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Introduction

Areas of Applications —
General
Mechanical Engineering

Types of general problems
Types of signals



DSP in various disciplines

Communication ( Electronics, speech)
EE — home appliances (TV, Music)
Image processing
Control
Civil Engineering —Earthquakes, ground motions
Aeronautical Engineering
Medicine (EEG, ECG etc)
Physics (Optical devices)
Economics, Finance (Stock market)
and many more



DSP in mechanical Engineering

Control
Measurements
Manufacturing
Diagnostics
Design (dynamic aspects)
Products (Mechatronics)
Vibration (noise) control
and many others



Signals of interest

Physical phenomena
- measurement system

- amplitude versus time function

Phenomena of interest:

Displacement, velocity, acceleration, force, angle,
temperature

“Time” axis
Relative time, spatial location, angular position
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Black Box Approach

Vibration

- Machine, structure

— > —— Forces
Excitations (System)

— >  Pressures

Three types of problems:
Monitoring
System Identification
Excitation estimation



Types of problems —Monitoring

Monitoring: Machine, structure Vibration
1 —» Forces
Surveillance (Unknown)
. ] — Pressures
Diagnostics

HUMS (Health Usage Monitoring Systems
Helicopter HUMS (Gear-Boxes, Jet Engines)

Tool Condition Monitoring (State of wear)

Automatic Monitoring of Manufacturing
Processes

Structural Fault Detection and
L ocalization



The Westland Database

The US Navy funded Westland Helicopters LTD
to carry out a series of tests
on the CH-46E helicopter transmission
for generating a database
to evaluate Diagnostics tools in general
& Neural Networks in particular
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The Westland Fault Testing

System:
Main power Transmission
of a US Navy CH-46F helicopter
Measurements:
8 accelerometers recorded simultaneously
Tachometer Signal




Fault Types & Test Conditions

Faults 2-5: 2 Levels
Fault 7-8: 4 Defect Sizes
All Faults: Different

Load levels Shaft Crack @
Propagation ]
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Example of accelerometer records

under Normal and Faulty conditions

Measurement

No Fault
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Cross-gear pair modulation
Time-Averaged Signals

Fault frge .
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Signal Generation Model
Predicted Spectral Lines

File = W42789

(1010 3129;

Spectrum, Acc.# 08

1050110011501200 2000 2100 2200 2300 2900 3000 3100 3200 3300 3400
Frequency, Hz Frequency, Hz Frequency, Hz

Vibrations induced by spiral bevel gear tooth meshing (1-15)
Vibrations induced by the collector gear tooth meshing (16-28)

Vibrations induced by cross gear pair interaction (29-32)



Effect of Fault on spectral lines
(Faulty spiral bevel pinion)

Fault free o File=W92702

23

Spectrum, Acc.# 08

N \ ! i
Faulty spiral bevel pinion

File = W42789
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Types of problems — Identification

Identification
Experimental Modal Analysis
Control of systems

Vibration

- Machine, structure

Excitations _ (To be identified)

— & Forces

— >  Pressures



Modal Analysis

Design Analytical© Analytical T T  Predicted
Criterion ... Model*" :Mode Shapes - - o ~ Building
; ) _ : Response
Wind i _ : |
T i i
Load N
= oo |
R 1

Grround Motion + Imprm €

N © Verify

Simulate

Model Test .
~—w= Fxcitation

rr
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Data Acquisition Mode Shapes
&
Parameter Estimation



Control of Systems

Actuator Arm

Read/Write 2%
Suspension

1 \ Voice-Coil
i Disk Motor

*ig. 1 Relevant mechanical components of small form factor rigid dis!
irives

JANUARY 1990, Vol. 112/ 3¢



Types of problems —
Characterization of excitation

Estimating the exciting forces,
accelerations

|dentification of acoustical sources

Vibration

" Machine, structure

— > —— Forces
Excitations (System)

— >  Pressures



Deterministic versus Stochastic
Signals

Deterministic signal: predictable (with
reasonable accuracy) based on
The physics of the system
Previous measurements

Examples
Force of unbalanced wheel

Orbit of satellite
Stochastic signal: a unique time history
record which is not likely to be repeated and
cannot be accurately predicted in detail.



Stochastic data and Stochastic
processes

Random signal: one possible
realization of what might have
occurred

Stochastic process: Conceptual
process that generated the
different realizations

Ensemble: Conceptual -
collection of all the records that ,.1/\ ok - P
might have been produced  *™4 | W77V "7
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Random Signal Analysis

Random Signal Analysis: Characterize the
random signals

Temporal domain - Statistical properties

E.qg., probability that the acceleration at time t0 is within
some limits

Frequency domain — Spectral properties
E.g., power in some frequency range

Random Vibration Analysis: How the
statistical characteristics of the motions of a
randomly excited system depend on the
statistics of the excitation and the dynamic
properties of the vibrating system



Ensemble Statistics

Given an ensemble of records {x,(t)}

Ensemble statistics:
Ensemble average (mean) at time t1:

Autocqfrelat/on at time delay

R, (t,7)=lim — Zx(t )x, (¢, +7)




Stationary Data (Wide Sense)

Stationary (Wide sense, WSS):

Ensemble Mean is constant

Ensemble autocorrelation depends only on time

delay t
Stationary: All averages and correlations of
interest remain constant with changes in
the time t1

Stationary (Strict sense, SSS): The pdf at
tany given time t1, evaluated across the
ensemble, does not depend on the time t1.



Stationary in practice

Stationary refers to the statistics not the records!!!

Stationary >> the ensemble mean does not vary with
time

Never holds strictly since
actual data are limited in
time!ll

In practice: a data is
considered stationary if it is
for the majority of its interval

Limited data implies that
averages can only be

Pressure, relative units

estimated T S S S S S
Finite sampling results in 0 2 Y e e 0
computational errors !!

Figure 1.2 Ensemble of pipe-flow-pressure time history records



Non-Stationary Signals

Mechanisms producing the data depend on

time (but can be repeated to get ensemble)
Shock, vibrations during take off or landing

Parameters of mechanisms not under control

Acts of nature: Wind gust velocity, waves height;
Biological phenomenon: tremors
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Other practical considerations

Stationary data: enhanced by maintaining constant
experimental conditions

Quasi-stationary: variations with time are slow, so the
signal can be divided into long stationary intervals
Long compared to characteristic correlation delays

Non-stationary data that can also be analyzed with
Similar tools: transient signals of finite duration with

clear beginning and end B
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Ergodic Data

Ergodic data: ensembles averages equal
(appropriate) time averages over individual
records

Temporal statistics: | o
Temporal average (mean): po=lim o | x()de
Higher order average values ... |
Autocorrelation at delay = Ru(7)= }T}O} ) X(O)x(t+7)

Ergodic condition: Stationary data is ergodic if

(sufficient but not necessary)

1 ¢r 5
;_[T R ()= p.|dr = 0

T—w




SIGNALS

The characterization as well as analysis methods
depends on the signal structure.
The following are some classification possibilities.

Deterministic vs. random
Transient vs. continuous
Stationary vs. nonstationary

practice we often encounter combinations of signal type
An example would be a harmonic signal
contaminated by random noise.




Deterministic

Classification of Signals

l Random

Transient

Periodic Stationary

Non -
Stationary




Descriptions

Transient signals - energy

This is defined as

T

E = [x*(t)dt

0
where T is the signal duration.
Tie anagy it finte far a signallimitad witthiin aniltanal 1.

The units are

E [V2-sec, G2 -sec...]

and such a signal is also called an energy signal.
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Continuous signals - power
For such a signal
E—>
as
T
and power can be used instead of energy.

P:lfxz(tﬁt
TO

and P exists for T —» « (but not E). The units are
PV, G2..]
and such signals are called power signals.




Modulations: Periodic
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Impulse response of SDOF system

linéaire

Non-linéaire




White noise:
3 realizations
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Response of system excited by white noise
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Gear system:
Good and faulty gear




Monitoring of tool wear

5 0 0 1.0 0 0 1.5 0 0 2 0 0 0 2 5

2 0 0 T T
15 0 =
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0 |
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Acoustic impulse response of room

0 200 400 600 800 1000 1200 1400 1600 1800 2000



Evoked potentials , response to flash
(measured on scalp)




Second class:
pdf
Sampling errors

Applications of pdf
Basic prob description of data
Evaluation of normality
Detection of data acquisition errors
Indication of non-linear effects
Analysis of extreme values



Probability Distribution Function —
General case

In general, PDF refer to the value of the
process at a specific time (i.e., t1) and the
probability that it is less then some threshold x

= X

Figure 2.1  General probability distribution function

})x(ézatl) — PT[X(fl) < é:] — ]{}nolo #[X(Z;l\g < 5]



Probability Distribution Function —
Stationary case

Strict Sense Stationary Data: PDF is the same at all time
and (assuming Ergodicity) can be determined from a
single measurement

x(t) Pix)
-

Figure 2.2 Probability distribution function of stationary data.

