, m’)
legend(’GZ’, ’Gust wind’, ’Steady wind’)
hold on
plot([0 180/pi], [0 GM], ’k-’)
[phi_st, GZst] = ginput(1);
SteadyHeel = phi_st;
text(5, max(GZi), [’Angle of steady heel = ’ num2str(SteadyHeel)
’ deg’])
text(heeli(2), 1.02*gust(2), ’WLO’)
plot([downflood downflood], [0 GZf], ’k-’)
text(1.01*downflood,
0.05*GZf, ’Downflooding angle’)
hold off

10.2 Listings 2 - B and M-curves demo

%B_CURVE plots B and M curves for vessel Lido 9.

27

% Calls Lido9.m and rotate.m
% During the demo there are two pauses
% where you have to press ENTER.
% This is a companion file to Biran, A. (2003), Ship Hydrostatics
% and Stability, Oxford: Butterworth-Heinemann (See Example 2.6
% in this book).

Hf_fig = figure;
set(Hf_fig, ’NumberTitle’, ’off’,...

’Name’, ’B and M curves’);

clf
lido9 % load ship data
x0 = -T.*sin(heel); y0 = T.*cos(heel); k = length(heel);
Bcenter = zeros(2, k); Bcenter(:, 1) = [0; KB(1)];
M = zeros(2, k); M(:, 1) = [0; KM(1)];
%%%%%%%%%%%%%%%%%%% PLOT MIDSHIP SECTION %%%%%%%%%%%%%%%%
f = max((B/0.8), (B^2/(12*T(1))+T(1)/2)); % estimate frame dimensions
plot(station(1, :), station(2, :), ’b-’)
axis([-f/2 f/2 -T(1)/2 (f-T(1)/2)])
axis(’square’), axis(’off’)
hold on
text(-B/1.8, T(1)+0.25, ’W_0’) % mark waterline in upright condition
text(B/1.8, T(1)+0.25, ’L_0’) % mark waterline in upright condition
text(-B/13, KB(1), ’B’) text(0, KM(1)+0.3, ’M’)
% coordinates of initial WL ends
xl = x0(1) - B/1.5; yl = y0(1); xr = x0(1) + B/(1.8-1/10);
yr = y0(1);
plot([xl xr], [yl yr])
% plot centre of buoyancy in upright condition
plot(0, KB(1), ’r*’)
% plot initial metacentre
plot(0, KM(1), ’ko’)
plot([0 0], [KB(1) KM(1)], ’c-.’)

pause

for l = 2:k
%%%%%%%%%%%%%%% PLOT WATERLINES %%%%%%%%%%%%%%%%
% coordinates of WL ends
xl = x0(l) - B*cos(heel(l))/(1.5+l/1.7);
yl = y0(l) - B*sin(heel(l))/(1.5+l/1.7);
xr = x0(l) + B*cos(heel(l))/(1.8-l/10);
yr = y0(l) + B*sin(heel(l))/(1.8-l/10);
plot([xl xr], [yl yr])
% write heel angle in degrees

28

if l ~= 1
string = [num2str(phi(l)) ’^o’];
text(xl, yl, string)
text(xr, yr, string)

end
%%%%%%%%%% PLOT CENTERS OF BUOYANCY %%%%%%%%%%%%
Bcenter(:, l) = rotate(heel(l))*[w(l); KB(l)];
plot(Bcenter(1, l), Bcenter(2, l), ’r*’)
%%%%%%%%%%%%% PLOT METACENTERS %%%%%%%%%%%%%%%%%
M(:, l) = rotate(heel(l))*[w(l); KM(l)];
plot(M(1, l), M(2, l), ’ko’)
%%%%%%%%%%% PLOT NORMALS TO B CURVE %%%%%%%%%%%%
plot([Bcenter(1, l), M(1, l)], [Bcenter(2, l), M(2, l)],...
’k--’)
pause(1)

end

pause
% spline interpolation of B coordinates
Bx = 0: Bcenter(1, k)/50: Bcenter(1, k); % interpolation axis
By = spline(Bcenter(1, :), Bcenter(2, :), Bx);
plot(Bx, By, ’m-’)
% spline interpolation of M coordinats
Mx = 0: M(1, k)/50: M(1, k); % interpolation axis
My = spline(M(1, :), M(2, :), Mx);
plot(Mx, My, ’y-’) text(-B/1.5, 1.4*KM(1),...

’The M-curve is the evolute of the B-curve’)

hold off

The file B Curve calls the data of the ship Lido 9. Therefore, the following
file must stay in the same folder as the file B Curve.

%LIDO9 Data of vessel Lido 9.
% Companion software to Adrian Biran, Ship Hydrostatics and
% Stability, 2003, Oxford Butterworth Heinemann.

%%%%%%%%%%%%%%%%%%%% SHIP OFFSETS %%%%%%%%%%%%%%%%%%%%%%%%
P1 = [0.000; 0.50]; P2 = [0.240; 0.50];
P3 = [0.240; 0.58]; P4 = [1.100; 1.00]; P5 = [1.787; 1.25];
P6 = [2.460; 1.50]; P7 = [2.902; 1.75]; P8 = [3.100; 2.00];
P9 = [3.176; 2.25]; P10 = [3.200; 2.50]; P11 = [3.218; 2.75];
P12 = [3.230; 3.00]; P13 = [3.230; 3.36]; P14 = [2.099; 3.425];
P15 = [0.000; 3.489];
% Form starboard outline
starb = [P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P14 P15];

29

% Form port outline
port = [-starb(1, :); starb(2, :)];
port = fliplr(port);
% Form station outline
station = [port starb];
%%%%%%%%%%%%%%%%%% HYDROSTATIC DATA %%%%%%%%%%%%%%%%%%%%%%
phi = 0: 15: 90; % heeling angles, degress
heel = pi*phi/180; % heeling angles, rad
B = 6.480; % molded breadth, m
T = [1.729 1.575 1.163 0.600 -0.012 -0.693 -1.354];

% draft, m
w = [0 1.122 1.979 2.595 2.945 2.874 2.539];

% lever arm of buoyancy force, m
KB = [1.272 1.121 0.711 0.107 -0.625 -1.393 -2.108];

% height coordinate of centre of buoyancy
KM = [4.596 3.711 2.857 1.830 0.479 -0.869 -1.471];

% metacentre above baseline

The file B Curve also calls the file rotate.m. Therefore, this file too must
stay in the same folder as the file B Curve.

function r = rotate(phi)
%ROTATE rotation about the origin
% rotate(phi) rotates counterclockwise by angle phi
% This file is called by B_curve.m.
% For details about coordinate transformations see
% Biran, A., and Breiner, M. (2002), MATLAB 6 for Engineers.
% Companion file to Biran, A. (2003), Ship Hydrostatics and
% Stability, Oxford: Butterworth-Heinemann.

r = [cos(phi) -sin(phi); sin(phi) cos(phi)];

10.3 Listing 3 - Function scdigitizer

function [SSCURVE, AREAS] = scdigitizer(filename)

%SCDIGITIZER Digitizes the coordinates of points in an imported image of a
% curve of statical stability and calculates the area under the curve
% as a function of heeling angle.
% INPUT
% The image can be presented in a format admitted by the IMREAD
% function, for example jpeg. The filename and filetype of the image
% can be supplied, between quotes, as an argument of the function. Then,
% the function can be called as
% [SSCURVE, AREAS] = scdigitizer(’filename.filetype’)
% If the function is called without an input argument the user will be

30

% prompted to choose the file type and the file name from a dialog box.
% CALIBRATION
% To calibrate the image the user has to pick up three noncollinear
% points of the image and input their real-world coordinates. This will
% enable the function to find the origin of coordinates, the axes of
% coordinates and the scale of the image. After picking up a point the
% user is prompted to introduce its real-world coordinates. The dialog
% box has two fields, the angle value in degrees, and lever values
% in m. To switch from the first field to the second use the
% mouse or Ctrl+Tab. We recommend to choose digitizing points on
% the axes of the curve.
% DIGITIZATION
% In the next phase the user can digitize as many points as necessary.
% The process is guided by dialogue boxes. As long as the user
% wants to continue digitizing the answer is YES. After picking
% up the last point on the curve the user has to answer NO.
% OUTPUT
% The output consists of two arays, SSCURVE and AREAS, a file
% of results, scdigitizer.out, and a plot of the curves of statical
% and dynamical stability, where the latter means the curve of areas
% under the former curve. The two output arrays are obtained
% if the function is called with two output arguments, as shown
% above. Instead of SSCURVE and AREAS the user may write any other
% names. The first array contains the real-word GZ values, in m, given
% at 2.5-degree intervals. The second array contains the values of the
% area under the curve, in m.rad, at the same angle values. The output
% file displays the heel angles, the GZ and area values in
% tabular form.
% Written by Adrian Biran as complementary software to the book
% ‘Ship Hydrostatics and Stability’, revised reprint 2005,
% Butterworth Heinemann. Copyright 2006 by Adrian B. Biran.