P.(&) =Pr{x() <£]=lim T[x(fT) <¢]




Probability Density Function —
Stationary case

In general: derivative of PDF

Computationally (for stationary data):

Prob in finite bins: Tlx(z) € Ax
rob in finite bins Prx(1) € Ax.] = lim [x(?) c]

T—0 T

Pdf: . Prx(z) € Ax,]

Figure 2.3  Probability density measurement.



Gaussian Random Process

The pdf of the value is Gaussian:

1 (x —m)’
X)= exp| —
p(x) il Ry

Reasonable (but ***) model for the majority of
vibratory random signals encountered in the real
environment.

Insight:

Central Limit Theorem: sum of infinitely many iid random
events is roughly Gaussian

The response of a linear time-invariant system to a Gaussian
process is a Gaussian process

Response of a linear system (convolution with impulse
response) can be considered as the limit of a sum. Hence
even if the excitation is not Gaussian the response of a linear
system tend to be Gaussian (provided it is a narrow band
response derived from a broad band excitation)




Gaussian Limitation

Gaussian pdf may give poor approximation at
the tails of the distribution

>>Predictions of maximum excursion of a
random processes based on Gaussian
assumption are suspicious

The tails are crucial in many decision
problems

Other distributions

Robust decisions

Info-gap



Rayleigh Random Process

Rayleigh pdf:

20°

Representation of:

Envelope of a narrow
band Gaussian random
process

Peak distribution of a
narrow band Gaussian
process
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Sinusoidal Random Process

Deterministic sine wave  x(t) = x, sin(2xft + 0)
Sinusoidal Random process: sine wave with
uniformly distributed phase in £ 7T

x,(t)=x,sin2xft +6,)
The resulting pdfis: (sd o= X/ \/5)

p(c) = (ﬂx/X§ -& )1 for |&] < x,

Depends only on the sd (for zero mean processes)
Minimum probability at the mean !!! (mean least likely)

Distinguish sinusoidal process from narrow-band
Gaussian noise no matter how narrow the noise
bandwidth may become




Pdf of Sinusoidal Random Process

x(t) p(x)
I 4
x- % asl |
- ! |
; |
Ax{ 06 |
------- I I
2l ! l
_________________ - !
"""""""""""""""""" 7 1 }
_________________ ] E Il
02k | :
""""""""""" } | i
- Z] :
Rt |
I 22 2 =X -1 0 1 X 2

Figure 2.6 Standardized probability density function of a sine wave.

pO=lr -2 for lg<x o =x,/
:(ﬂ\/Zaz—é‘z)l for ‘§‘<X




Sine Wave in Gaussian Noise

I 7 (z—x,cos¢
z)= exp(— d
Pe) wN27o, '[0 3 207 ¢
Yo I

0.3

Standardized Probability Density

Standardized Amplitude



Moments (Stationary data)

Moments of a stationary random process with
pdfp(X) u, = E[x"]= jwooxkp(x)dx

Central Moments: )
pi = El(x— ) 1= (x= )" p(x)dx

1t moment = Mean (central tendency): w, = E[x]= u
2"Y moment = Mean sq. value w, = E[x*1=y’
w is the rms (root mean square) — in analogy with ac

2nd central moment = variance (dispersion):
o IS the standard deviation 15 = E[(x— ﬂ)2]

Central tendency and dispersion:

2
o)

W2262+,U2



Higher Moments - Skewness

3rd central moment ¢ =E[(x—u)’]

> Skewness:

c E . 3
skewness = ’ué = [Cx 3,u )|
o o

Skewness (Gaussian) = 0
Skewness>0 >peak toward the left
Skewness<0 -2 peak toward the right

" Skewness >0 A
|
l
i
; ——

e
¢ ?

Skewness <0

p (£}

S

p(f)
A
Y | «~>



Higher Moments - Kurtosis

4th central moment ;¢ = E[(x— )]
> Kurtosis: pe E[(x—u)']

HORAMAL RANCEM HUMBERS

K = kurtosis = =

Kurtosis (Gaussian) = 3
Kurtosis>3 2

stronger peak, more rapid decay,
and heavier tails

presence of peaks of high values
more than in the Gaussian case

Kurtosis<3 =2

Existence of a sinusoidal
component (kurtosis =1.5 for sine)

Truncated signal (truncated
extremes)

Excess kurtosis = k-3

o)

4

2000

1500 1

101K

5K

| v - a1 ]1" v
=14 5 i & 14
SKEWNESS = 0.03, KURTOSIS = 2

2000

1500 -
10007
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SKEWNESS =0062 KURTOSIS =5




Data Averaging

Moments computed directly on data
records (instead of using the pdf)

Ensemble averaging (through the process)

Stationary data: Temporal averaging
(along the process)

Moment estimation based on

Ensemble averaging: Finite number of
records N

Temporal averaging: Finite record of
duration T



Statistical Sampling Errors

Estimation of a parameter ¢ from independent
sample records >> collection of estimates {¢ }._1 2

1

Bias error: , 2 . .. s
b; = E[¢]—¢ = ;lgoﬁ;@ ¢
1 N 1/2
Random error: . _ (lim _Z( i —E[¢])2j
¢ N—w N o1
C
Normalized errors: b, .y —
g = Coeff of Variation &, = Q
Sampling distribution of the estimate o
Complicated in general Y I ° 2
Gaussian approximation Coe T s
Reasonable for £<0.2) T 'EWWA
; 1 1 1 I5 I I ] ] 110 Y, )1’
= 1_'_ g G" —_ g Experiment Number
lLl¢ ( b )¢ ¢ r¢ Figure 2.8 Random and bias errors in parameter estim



Errors in Mean Values

No bias errors

Random errors — see Table
Ensemble average with N independent records

Temporal averaging over a record of length T,
when the energy is uniformly distributed over freq
bandwidth B (N~2BT)

Implications:
To cut ¢ by half: need to quadruple (x4) N or T

B is as important as T for the effective sample size

Wide bandwidth data (communications),; short record
might provide highly accurate estimates

Narrow bandwidth data (turbulence, vibrations) very long
record may be required to obtain acceptably accurate
estimates



Estimation and Random Error

Table 2.1

Rapdom Errors in Mean and Mean Square Value Estimates

Fstimates and Corresponding Random Error, &,

Mean Square Yalue

Mean Value Estimates Estimates
Estimation -
Procedure Estimate, [, Ertor, &, Fstimate, y/2 Error, &,
N N

Ensemble 1 S x, Gy 1 S x? \/E
Averaging N & ﬂx\/i“_\’ N & N
Time ! J‘T' Gy 17 ]

: — b x(t) dt e o J x*(1) dt s
Averaging T Js u BT T J, ‘BT




Errors in pdf estimation) - bias
error

Bias error due to finite bin-width Ax:
Unless the first derivative of p is constant

First approx of bias error: AxcY p"
. p"(x)
plx} gb [p(’x)] ~ ( )
: ms 24 p(x)

I
&
)

o ———ma aan b

1

f
K &
S I 3

e v e "
-t . ——

Figure 2.9  Bias ervor in probability density estimate.



Errors in pdf estimation) — random
error

Random error due to

finite number of records in ¢ [ 5(x)] ~ !

ensemble averaging: VN (Ax) p(x)
finite length record in ) 1
1 gr [p(x)] ~
temporal averaging J2BT(Ax) p(x)
Implications:

Same dependence on N, T and B as in mean-
estimation

Bin-size Ax: compromise between
bias error — increasing effect
random error — decreasing effect



Fourier methods

 Continous signals
FS — Fourier Series : Periodic

FT — (Integral) Fourier Transform: Transients
(aperiodic)

*Discrete (sampled) signals

DFS —Discrete Fourier Series

DFT — Discrete Fourier Transform
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We may represent the decomposition by the
spectrum. The 2-D representation is of magnitude at
frequency location. The spectrum of the periodic
signal is discrete: only elements with discrete
frequencies nwo (n = 1,3......) exist.