clf

if nargin < 1
[filename, pathname] = uigetfile({’*.jpg’; ’*.gif’; ’*.bmp’; ’*.tif’ },...
’Select a graphic input file’)

end

A = imread(filename); him = image(A); axis off, grid
hold on

%% CALIBRATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hm = msgbox(’To calibrate pick up three non-collinear points’);
waitfor(hm)

31

X = ones(3, 3); % Allocate space for real-world, homogeneous
% coordinates of calibrating points

S = zeros(3, 2); % Allocate space for screen coordinates of
% calibrating points;

% begin arguments of input dialogue
prompt = {’Enter actual angle value, deg’,...

’Enter actual lever value, m’};
numlines = 2; defaultanswer = {’’, ’’};
options.Resize = ’on’;
options.WindowsStyle = ’normal’;
options.Interpreter = ’tex’;

% end arguments of input dialogue

for k = 1:3 % begin calibrating loop
[xs, ys] = ginput(1);
S(k, 1) = xs;
S(k, 2) = ys;
name = [’Point ’ num2str(k)];

Actual = inputdlg(prompt, name, numlines, defaultanswer, options);
X(k, 1) = str2double(Actual{1});
X(k, 2) = str2double(Actual{2});

end % end calibrating loop
%%%%%%%%%%%%%%% CALCULATE THE MATRIX OF TRANSFORMATION COEFFICIENTS %%%%%%%%%%%%%

C = X\S;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DIGITIZING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hm = msgbox(’Start digitizing from zero to maximum heel’);
waitfor(hm)
DIG = ones(2, 1); % initialize array of coordinates of the

% digitized points
l = 1; % initialize counter of digitized points
button = ’Yes’; % initialize loop sentinel

while strcmp(button, ’Yes’)
[xd, yd] = ginput(1);
plot(xd, yd, ’r.’) % mark digitized point
DIG(1, l) = xd;
DIG(2, l) = yd;
l = l+ 1;
qstring = [’Digitize point ’ num2str(l)];
button = questdlg(qstring, ’Digitizing’);

end
hold off

%%%%%%%%%%%%%% CALCULATE REAL-WORLD COORDINATES OF DIGITIZED POINTS %%%%%%%%%%%%%%

32

[m, n] = size(DIG);
REAL = zeros(2, n); % allocate space for real-world

% coordinates of digitized points
A2 = C(1:2,:)’; C2 = C(3, :)’*ones(1, n); B2 =
DIG - C2;
REAL = A2\B2; % returns real-world coordinates of

% digitized points
phi = REAL(1, :); % real-word heel-angle values, degrees
phi(1) = 0;
GZ = REAL(2, :); % real-world righting-lever values
GZ(1) = 0;
phir = pi*phi/180; % real-world heel-angle values, radians
%%%%%%%%%%%%%%%%%%%%%%%%%%% POST-PROCESSING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
phii = 0: 2.5: max(phi); % axis for spline interpolation
GZi = spline(phi, GZ, phii); % interpolated values
%%%%%%%%%%%%%%%%%%%%%%% AREA UNDER THE GZ CURVE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
l = length(GZi); GZl = GZi(1: (l-1)); S1 = [0 cumsum(GZl)];
GZ2 = GZi(2: l); S2 = [0 cumsum(GZ2)]; S =
(pi*2.5/(2*180))*(S1 + S2)
%%%%%%%%%%%%%%%%%%%%%%%%%% TANGENT IN ORIGIN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Choose mode of entering GM
LS = [{’Numerical value of GM known’},...

{’GM to be picked up on graph’},...
{’GM unknown’}];

[Selection, ok] = listdlg(’Liststring’, LS, ’SelectionMode’,
’Single’); switch Selection

case 1
% begin arguments of input dialogue
prompt = {’Enter GM value in m’};
numlines = 1;
defaultanswer = {’’};
options.Resize = ’on’;
options.WindowsStyle = ’normal’;
options.Interpreter = ’tex’;
% end arguments of input dialogue
GMstring = inputdlg(prompt, name, numlines, defaultanswer, options);
GM = str2double(GMstring);

case 2
[xd, yd] = ginput(1)
Bgm = [xd; yd] - C(3, :)’;
GMphi = A2\Bgm; % returns real-world coordinates
GM = GMphi(2);

case 3
GM = 0;

end

33

%%%%%%%%%%%%%%%%%% PLOT CURVES OF STATICAL AND DYNAMICAL STABILITY %%%%%%%%%%%%%%%%%
figure(2) [Ax, H1, H2] = plotyy(phii, GZi, phii, S);

if GM > 0
hold on
axis([0 1.1*max(phii) 0 1.1*GM])
plot([0 180/pi], [0 GM]);
t = [’GM = ’ num2str(GM) ’ m’];
text(185/pi, GM, t)
hold off

end

grid
title([’Curves of statical and dynamical stability for file ’ filename])
xlabel(’Heel angle, deg’)
set(get(Ax(1), ’Ylabel’),’String’,’Lever arms, m’)
set(get(Ax(2),

’Ylabel’),’String’,’Area under curve, m \cdot rad’)
SSCURVE = GZi;
AREAS = S;

fid = fopen(’scdigitizer.out’, ’w’);
fprintf(fid, ’Curves of statical and dynamical stability\n’);
fprintf(fid, ’calculated with the function SCDIGITIZER\n’);
fprintf(fid, ’for file %s \n’, filename);
fprintf(fid, ’ Heel angle GZ Area\n’);
fprintf(fid, ’ Degrees m m.rad\n’);
for k = 1:l

fprintf(fid, ’%10.1f %10.2f %10.3f \n’, phii(k), GZi(k), S(k));
end
fclose(fid)

10.4 Listing 4 — A general digitizer-integrator

function [REAL, PROPERTIES] = digint(filename)

%DIGINT Digitizes the coordinates of points in an imported image,

% calculates distances between points and geometric properties of

% plane, polygonal figures.

% NOTE

% If a figure has an axis of symmetry, that axis is also a

% principal axis. Small errors of calibration and/or digitization

% can yield wrong principal axes. Therefore, for symmetrical

% figures use the function wldigitizer instead of this function.

% For curves of statical stability use the function scdigitizer,

% and for body plans the function bpdigitizer.

% INPUT

% The image can be presented in a format admitted by the IMREAD

% function, for example jpeg. The filename and filetype of the image

34

% can be supplied, between quotes, as an argument of the function. Then,

% the function can be called as

% [REAL, PROPERTIES] = digitizer(’filename.filetype’)

% If the function is called without an input argument the user will be prompted

% to choose the file type and the file name from a dialogue box.

% CALIBRATION AND DIGITIZING

% To calibrate the image the user has to pick up three noncollinear points

% of the image and input their real-world coordinates. This will enable the function

% to find the origin of coordinates, the axes of coordinates and the scale of

% the image. In the next phase the user can digitize as many

% points as necessary. The process is guided by dialogue boxes.

% The points must be followed in a counterclockwise sense, that

% is so as to have the polygonal area to the left of the cursor.

% Digitizing in the opposite direction leads to wrong results.

% POSTPROCESSING

% In the third phase the user is prompted to choose a postprocessing of the

% acquired data, or to exit the programme. The possibilities of post processing are:

% - draw the axes of coordinates;

% - find the real-world coordinates of a point picked up by

% the user;

% - find the real-world distance between two points picked up

% by the user;

% - calculate the geometric properties of the polygonal

% figure defined by the digitized points.