The spectrum corresponding to the complex Fourier Series |
in 2 sided shows positive and negative frequencies.
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Discrete Fourier Transform (DFT)

We start by discretizing the FT pair

The line interval t > AT
The frequency interval f—> kAT

The integral j >y




Let us analyze a signal of duration T,
T  =NAT

total
The time interval ATis chosen according to the sampling
theorem.

The frequency interval Af is chosen as the reciprocal of the
analyzed signal length

1
 NAT

Af




Then

X(f) = X(kAf)=AT > x(AT)exp(~) %’)lk

2

x(t) > x(IAT) = ﬁ Z X (kAf ) exp(j W)ik

The expression is periodic for ik = N, hence the
summation for X(k Af) and x(i AT) are periodic within
N.




We thus limit the summation to N samples, resulting in the
DFT pair =

N-1 272. "

X(kA ) =AT Z xX(IAT)exp(; W) EU. X(kf )V —sec]

N-1 .272. "

x(iAT) =N%T D X(dA)exp(j W) EU. X(kYV]




A normalized DFT pair, for AT =1, is usually computed by
most procedures

X(k)= Ni x(OW,

x(i) = %Z X (W

with the compact notation

27
W, =exp(—J W)




The DFT is a transform between two sequences of N
samples -

X (k) x(i)

In general it is a transform between two complex
sequences




The frequency scale

Vi_0, f=kaf=0

This is the zero (DC) frequency. Here

X(0)= Y x(i)

and equals N times the average of x(i)




b k= N, . N1 1
2 2

’ f: Af 5 NAT AT _fNYQU]ST

¢) From the periodicity of exp(j27/N), and hence the
periodicity of x(i) and X(k), we may define negative
indices, and

X(-k) = X(N-k)

The upper part of X(k), with A>N/2, may thus be
interpreted as transforms for negative frequencies.




The DFT of real signals.

For most engineering measurements, x(t) and hence
x(i) is real. From

x(i) =— Z X (k)exp(j —)’k




it follows that X(k) must satisfy specific conditions in order
to have the summation result in real samples. These
conditions are one of a specific symmetry, with

X(-k) = X(k)*
thus
IX(-k)| = | X(K)]

and

arg[X(-k)] = -arg[X(k)]




b) The necessary
A =2 [HZ]

N: 1 ju—
Af x AT
and we may choose

N =512 resulting in

or Af =2.44 |Hz]

N=1024 resulting in
Af =122 |[HZ]




Filtering

Manipulate the spectrum of the signal
Change relative amplitudes
Pass signals in one or a set of freq bands and
attenuate or signals in remaining freq. bands
Can be accomplished through the use of a
linear time-invariant system (with an
appropriately chosen FRF)



Filters

Reject/pass signal components according to frequency

1.5

| | |
- Unfiltered |
|




Algorithm as system

X —— — y(®)

X. — Algorithm — Y




Anti-aliasing filters

ANALOG
INSTRUMENTATION

x(t)

FILTER

y(t)

A/D

s

SIGNAL
PROCESSING

DIGITAL
CONTROL

CONTROL (ANALOG)

ANALOG

INSTRUMENTATION|

x(t)

A/ID

DIGITAL

FILTER

» DAT

y'(t)
CONTROL
(ANALOG)

SIGNAL
PROCESSING

DIGITAL
CONTROL



g Classification — ideal (continuous)
filters

Note: The FRF is symmetric around =0
Discrete time filters: periodic with period = 2r

IHI IHI 4
I Stop- P h o
» | - band \\ ase c aractemst‘lcs.
ass-band | f | . 1. IDEAL: Zero (i.e,
for or FRF is real and non
Low Pass High Pass .
negative)
2. Acceptable
IHI 4 IHI 4 T ST T
distortion’: linear

phase 2 time shift

g "t x(t—t,) <> exp(—iwt,) X (

f fcr2 fcr1 fcrz

Band Pass Band Stop



¥

ldeal Freq selective filters — time
domain characteristics

Ideal low-pass filter; pass band [—g @ ]
Impulse response (zero phase):
sin ¢

Q OR)
hip (f) _ ¢ c
/A /A

Impulse response (linear phase)

h, () =2 sinc(a)C(t_to)j

7T 7T

Step response: overshoot and ringing

Ideal freq characteristics 2>
unacceptable time domain response



g ldeal Freq selective filters — time
domain characteristics

Ideal freq characteristics 2>
Unacceptable time domain response
Non-causal and hence unattainable in real time.
Complicated implementation

hyplt) sl

1.08—,
wﬁ
1
— L /\ f-\. ,ﬂ\ ’hw
t

|
|
|
!
|
!
T
I
[
|
I
i
i

—— e ey \/»-l l\/ 1
g Gl
. S—— = Y

“'—"V

Impulse response of

Step res Oalifzseo ideal
ideal low-pass filter presp s

low-pass filter



¥

Nonldeal Freq selective filters —
freq domain characteristics

Non-ideal freq domain characteristics:
Non-unity gain in pass-band

— pass-band ripple
Non-zero gain in

stop-band
— Stop-band ripple

Transition band:
pass-band edge,
stop-band edge

I
A
A

\
A
N

[
|
|
A [
Passhand I Transition | Stopband
f
f
i
|

thﬂé[éj{fﬁ_’f

e T . YR

"—'J; Lt



Nonldeal Freq selective filters —
example

Example: automotive suspension system
No sharp division between pass and stop band
Time domain response important
Cost and ease of implementation also important

Chassis
L mass,

Spring, 1Ly Dashpot,

yit

X fﬂ Heference

alevation

Figure 6.14 Diagrammatic representation of an automotive suspension system.
¥o represents the distance between the chassis and the road surface when the
automobile is at rest, ¥(r) + yo the position of the chassis above the reference
elevation, and x(¢) the elevation of the road above the reference elevation.



@ Filter Specifications

1. Slope

2. Attenuation

W amustil 3. Ripple in pass (stop) band



g Discrete time freq selective filters

described by Diff Eq.
Non-recursive diff eq. 2 FIR
Always stable M
Can have linear phase V= Z bnx .
Higher order usually needed n=0

Recursive diff eq. 2 IIR
Facilitate low-order freq implementation



g Discrete time freq selective filters
Alternative descriptions

N M
Difference eq.  , — Z_ ay.  + anxl._
n=1 n=0

The z-transform  Y(2)= D _y,z"
k=—o0

The Fourier Transform is the z-transform for

Z= eXp(]C()T) Y(a)) — Y(Z) z=exp(joT) — Zyke_jkCOT
k=—00

Y(2)=[-az"' —a,z" —..ayz " 1Y (2) +[by + bz +....h,z7" ] X(




@ Discrete time freq selective filters
Transfer Function

N M
Difference eq.  , — Z_ ay.  + anxl._
n=1 n=0

The z-transform

Y(z) = [—alZ_1 —6122_2 — ...CZNZ_N]Y(Z) +[b, + blz_l +

Transfer Function p(z)=22) bo+b1f et by Z :
X(z) l4+az + a,z"

H(w)=H(z)

z=exp(joT)



@ Non- recursive Discrete time filters

Low pass filtering: Smoothing operation
Discrete time Smoothing: y.= Z bx.
moving average (MA)

Example: 3-point MA  y,=1/3(x,_; +x; +x,,,)
Impulse response: rectangle [.... 01110 ....]
Transfer function (FT of impulse response or:

Y(2)=1/3(z" +1+2)X(2)

_ Y(2) _ = .
H(Z)_X(Z)_1/3( +1+2)
H(®) = H(2)| ,—exp(jory =1/ 3(1+ 2 cos(wT))




Freq.

response of 3-point low-pass
moving average

§ H{£2) |

—tT m 3 a)T



g Non- recursive Discrete time filters
General-length moving average

Generalization: N+M-1 Alzeighboring points

1
PR

k=—N

Impulse response is rectangular
If N <0 thefilteris causal

M
H(z)= : i
N+M _1 k=—N
sinfor(Y M =1,
1 p/IIN=M)/2]T 2

T N+M-1 sin[@T /2]



@ Fewq. Response of M-N low-pass
moving average




g Non- recursive Discrete time filters
weighted moving average

Generalization: weighted average over N+M-1
neighboring points M
Vi = Zbkxi—k
k=—N

General non-recursive filter

Coeff bk are selected to achieve prescribed filter
characteristics



¥

Recursive Discrete time Filters —
simple example

Simple example yi=ay, , +x(i)
Transfer function |

H(w)=

l—aexp(—jwT)

Rehaveas like Inw/hinh pass for nnsitive/nenative a

| HISE) | 1 HIS2) |
a=-0.6

- — ol = ol
Higher order recursive diff eq = provide

Sharper filter characteristics

Flexibility in balancing time domain and freq domain
requirements



g Butterworth Frequency Selective
Filters — transfer function

Recall: The Transfer function of a (continuous)
first order system (with time constant tau)

H(w)=—
jot+1

Class of Butterworth filters: The slope is controlle
by the power of w in the denominator

I N=filter order

1+(w/ a)c)zN (order of the
associated diff eq)

B(o)| =




M Gain of Butterworth filters

Log scale

—a0b

-30

0 168, | Blew! ]

—404

&0}

80}

01w,

10 - 0707

Linear scale

1 ! I ! 1 ! I I
0 niZ 04 06 0B 10 12 14 16 18 20 wlw,



g Impulse and step response of
Butterworth filters

hit)

Second order Impuise response

Third order

sit}




@ Butterworth Frequency Selective
Filters - poles

Using the Laplace Transform
1

B(w)| = B(jo)B"(jw) = B(jw)B(—jo) =

| 1+(jw! jo.)