% The calculation of the first and the second moments of the polygonal figure is

% based on Green’s theorem (see, for example, Turkowski, K., ‘Computing 2D polygon

% moments using Green’s theorem’, Apple Computer, Inc.).

% OUTPUT

% The results of calculations are displayed on-line in dialogue

% boxes. In addition, the function outputs two arrays of data:

% - the 2-by-n array REAL that contains the real-world coordinates

% of the digitized points in the format

% x1 x2 ... xn

% y1 y2 ... yn

% - the 1-by-12 array PROPERTIES that contains the geometric

% properties of the polygonal figure in the order

% 1) polygonal area

% 2) x-coordinate of centroid

% 3) y-coordinate of centroid

% 4) second moment about barycentric y-axis

% 5) second moment about barycentric y-axis

% 6) product of inertia about barycentric axes

% 7) radius of gyration about barycentric y-axis

% 8) radius of gyration about barycentric x-axis

% 9) maximum principal moment of inertia

% 10) minimum principal moment of inertia

% 11) maximum radius of gyration about pricipal axes

% 12) minimum radius of gyration about pricipal axes

% These, and additional data are also printed on a file called ‘digint.out’.

% The digitized polygon and the principal axes are plotted in real-world coordinates

% in a window called Figure 2. To uncover the underlying input figure drag Figure 2

% aside.

% This function calls the function POINT. Therefore, the file of

% this function must be included in the same directory as this

% function.

% Written by Adrian Biran as complementary software to the book

% ‘Ship Hydrostatics and Stability’, revised reprint 2005,

35

% Butterworth Heinemann. Copyright 2006 by Adrian B. Biran.

THIS PART IS IDENTICAL TO THE DIGITIZING PART OF SCDIGITIZER

%%%%%%%%%%%%%%%%%%%%%%%%%%% POST-PROCESSING %%%%%%%%%%%%%%%%%%%%%%%%%%%%

A0 = 0; % initialize polygonal area

Per = 0; % initialize perimeter

My = 0; % initialize moment about given y-axis

Mx = 0; % initialize moment about given x-axis

xC = 0; % initialize x-coordinate of centroid

yC = 0; % initialize y-coordinate of centroid

Iy = 0; % initialize second moment about given y-axis

Ix = 0; % initialize second moment about given x-axis

Ixy = 0; % initialize product of inertia about given axes

Iy0 = 0; % initialize second moment about barycentric y-axis

Ix0 = 0; % initialize second moment about barycentric y-axis

Ixy0 = 0; % initialize product of inertia about barycentric axes

ky0 = 0; % initialize radius of gyration about barycentric y-axis

kx0 = 0; % initialize radius of gyration about barycentric x-axis

Imax = 0; % initialize maximum principal moment of inertia

Imin = 0; % initialize minimum principal moment of inertia

kmax = 0; % initialize maximum radius of gyration about pricipal axes

kmin = 0; % initialize minimum radius of gyration about pricipal axes

flag = ’Continue’; while strcmp(flag, ’Continue’)

S = [{’Show axes’}, {’Coordinates of one point’},...

{’Distance between 2 points’}, {’Polygonal area’},...

{’Geometric properties’}, {’Exit’}];

[Selection, ok] = listdlg(’Liststring’, S, ’SelectionMode’, ’single’);

switch Selection

case 1 % Show axes

Xmax = max(max(REAL(1, :)), max(X(:, 1)));

Ymax = max(max(REAL(2, :)), max(X(:, 2)));

Ereal = [Xmax 0 1; 0 Ymax 1; 0 0 1]; % describes real-world axes

Escr = Ereal*C ; % describes screen axes

plot([Escr(3, 1) Escr(1, 1)], [Escr(3, 2) Escr(1, 2)], ’k-’)

plot([Escr(3, 1) Escr(2, 1)], [Escr(3, 2) Escr(2, 2)], ’k-’)

case 2 % Coordinates of one point

[xs, ys] = ginput(1); % screen coordinates of digitized point

B2 = [xs; ys] - C(3, :)’;

R = A2\B2; % real-world coordinates of digitized point

t = [’x = ’ num2str(R(1)) ’, y = ’ num2str(R(2))];

uiwait(msgbox(t, ’Coordinates’, ’none’, ’modal’));

case 3 % Distance between 2 points

[x1, y1] = ginput(1); % screen coordinates of first point

B2 = [x1; y1] - C(3, :)’;

R1 = A2\B2; % real-world coordinates of first point

[x2, y2] = ginput(1); % screen coordinates of second point

B2 = [x2; y2] - C(3, :)’;

R2 = A2\B2; % real-world coordinates of second point

R3 = R2 - R1;

d = sqrt(R3’*R3); % distance

t = [’distance = ’ num2str(d)];

uiwait(msgbox(t, ’Distance’,’none’, ’modal’));

case 4 % Polygonal area

A0 = polyarea(REAL(1, :), REAL(2, :));

t = [’Polygone area = ’ num2str(A0)];

36

uiwait(msgbox(t, ’Area’,’none’, ’modal’));

case 5 % Geometric properties

A0 = polyarea(REAL(1, :), REAL(2, :)); % calculate polygonal area

[m, n] = size(REAL);

for k = 2:n % Begin loop over straight-line segments

Per = Per + norm(REAL(:, k) - REAL(:, (k-1)));

dMy = (REAL(1,k)^2 + REAL(1,k)*REAL(1,(k-1)) + REAL(1,(k-1))^2)*(REAL(2,k) - REAL(2,(k-1)));

My = My + dMy;

dMx = (REAL(2,k)^2 + REAL(2,k)*REAL(2,(k-1)) + REAL(2,(k-1))^2)*(REAL(1,k) - REAL(1,(k-1)));

Mx = Mx - dMx;

dIy = REAL(1, (k-1))^3 + REAL(1, (k-1))^2*REAL(1, k) + REAL(1, (k-1))*REAL(1, k)^2 + REAL(1,k)^3;

Iy = Iy + dIy*(REAL(2,k) - REAL(2,(k-1)));

dIx = REAL(2, (k-1))^3 + REAL(2, (k-1))^2*REAL(2, k) + REAL(2, (k-1))*REAL(2, k)^2 + REAL(2,k)^3;

Ix = Ix - dIx*(REAL(1,k) - REAL(1,(k-1)));

dxy = 2*REAL(1,k)*REAL(1,(k-1))*(REAL(2,(k-1)) + REAL(2,k));

dxy = dxy + REAL(1,(k-1))^2*(3*REAL(2,(k-1)) + REAL(2,k));

dxy = dxy + REAL(1,k)^2*(REAL(2,(k-1)) + 3*REAL(2,k));

Ixy = Ixy + dxy*(REAL(2,k) - REAL(2,(k-1)));

end % End loop over straight-line segments

% Calculate moments about given axes

My = My/6;

xC = My/A0;

Mx = Mx/6;

yC = Mx/A0;

Iyy = Iy/12;

Ixx = Ix/12;

if (isnan(Iyy)) | (isnan(Ixx))

warnstr = ’Digitizing error’;

dlgname = ’Moment of inertia not a number’;

msgbox(warnstr, dlgname, ’warn’, ’modal’);

end

if (Iyy <= 0) | (Ixx <= 0)

warnstr = ’Digitizing sense probably wrong’;

dlgname = ’Moment of inertia <= 0’;

msgbox(warnstr, dlgname, ’warn’, ’modal’);

end

Ixy = Ixy/24;

% Calculate moments about barycentric axes

Iy0 = Iyy - xC^2*A0;

Ix0 = Ixx - yC^2*A0;

Ixy0 = Ixy - xC*yC*A0;

% Radii of gyration about barycentric axes

ky0 = sqrt(Iy0/A0); % about y axis

kx0 = sqrt(Ix0/A0); % about x axis

% Calculate angle of principal axes

tgt = -2*Ixy0/(Ix0 - Iy0);

th = atand(tgt)/2; % angle in degrees

tr = atan(tgt)/2; % angle in radians

% Calculate principal moments of inertia

I1 = (Iy0 + Ix0)/2;

I2 = ((Ix0 - Iy0)/2)^2;

Imax = I1 + sqrt(I2 + Ixy0^2);

Imin = I1 - sqrt(I2 + Ixy0^2);