1

BB = T o

The roots of the denominator s, =(-1)"*"(je

S, =0, exp{j[ﬂ+ﬂ(2k+l)]} ‘Sp‘:w
2 2N _£+7z(2k+1)

s =
rn 2N

L



@ Maximal flatness

T2

Pw) = [HGw) = —
Gain: 14 (:)
Derivative of the gain with respect to frequency:
we=1;, GO =1 'j:;'f _ _nggmgn_l

monotonically decreasing for all w (G>0) - no ripple.

The series expansion of the gain is given by:
_ 1. _ 5l T lr 2n %f An
we=l; GO =1 (Il:m)—l—zu.- |8m ..
All derivatives of the gain up to but not including the 2t
th derivative are zero (at w=0), resulting in "maximal

flatness”.



@ High Frequency Roll Off

The slope of the log of the gain for large w Is:
' dlog(G)
e dlog(w) "

The high frequency roll off is therefore 20n
dB/decade.



Filter families

Specified by certain design criteria which give general
rules for specifying the transfer function of the filter:

Butterworth filter - no gain ripple in pass band and stop band, slot
cutoff (shown previousely) e |

Chebyshev filter(Type 1) —
no gain ripple in stop band,
moderate cutoff

Chebyshev filter(Type 1l) —
no gain ripple in pass band, —
moderate cutoff

Elliptic filter —
gain ripple in pass and stop band,

fast cutoff
Others \

| Hiw) 1*




@ Comparison (All filters are fifth

order)

All filters are of 5
order, =2 all filters
roll off by 5* 20=100
dB per decade.

The Butterworth filter
rolls off more slowly
around the cutoff

frequency than the
others,

but shows no ripples

Bllerwart

[N TR VA LAY [N |




Time Domain Averaging

y(nAt)——z x(nAt —rMAt )

P=h =P F23 MAL r=h
i i |
1 | |
] [ |
1 Il |
] a" =
r=2 ! ' 1
{ / f

A |

s ; ;

i

i

Formulation as a Linear filter:
r — the running discrete index
— the output

Y, (nAt)=y,  (nAt)+
x, (nAt) -y, (nAt) M
' e




¥

I'DA — Freq response
characteristics

Zeros for w/o,=k/N k=12,.,N/2
For Large (N>10) and even N:

Approximate maxima at

o/o,=(k-05)/N k=12,.,N/2

Correspond/ng maxima (as the nom/nator is 1)

‘H = [N sin( 7w/ a)p)}

side—lobe peaks

> attenuation increases with N



l_Z MN

i _
H(z)=—
) Ni1-z"

Sin(nNf /£
H(f/fp):l in(m )

N Sin(rf/f,)

by (F /) =—T(N-1)f /£,

f = :
’ MNAt

N=10




y (A =y, (nAt) + XrBAD =Yoo (DAY

1

Xr (nAt) B Yr—l (nAt)
r

y.(nAt)=y,  (nAt)+




Spectral Analysis
Rationale
* Physical insight
* Orthogonality (no crossproducts)
* Pattern recognition
* Algebraic (closed form) solutions, as with many

transform based methosds

Signal Processing: Spectral Analysis



Frequency domain presentation
Depends on signal class
* Transient
* Periodic

* Random

All computations via basic FFT

Signal Processing: Spectral Analysis



For a signal

X(1At) 1=0,1........ N
We have computed the FFT
N-1
X(kAf)=2 x(Dexp(- J—) k=0,1.......N-1

I
o

Frequency scale
= 1/(NAt)

f(k) = KAf k=0,1........ N-1

Signal Processing: Spectral Analysis



Transients:

The DFT approximates samples of the continuous FT.

For EU

X,y (KAf)=AT X(KAf) [V —sec]

Signal Processing: Spectral Analysis



Periodic signals:

Xpps () :%m) 4

The computation equals that of the DFT except for the
factor of N. The results are directly in [Volts]

Signal Processing: Spectral Analysis




Assume that p integer periods are spanned by the signal length
NAt. Denoting the number of samples in the period by M

T, =MAt

I}Vith gp the actual period of the physical signal. The total signal
engt

NAt = pMAt
and the location of  on the frequency scale 1s
kAf=1 = 1/(M/At)
k=1/(M At Af)=N/M=p

when an integral number of periods are spanned , the physical
frequency coincide with one of the frequencies at which the
DFS 1s computed.

Signal Processing: Spectral Analysis



Signal Processing: Spectral Analysis



Random continuous signals:

P= S(fdf
Py =] S(Af st =Sy

PSD
0.025

0.02

0.015

I

=~
o

>

0.005 |-

0

Signal Processing: Spectral Analysis



Signal Processing: Spectral Analysis



Spectral Analysis
Engineering Units

 Xx()en Volts

« Power PSD Energy ESD
o« |2 V2/Hz V2.sec V2.sec/Hz=V2.sec?

* Voltage units
e V V/\Hz V.V sec V.sec

Signal Processing: Spectral Analysis



Frequency scales, one and two sided presentations :

The (computational) resolution 1s Af=1/(N/At) , the frequency
scale 1s f(k) = kAf

the locations k= N-1,N........ N/2

correspond to negative frequencies according to: X(-k)=X(N-k)

——
—
DFT

Signal Processing: Spectral Analysis



Signal Processing: Spectral Analysis



X)) k=0, k=N/2 Sk) k=0, k=N/2
G(k) = N

X, (k)=
(0 {ZX(k)k:I,z...N/Z—l 25(k) k=127~

One (-)and two ( x ) sided PSD
0.25

0.2

0.15

V2/Hz

0.1

X
0.05

frequency

Signal Processing: Spectral Analysis



3 Performance, errors and controls:

The main error mechanisms in spectral analysis
e Alias errors
e[ cakage errors
eRandom errors

eBias errors

Signal Processing: Spectral Analysis



The uncertainty principle :

For any reasonable definition

(Time duration) x ( Frequency bandwidth) > C
given a signal length T,, two components separated by
f, - f; = 1/T, will not be separated by any signal

processing techniques.

Signal Processing: Spectral Analysis



Transient analysis and zero padding

1
The frequency resolution is A, ausiens =

B nAT

N-n zeros are now appended to the signal, resulting in total span
of N points. The computational resolution 1s

1
NAT

Af — < Aﬁmnsient

The DFT

n—

X(k) =3, x(Dexp(—j )"+ 0 exp(-j )"

1
i=0

Nothing 1s contributed to X(k) by the second term.

Signal Processing: Spectral Analysis



signal with (o) and without (x) zero padding FFT with (o) and without (x) zero padding

1 7

®
® ®

0.9
6 [

0.8

® ®
0.7 5
0.6 4
® ® ®
0.5
0.4 3
] ®

0.3 2 %

0.2 ) &
1

0.1 g ) ®

® )
0 D 0 @& o & &
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5
time [sec] fregency [Hz]

Signal Processing: Spectral Analysis



Periodic signals :

For periodic signals , with period T, the physical frequencies
are

k/ T, with k=1,2...
The computed frequencies will be located at kAf = k/(NAt)

aaaaaaaaaaaaaaa

. NN N
d ] Lo /
I |

| |

Signal Processing: Spectral Analysis




No discontinuities exist when extending periodically an

harmonic (or any periodic) signal composed of an integer

number of periods.