% Radii of gyration about principal axes

kmax = sqrt(Imax/A0); % maximum

kmin = sqrt(Imin/A0); % minimum

% Plot digitized figure and principal axes

37

x = REAL(1, :);

y = REAL(2, :);

% Centroid

figure(2)

hp = area(x, y); grid

set(hp, ’FaceColor’, ’y’, ’EdgeColor’, ’k’, ’LineWidth’, 1.5)

axis equal

alpha(0.15)

xmin = min(x);

xmax = max(x);

ymin = min(y);

ymax = max(y);

hold on

point([xC; yC], (xmax - xmin)/100)

% axis x

yxmin = yC - (xC - xmin)*tan(tr);

yxmax = yC + (xmax - xC)*tan(tr);

plot([xmin xmax], [yxmin yxmax], ’g-’)

% axis y

xymin = xC + (yC - ymin)*tan(tr);

xymax = xC - (ymax - yC)*tan(tr);

plot([xymin xymax], [ymin ymax], ’r-’)

hold off % End plot of digitized figure and principal axes

% Calculate tensorial invariants

Inv11 = Ix0 + Iy0; % Trace before rotation

Inv12 = Imax + Imin; % Trace after rotation

Inv21 = Ix0*Iy0 - Ixy0^2; % Determinant before rotation

Inv22 = Imax*Imin; % Determinant after rotation

% print results

fid = fopen(’digitizer.out’, ’w’);

fprintf(fid, ’Properties of geometric figure\n’);

fprintf(fid, ’calculated with the function DIGITIZER\n’)

fprintf(fid, ’Area, ... %14.4f \n’, A0);

fprintf(fid, ’Perimeter %14.4f \n’, Per);

fprintf(fid, ’First moment about the y axis %14.4f \n’, My);

fprintf(fid, ’First moment about the x axis %14.4f \n’, Mx);

fprintf(fid, ’x-coordinate of centroid %14.4f \n’, xC);

fprintf(fid, ’y-coordinate of centroid %14.4f \n’, yC);

fprintf(fid, ’Moment of inertia about given y-axis %14.4f \n’, Iyy);

fprintf(fid, ’Moment of inertia about given x-axis %14.4f \n’, Ixx);

fprintf(fid, ’Product of inertia about given axes %14.4f \n’, Ixy);

fprintf(fid, ’Moment of inertia about barycentric y-axis %14.4f \n’, Iy0);

fprintf(fid, ’Moment of inertia about barycentric x-axis %14.4f \n’, Ix0);

fprintf(fid, ’Product of inertia about barycentric axes %14.4f \n’, Ixy0);

fprintf(fid, ’Radius of gyration about barycentric y-axis %14.4f \n’, ky0);

fprintf(fid, ’Radius of gyration about barycentric x-axis %14.4f \n’, kx0);

fprintf(fid, ’Angle of rotation of principal axes %14.4f deg \n’, th);

fprintf(fid, ’Maximum principal moment %14.4f \n’, Imax);

fprintf(fid, ’Minimum principal moment %14.4f \n’, Imin);

fprintf(fid, ’Maximum radius of gyration about principal axis . %14.4f \n’, kmax);

fprintf(fid, ’Minimum radius of gyration about principal axis . %14.4f \n’, kmin);

fprintf(fid, ’Check tensor invariants\n’)

fprintf(fid, ’Trace before rotation %14.4f \n’, Inv11);

fprintf(fid, ’Trace after rotation %14.4f \n’, Inv12);

fprintf(fid, ’Determinant before rotation %14.4f \n’, Inv21);

fprintf(fid, ’Determinant after rotation %14.4f \n’, Inv22);

fclose(fid)

38

case 6 % Exit

flag = ’Quit’;

end

end

% Fill output array of geometric properties

PROPERTIES = [A0 xC yC Iy0 Ix0 Ixy0 ky0 kx0 Imax Imin kmax kmin];

hold off

The function digint calls the function point. Therefore, the following func-
tion must stay in the same folder as digint.

function point(C, r)

%POINT plots solid circles marking points
% C coordinates of centre
% r radius of circle

t = 0: pi/30: 2*pi;
x = C(1) + r*cos(t); y = C(2) + r*sin(t);
patch(x, y, [0 0 0])

39