N S
i
| ——

\\l\
I B B
<

= —

=}
—

il

i
S S

I

iy

0.2\/

L

-8 \/
-10
0

Signal Processing: Spectral Analysis



Give diminishing weights to the signals beginning and end by
means of suitable windows.

AR
ol T\LA\ |
|

\N |
AREERIVIRY Y
_2 Y J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

The windowing 1s undertaken by multiplying the time signal by
the appropriate window function.

X" (=w()x(1)

Signal Processing: Spectral Analysis



Fourier Transform — complex polar

notation
* Generally X(w) 1s a complex-valued function

(even if x 1s real)
— Complex notation X (w) = A(w)— jB(w)
1

A(w) = ‘X (a))‘ cos d(w) = Py i x(t)cos(wt)dt
T o

B(w) = ‘X (a))‘ sin @(w) = 2L i x(t) sin( wt )dt
T o

— Complex polar notation

X(0) = |X (@)|exp(—j0(@))

Signal Processing: Spectral Analysis



Spectral density — via Fourier Transform of

the Auto-correlation
» Spectral density as Fourier Transform of the Auto-

correlation 1

_ A function of thiS. (@) = By I R (z)exp(—jor)dr
frequency W, bO‘Lll pusiuyvy a7121-u uvgauyy

 Symmetry of the Auto-correlation (Rx 1s an even
function) = Spectral density is even

S.(-o)=85_(w)=A(w) = ifw R (7) cos(a)r)d T

— So since the Auto-correlation 1s real so 1s the spectral
density

 Summary: spectral density 1s real even and non-
negative (not shewmhere,but.see next)



Area under the spectral density

. Toverse: R (1) = LO S.(w)exp(jor)da
— j ” S . (w)cos(wr)dw
Since Sx is even %
e Note that: Rx (z' — O) — J‘OO Sx ((())d(()
e So -

j‘” S (W)dw=E[x*]=y> = 1> + o>

X X

S ()

Fig. 5.1 The area under a spectral density curve is equal to Ex*]



Examples — Band Limited

A 8, {w)

 Mean Square L
E[x*]= j S (w)dw
=25y (@, )

Spectral density of Narrow

_ band random process
* Auto-correlation

Ry ()
)

R = S.(@exp(jor)de | QHMD
- Sx (w)cos(wt)dw

Auto-correlatio
4S , + , . [ 0, — o,
—COS 7 |S1n T
T 2 2




Narrow and broad band processes

e Narrow band process:

— Sample history; spectrum; Autocorrelation

Ry (v)
hx(t)

Sy(w) 250tz —wy)
AN 100 sy
UUUL ' 21 N A

* Wide band process

— Sample history; spectrum; Autocorrelation

A, (x)
’s,tun

23,3&-}2
—ty —Wy g wa

(a}



One-sided spectral density function

 In practice 1t 1s common to:

— Use the one-sided transform, defined only for positive
frequencies w>0,

W (o) = 2—_[ R (r)cos(a)r)dr 2§ ()

— Express it as a function of the frequency >0 1nstead of
the angular frequency w.

W (f)=2 f R.(7)cos(27f7)dt = 475 (w0 = 27f)

Signal Processing: Spectral Analysis



One-sided spectral density function

 Shaded areas 1n the
— Two sided Sx(w) OR  -- One sided Wx(f)

Have the same contribution to the mean square 1n this

frequency band, So
@ dw

23 (@)do=W()df =W.(} =)=

fa) (b} & w.if)

bS5, ()

i
W w+dow o wrtdy f
e IF

Fig. 59 Illustrating the relationship between alternative spectral
density parameters



Gex(f)
i

, -, Examples

0 fa
G (f} ()
&
0 A y—/
I
' f
o fo— B2 [y fy+ B2
G (f) {c)
A
= f
a {d) ]

Figure 310 [dealized autospectial density functions (a) Sine wave. () Sine wave plus
random noise. {¢) Narrow-band random noise. («f) Wide-band random noise



Time — Frequency representation

Time domain: No spectral information

Frequency domain: No temporal information

Signal Processing: Time frequency



AMPLITUDE - S TR

AMPLITUDE

FREQUENCY

AMPLITUDE TIME

e ¥

FREQUENCY

Signal Processing: Time frequency
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ROTATIONALLY RELATED COMPONENTS

FIXED FREQUENCY COMPONENT
S3/80 A MAG I /// / \ \
—25 \
dBv A
: A S, NS S— 8
32 i EE\“=“—""=
= s _:L A -‘Efﬁ.m\h_'f\—“_—_'
= A 2\ ,\‘ \ =2 \_
——F —AC £\ 3 =\ A
B — ’ oy y | | R A \_
: |\l N\
' =3\ AL 2 - A=y
= 3 \ o\ | E— A ral T
dB H = > {\\ \_’\:
/DIV —¥ 11}” }1@ = X A S — 7\
A = =\ = e
T -
' A 0\ —1Y
A\ 7\ g ;
g + \ . "11\1- r g I'Y - - —
e
f\* =4 ~ X 4 =
— ﬁ‘% = — i e
-85S _;Yb T e -J'ti
BW: Q. 5475 STOPY 1 000 H=z

START: O

Signal Processing: Time frequency




STET - Short Time Fourier Transform

”MM =L ARG Doty 2t i

. —/\‘-,1 o x(f):Eihr; [© P fone—tyexp(2mt f)df 'dt
| ! i E, = Lﬂ |h(t) | di
EFFT rFET Pl

X ( 2) :]‘?cﬂ') Ix/’(’f‘ﬂﬂt}#

'Fx (¢, rﬂ) —-/:,(e',:,t (£~ &) w(»ﬂﬂr/f}df'

-

5 TFr Short Tima Fovriesr Tfuﬂ_lﬂnv’,n.

Signal Processing: Time frequency



‘B Joint Time-Frequency Analyzer 3.1

File Edit Operate Windows Help
{ _Quit"il currert file:  GAUSS2LOG Adjust parameters and then press Process
botal data lengthe. 0026 zec

-3.3E1 -
0.000

0,005

db [ [ linear

0.0

aray [ ] color

= 0.0 JTFA zelectar
n.mv ZEC g_
0.033_JkHz Hwinu:l-:uw selectar
ools 0020 0025 fsec] N Sisleaf

curgor
contl

cursar

bandwidth

full band Yl

« G

Save I - time-frequency dishibubion TI

[setDan] [ReadDaa] [ Readiie |

| Frocess I | e I

Signal Processing: Filters




el Joint Time-Frequency Analyzer 3.1

File Edit Operate Windows Help
(Quit ')l cunent file.  GAUSSZLOG

botal data length:

0.026

FEC

= z 000
0.0E+0 0.017
-2.0E1- 0.033
3361+ — . . . o

0.000 0.005 0ot 0015 0.020 0.025 [zec]

curgor
contl

db [ [ linear

aray [ ] color

cursar
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Signal Processing: Time frequency



F.(t f)= f; x(tYh(t - t)exp(—j 2nfi )dt

x(t):Eth: j"; F.(t', [t -1 )exp(j2rt f)df'dt

E, = j“; \h(t) | dt

Signal Processing: Time frequency



Spectogram

| F(t,) [

j J E.(t, )2t df = E, =| x(0) P dt
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M General Approach to HUMS

[Sensing & Preprocessing}

Igs
E_[ Signal Processing

Time Domain ]_[Spectml AnalySiSMT ime-Frequency AnalySiSL

Feature Extraction
E_[ T'DA, Moments ]_[ Spectral Lines ]_@”ime—Frequency F eature‘i
L Classification
Statistical: \—[ Expert / Fuzzy }(T raining based.: L
*Parametric *Semi-Parametric
__*Non- Param | @ __*Neural Networks y
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M Diagnostic Approaches based on
Signal Generation Models

tional Effects, like

Features/
< > Indices

* Bearing

ﬁ Measurement
Modeling Defect & Signal
Processing
v -
Signal Geperators . System I e
(Si Sources) (Transmission Box) Vibrations
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@ Sources of vibrations in gears

® (Gear transmission error:

* Tooth meshing
— Tooth deflection under load
— Individual tooth imperfections
— Localized defects on gears
« Shaft rotation
— Eccentricities of the driving/ driven gears
— Instantaneous speed variations

aculty of Mechanical Engineering, Technion




A Main gear troubles and their causes

The real condition of manufacturing and using of gears are never perfect. This implies some
quality faults are always present.

Even if not out of service by complete failure, gears can suffer from many different troubles, the

most frequent of which are indicated in this table together with their causes.

Type of trouble

Description

Causes

Eccentricity and similar faults

YWheel and shaft geometrical centres
not coincident.

Manufacturing errors.

Looseness of gears or
bearings on the shaft

Excessive backlash between gear
and shaft or between bearings
and shaft.

Manufacturing errors.

Misalignment

Axes of mating gears not parallel
(cylindrical gears) or coplanar
(bevel gears).

Manufacturing or assemibly
errors.

Excessive backlash

Excessive distance between the
non-wiorking flanks of two
meshing gears.

Manufacturing or assembly
errors.

Machining signs

izear tooth profile shaped like a
broken ling enveloping an involute
CUrve.

Manufacturing methods.

Ll For more detaifs on manufacturing or assembly errors, see the corresponding section of this
chapfter.




Gear failures and their causes (local faults)

The local faults of gears concern a damage on one or more teeth. The both kinds of damage can
be spalling or cracking of tooth, which finally can produce breakage of the tooth.
Except in the extreme case of breakage, this kind of fault is recognisable with two symptoms :

- An amplitude and/or phase modulation of the meshing signal (present in the spectrum with
sidebands separated by the wheel rotational frequency around the gearmesh frequency and its
harmonics).

- Periodic shocks are visible in the time history. This particularity is important since is enables
the differentiation of the local faults of using and some quality faults also generating modulations.

Type of Description Causes
failure
Too abrupt a transition
Breakaway of between hard case
relatively large bits and soft material
3 _ Spalling of tooth surface, underneath; local
— typically inthe case | metallurgical defects:
hardened gears development of pitting

Failure due to the
propagation of
microscopic flaws in

izenerally it results
from incorrect
processing — grinding,

Cracking the material under queching — and
cyclic loading: more | | 5yally leads to
COMmmon in breakage
hardened gears
Fracture of an entire

Breakage geartooth ora Owerstress, fatigue
substantial portion
of it

{4 ﬂ, w« o Chapter]. = o ———




f Faults and symptoms 1/4

| — — :
o Fault Vibration Symptoms Remarks
Static Unbalance sFrequency: 1=mm. oyibration level constant at
s[irection: Radial. constant rotational speed.
*Phase difference onend bearings. approx. [«Amplitude proportional to
3 oe. sguare of angular speed
- below critical speed.
= sHigh vibiration level at rotor
critical speed.

Couple Unbalance sFrequency; 1=mrm. s/ibration level constant at
s[irection: Radial. constant rotational speed.
sPhase difference on end bearings: approx. [«=Amplitude proportional to

180°. square of angular speed
bielow critical speed.
sHigh wibration level at rotor
critical speed.
e Dynamic Unbalance sFreguency. 1=rpm. *'/ibration level constant at
i sDirection: Radial. constant rotational speed.
+Phase difference onend bearings: «Amplitude proportional to
between 0° and 180°. square of angular speed
below critical speed.
sHigh vibration level at rotor
critical speed.
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Fault

Vibration Symptoms

Remarks

Angular Misalignment

sFrequency: 1,2, and also 3=rpm.
sDirection: Axial (and Radial).

sFPhase: approx. difference of 180° across
the coupling.

\/ibration characteristics
strongly depend of the type of
coupling and bearings.

Parallel Misalignment

sFrequency: 1xmrm and harmonics; 2xrpm
usually daminates.

s[irection: Radial.

sFPhase: approx. difference of 180° across
the coupling.

\/ibration characteristics
strongly depend of the type of
coupling and bearings.

Rolling Bearing Defects

sFrequency: impact rate related to each
defect and harmaonics, proportional to the
rotor angular speed; excitation of structural
resonances in the high frequency range.

oYibration usually localised
near bearing location.

Qil Film Bearings: Oil Whirl

sFrequency: 04 to 05=rpm.

slnsteacy vibration level.




Faults and symptoms 3/4

Fault Vibration Symptoms Remarks

Gear Defects sFrequency: gearmesh frequency «/ery high frequency for fast
(#teeth=rpm) and harmonics, usually | gears with mary teeth.
modulated by rotor angular speed sSear faults generally produce

lg‘* (sidebands are present). increment in the amplitude of
™ gearmesh harmonics or
sidebands.
Mechanical Looseness sFrequency: 1=mrm and harmonics; sRandaom vibration level.

sometimes sub-harmonics or half-
frequency harmonics, depending on
the type of [00SENESS.

Electrical Defects eFrequency: 1=mrm or 1 or 2xelectrical
system frequency.
Resonance sFrequency: rotor angular speed. sHigh wibration lewvel at each

e rotor critical speed.




Faults and symptoms 4/4

o — e
Fault Vibration Symptoms Remarks
Eccentricity sErequency: 1=mm of eccentric eBalancing eccentric rotors can
companent. reduce vibration level in one
s[irection: Radial. direction, but increasing it in

the orthogonal one.

Bent Shaft sFreqUENDY; 1Xmim; also 2=rpm if bent
near the coupling.

sDirection: Axial.

sPhase approx. difference of 180° at
the end bearings.

NOTES :

In general, # x rpm refers to the vibration component at the frequency of u# times the rotor
angular speed (n-per-revolution).

Direction indicates which usually is the direction of the highest vibration.




@ Signal Generation Models -
Basic Models

n,

Gear meshing excites periodic vibrations f
. — _ r2
at the Meshing frequency [ = Jal = 1,21,

s(t) =) x, sin27kf, t + ¢,) n,
Modulated by slliaﬁ induced vibrations and tooth-variability:
: s() =Y x|1+a,(t)] sin(27kf, t + 4, +b,(1))
a,(t) = Z a sin(27l;pfr t+a, )+ a, sin(2agf .t + B, )
b, (t) = Zb sin(2mpf,t +a,, )+ Zq:bkq sin(27gf ¢ + B, )

f.
%
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Amplitude modulations

AMPLITUDE MODULATION

p S EfMect of Faults on the Vibralion Spectrum
Tirr Domain requancy Domasn
B
e
e
I l Time Frequency
-} ]
. Ge () W
g (1)
LI u
I’ 1
2 - J . ) r -._.il
| g TAy l
l S 3¢ % :
9 11 el e
Gq 1N Local lault Fiat sideband spectrum
i (low level)
L)
e £y
Ry T f i i—
'l
—- 1
G 11} * Gy i
& Mot i : Distributed tault Higher level sidebands
Amplltudaq modulation results from: narrewly grouped
1. Excentricity

2. Perlodically varying tooth spacing
3. Fluctuating load

2. and 3. will also give Irequency modulation
(- ThF




@ Signal Generation Models -

Example: Collector Gear

Predicted spectral lines:

f(k9Q9p):kfm ierl ipfrz

Expected spectral lines

16 1(1,0,0) 3155.75
17;18 | f(1,1,0) 3029.5; (3282.0)°
19;20 | f(1,0,1) 3113.1;3198.4
21;22 | f(1,2,0) 2903.3; 3408.2
23;24 | f(1,0,2) 3070.5; 3241.1
25;26 | f(1,1,1) 2986.9; (3324.6)*
27,28 (3072.2)°;(3239.3)¢
aculty o

nl=25 £i1=12623
n2=74 fil=42.645
fin =3155.75



¥

Example (Con’t); CH-64
Transmission Gear Box?

Expected spectral lines

Collector Gear

Bevel Gear
1 1(1,0,0) 1108.9
2 12,0,0) 2217.8
3 113,0,0) 3326.7
4;5 f1,1,0)]|  1066.2; 1151.6
6;7 2,100 2175.2;2260.5
8:9 13,1,0) | 3284.0;3369.4
101 | f1,01)| (1093); (1126.5)
12:13 | f201)| 2200.2;2235.4
1415 | f3,0.1) | (3309.1); (3344.3)

hnion

n,~63

n=25 ¥ =1108

n3=26 fi3=42.645
nd=63 frd=17.6
fn2=1108.9



@ Signal Generation Models
Multiple Gears

n, Mym
Jr2 = oo = i >= 1)
E}: ? s 2 % %
S 5 oo
n, n,
Small Signal Assumption:

The vibrations generated by different sources,
which are associated with different gears,

add up
s(t) = s,(t)+s,(¢)
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@ Cross Gear-pair Interaction

® Modulation effect:

 Each gear pair generates vibrations and
torque variations
Ty ~sy Ty~s,
* Modulates by torque variations induced by

the other gear-pair
S =5,(1+Ks,)

aculty of Mechanical Engineering, Technion




@ Cross-gear pair modulation

Time-Averaged Signals

Single Period of Quill Shaft




@ Signal Generation Model
Predicted Spectral Lines

o o Flle=W42789

10 ; m 10

GO | ¢

Spectrum, Acc.# 08

G2 I U 1 DO R s

"Bl b

1050110011501200 2000 2100 2200 2300 2900 3000 3100 3200 3300 3400
Frequency, Hz Frequency, Hz Frequency, Hz

Vibrations induced by spiral bevel gear tooth meshing (1-15)
Vibrations induced by the collector gear tooth meshing (16-28)

Vibrations induced by cross gear pair interaction (29-32)

aculty of Mechanical Engineering, Technion




M Effect of Fault on spectral lines
(Faulty spiral bevel pinion)

Fault free | o0 File = wg;;l?ﬂz
: 18

Spectrum, Acc.# 08

L !

Faulty spiral bevel pinion

File = W42789

10" — 10" _ 10"
: : : 1a1s E
o . (:1) 5 sz ¢|2|7 ;
= . . . : : 1
= : : : : : |
g 10°F |-l 10° |
-11 : ; ; : :
= : ; ; : :
E : : : : :
&' m"w \,VW 10° MMMW 10
1050110011501200 2000 2100 2200 2300 2900 3000 3100 3200 3300 3400

Frequency, Hz Frequency, Hz Frequency, Hz
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Bearings

,_ﬂ_t'l-.
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E Rotational speeds and frequencies
for Roller-ball bearings

® fir, for = rotational freq of inner/outer race
® fc, b — rotational freq of the cage and rollers
.

A D

i _ _4 d
f.=0.5f.(1 Dcos,b’)+0.5f0r(1+ Dcos,L

d d d
/.= 0.55(1—Bcosﬂ)(1+500s,b’)(for _2

aculty of Mechanical Engineering, Technion




g Basic freq of different defects

3 Contact angle

d Ball/roller diameter

D Ball/roller pitch diameter
n Number of balls/rollers
N Speed of shaft

1. =O.Sfl.,,(l—icos,ﬁ)+O.5f0,,(l+icos,6
ZA | D D D

d d d
= O.SB(I—Bcosﬂ)(H—Bcos B)f,, —

. *k —
Damaged outer race: f =1 b (1 2 cos ) «— n .fc(for o
s 2*°% D |
Damaged inner race: f. = ‘;{;‘] (1+ % cosB) ¥ N *fc(jfzr =
D 8 1
"N d
* / : m o (] o = “
Damaged ball/roller f 380 ( [D:[ cos R) ‘ ﬁ,

Damaged cage: fc= 2—’:%5 (1 % cos [3) < f (f — O
c\Jor




E Vibration generation model for
Roller Bearing — I Spectral Lines

® A single defect with repetitive freq fi would

generate a signal X, (1) = Z g (t—jl fUE—j/ 7
o Where gi is the impact response to the defect

® The FT of the periodic signal x(1)
X.(f)= 2ﬂZX,k(f)5(f Kf:)

T:/2

X, = FTIg, (0= [g,()exp(- 2
~T;/2

 Xi(f) consists of spectra/ lines at k*fi

« The envelope of the spectrum dictated by the
structural freq response

aculty of Mechanical Engineering, Technion




E Vibration generation model for Rolle
Bearing — II Spectral Envelope

® Assuming impulse response of damped
sinusoids (one per mode):  g() =>4, exp(-at)sin(2f,
* Modes at resonance freq of the races

* Approximating the outer ring as a thin ring

¥ {ain}
Spectrum of localized defect

~

In summan: ﬂ'ﬂ ﬁﬁ ﬂﬂ .
° y! 1 .

* Localized defects gene;{gﬁrie per/oa/cmec;(ncnauons at the
freq of impacting.

 The effect is enhanced around structural resonant
freq

aculty of Mechanical Engineering, Technion




M Cepstrum Analysis

® Periodic

character of sl I T O g
Bearing and —
Gear signature I
spectra results in
periodic L
spectrum |

Fraquenc: Power Cepstrum

2NCY
Weighting

Logarithm | — IFFT

Liftzred Spectrum

MITETe

® Cepstrum can P 1 ik ciogram s g e o o i pefaing eteamn sy
reveal the
periodicity in the
spectrum
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Example — power spectrum and
Cepstrum of gearbox vibration signa,

190m
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10m
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890y

100y
S0u

10p
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" I 1 I I I I
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T T T T
d.5kK 1.0K 1.5k 2.0k 2.80K 3.0k
Setup W
Megsurement: CH.A SPECTRUM AVEARABING BOD lines
Trigger: FREE RUN
Averaging: LI a0d Svarlap: MAY
Freg. Span: 3_8kH=z af:  dHz =25dma st 1288
Weighting: HAMMING
ch. A v OIRECT rO.7Hz —uah 1.aov,/msae
ch.B: v OIRECT /0_7FHz  WON BALAT
MITE e
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STFT — Short Time Fourier
Transform

— 2 [

EFT rFET yEs

F(t,f)= jz x(tYh(t —t)exp(—j 2nft )dt

x(t):EihjZ [© F.(. fOht—1)exp(j2nt f1)df dt

E,=[ |h)] dt
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B:j

Order

Figure 3.3-1
Spectral maps
show variation in
the vibration
spectrum with
time or rpm.

Spectrogram —
time/freq analysis
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@ Spectral density of derived

processes

Relationship between the spectral density of
a Stationary process x and its derivatives:

First derivative of Auto-correlcaltion
R (t)=E[x(t)x(t+7)]=> ZRX (7) = E[x(t)x(t + 7)]

Second deré'\l/gtive of Auto-correlation
~R () =—R.(7)
dr

From Spectrum

R(7) = S (@)explior)ydo=

2

R()=~[ &S (w)exp(ior)d

2
T



@ Spectral density of derived

processes — con't

Relationship between the spectral density of
a Stationary process x and its derivatives:

Spectrum Sx (C()) _ 0)2 Sx (C())

Mean square values:
Mean square Velocity

E[x*]= Eo S.(w)dw = .‘: w’S (w)dw

Mean square Acceleration

E[X*] = Eo S.(w)dw = .‘: 'S (w)dw



¥

Cross spectral density

Cross spectral density of a pair of stationary
random processes
1
S, (@)=— R L(T)exp(—iwt)dr
27 Y-
Inverse relationship R, ,(7) = J_OO S, (w)exp(iwr)a

Anti-symmetric cross correlation implies
conjugate cross spectral

R,(0)=R, (-7)= S, (0)=S5, (0)
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E Transmission of random vibrations
thru stable linear systems

xq4(t)
Concept of W
ylt}
TN hy(0)Hy(w)

ensemble e £
) 2 A halthHyfw)
averaging for a . :L-v'—'» Sample 3
. 1
linear system 5& A »
. L N
subjected to » aiy _,.W
random o At Samlo 2

[ " X f"}
excitation ‘ m Y
y(t)
t .‘.\ bJﬂ.Hﬂm)
xa(t) — -
7 ha(t), Hafw)
r Sample 1

v = hO)x(t-0)d0+ | h(O)x,(t-0)do




M Transmission of random vibrations—
mean values

System response
v =[ h(O)x(t-0)do+ | h(0)x,(t—0)d0
Mean level (for stationary vibrations)
E[y]=Elx])[ h(0)d0+E[x,)| h,(0)d0
In terms of freq response

Ely]=Elx,]H (0)+ E[x, ]H,(0)



M Transmission of random vibrations—
Response Autocorrelation

System response
v =[ h(O)x(t-0)do+ | h(0)x,(t—0)d0

Autocorrelation
R, (7)=E[y(t)y(t+7)]

= [ [ m@)h(O)R, (-6, +86,)d0,do,
+ ._OO h(6,)h, (0, )Rxlxz (r—0,+06,)d6,do,

T ._OO h, (6,)h, (6, )Rx2x1 (r—6,+6,)d0,do,

+ ._OO h,(6)h,(0,)R, (t—6,+6,)d6,do,



M Transmission of random vibrations—
Spectrum

Spectrum
S, (0) = H, (0)H,(0)S, (o) + H, (0)H,(®)S, , (©)

+H,(0)H,()S,, (o) + H,(0)H,(0)S, (©)
Single excitation ,
N excitations S,(@)=|H(@) 'S, (@)

5, ()= ZNliH (o)H (o), () S . =S,
Uncorrelated excitations (zero cross spectral

densit N
Y S, (@)=Y |H,(@)S, (@)



M Transmission of random vibrations—
Mean Square Response

General case 1 1= j S, (w)dw

Single excitation gy, j ‘H(w)‘ S (w)dw
Uncorrelated excitations

Sum of mean square response due to each input
separately
However, when the excitations are
correlated the mean square response has to
be computed from Sy(w)




M Transmission of random vibrations—
Cross correlation

Cross correlation between output and one of
the inputs
PUS R (1) = ELx ()t + 0)]

R, (7)= j“; h(O)R, (r—0)dO+ j“; h(O)R, . (r—0)do

Special case: white noise x1, uncorrelated
with x2, i.e., R (r-0)=275,6(r-0) R (r-0)=
The auto-correlation is proportional to the
impulse response R, (7) =27, (7)
Can be used to evaluate impulse response
experimentally



M Transmission of random vibrations—
Cross spectral density

Cross-spectral density between the input and
the output is the FT of the cross correlation

R, (0)=[ W(OR, (r-0)d0+| h(O)R,, (r-0)d0
=n(7)QR (7)+h(T)®R, (7)

X1Xp

So ley (w) = H, (G))le (@) + H, (w)S?ﬁxz (@)
For uncorrelated inputs s (x) = H(w)S (o)
Xy X

Since Sx is real: S (w)= Szy (w)=H*(w)S (o)



¥

Transmission of random vibrations—
Probability distributions

No general method for obtaining the output pdf

Special case: Normal pdf
Sum of a pair of jointly Normal RV, y=y1+y2 is normally dist.

Extended to convolution - the response of a linear system to a
Normally distributed excitation is normally distributed

Extended to the case of multiple jointly Gaussian inputs =2 the
output process after transmission through a linear system will
also be jointly Normal

The derivative processes are also Normal distributed

System response may approximate to Normal if it is a
narrow band response derived from broad band
excitation.

CAUTION: poor at the tails of the distribution so
predictions of maximum excursions are questionable.



@ Characteristics of Narrow Band
Processes

Narrow band processes — response of resonant
systems excited by broad band noise

dy(t)

Amplification at resonant freq.
Attenuation at other frequencies
Vanishes at high freq since equivalent mass is high

E[%%]= LO S (w)dw = j 'S, ()do



E Characteristics of Stationary
Normal, Narrow Band Processes

(b) Ry (1)

a l- So —c -Autocorrelation
A0 M@%\ﬂfb‘%‘ sin(Awt /2)
Ll R, (r)=4S§, cos(w,

T

ply.y)=ply)-p(y)

y

Mean ofy  9,(0)=0=m, =E[y]=0
Mean of its derivative 9;(0)=0=m, =E[y]=0
Variance of y o, =E[y']1=2S,Aw
Variance of its derivative
o, = E[7*]= Lo 0'S (0)do =2S,0} Ao
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Characteristics of Stationary
Normal, Narrow Band Processes

Coefficient of correlation ETvi R (0
Recall Py = L] _ yy( )
O.O0. O O.
in(T):E[X(Z‘))'C(t—I—z')] Yoy yoy
dr
dRy(z')

But  E[yy]= 0 :if S, (w)dw=0

dr

So for any stationary random process y and its derivative are
uncorrelated, and the coeff of corr is zero

pdf 2
p(y)= : eXp[ Y J

\/_

10(y,y')—2 eXp[——[ D p(Y)p(y)
72'0 O.




g Narrow Band Processes —
Crossing Analysis

Positive slope crossing of y=a in tinge T for a
typical sample — denoted by n,(T)

""““1-*’*'“’—’-[— ———————————— Awﬂ.ﬁ____I__
J\v"unu qUﬂUnu?unuﬂUﬂUﬂUﬂUnUnUnUnUﬂUfUU J/\qug a
i- r

Mean for all samples: N, (T)=E[n, (T)]

For stationary process, the mean is proportional
toT, N (T)=v_.T where v isthe average freq



g Narrow Band Processes —
Crossing Analysis con'’t

Conditions of positive slope crossing of y=a in
time interval dt

Since a narrow band function y<a dy > a—y
IS smooth, the conditions are dt dt

The average freq. of positive crossing of y=a
v =] pla,3)idy
Gaussian processes 1 o, ,
V= ~exp(—a’ /20,
2T O
Special case of a=0 -2 statistical fensemble)
average freq for the processes (along time for

ergodic processes)




@ System identification — complementary
to the problem of analysis

Analysis: response predictions based on
Input
Frequency response function FRF H(w)

System identification: determine system FRF
from input output measurements
Based on experimentally acquired data,
Measurement aspects have to be considered
Actual identification methods uftilize sampled data
Usually presumes linear system
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Types of identification methods

Parameterization

Non-parameteric — no physical or mathematical description of the
system is obtained

Parameteric — estimates the parameters of a presumed
mathematical model

Excitation signal

Rich —enabling identification of the complete system response
Transients, periodic, random, stepped sine

Harmonic (sine excitation)

Assumptions about noise (uncertainties in the
measurements)

Additive white noise added to the response (output)



g Parametric ldentification based on

system realization

System realization: u(t)

x = Ax(t) + Bu(t) o

()

y =Cx(t)+ Du(?)

Laplace Transform (zero initial conditions

X(s)=[sI —A]"'BU(s)
Y(s)={C[s] — A]"' B+ D}U(s)

So, The Transfer function is

G(s)=C[s]-A]"'B+D H(w)=G(s = jo)



M Frequency response identification —
noiseless case

Based on the input output relationship:
Y(w)

XS i) L2, Y(0)= H(0)X(0) = H(w) = Yo
FRF: identified separately at each frequency

Impulse response: computed using inverse FT.

Effect of signal class

Transient excitation:
Both the excitation and response would be broadband,
A complete FRF can then be extracted from a single test..

The frequency range of the identification is dictated by the
richness of the excitation, i.e., by the region where excitation
energy exists.




M Frequency response identification —
noiseless case Con'’t

Effect of signal class

Sine excitation:
FRF is computed at a single frequency.
Stepped sine (pointer) 2 FRF computed step by step.

Random excitation:
Usually broadband, i.e. rich, so complete FRF be identified.
The computed FT X(w) and Y(w) are RV (with complex pdfs
with significant variance.

The resulting variance in the FRF can be reduced by
averaging different FRF estimates (and not the ratio of the

averaged FT as E[X(w)]=E[Y(w)]=0)

ooy 1 V(o)
H(w)_LlZﬂ:Xz(a))




g Frequency response identification —
output additive noise

popular model, (even if not always justifiea

X(w)

—»

H(w)

H(w)X(w) H(w)X(w)+N(w)
() .

N(a) T

In analogy with least-squares regression

H, (0)=

ZIL=1 Xl*(w)Yl (a)) _ ZIL=1 Sxyz(a)) _ ‘§xy
ZZL:I Xl* (@)X, (@) Z; S i (@) S

Ratio of cross-spectrum to auto-spectrum
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g Frequency response identification —
output additive noise - interpretation

Y(w) is decomposed
into two orthogonal

H(w)X(w)
components: >_7 I

N(w
Coherent part of the ()
response

Residual part
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Frequency response identification —
output additive noise - coherence

Analog to Coeff of determination in linear
regression ?

0<y*(w)<1

7(0))—S S

XX )Yy

Assesses the degree to which the response is
linearly related to the excitation

The part of the total output energy that is
attributed to linear effect of the input.

Determines the confidence in estimating the FRF
Estimated by

’\2 Xy

SS




g Frequency response identification —
output additive noise - coherence

The coherence function assesses the degree to
which the response is linearly related to excitatio

y*(w)=1 Indicates noiseless case
Trivia result for single pair of input/output signals
Trivia result for purely periodic excitation and response

»*(w)=0 indicates no relation

0 < y*(w) <1 may result from
Additive noise
Effect of other excitations
Non-linear effects
L ack of excitation



g Summary of system identification for
additive output noise

vov
Sampling
x(n)y YN
FFT

Spectra

SxX Syy Sxy

Sum

H,(0),7* (@)

The coherence function
IS evaluated
independently for
different frequencies.

The identification
result is considered

meaningful for frequency
ranges where the
coherence is high

unacceptable for others.



g Frequency response identification —
input additive noise

Includes noise in the input:
H(0)[X(0)+M(o)]

A©) ﬁ}‘ H(o) =
M(w)

In analogy with least-squares regression

Z; Yl* (0)Y (@) _ Z; Syyz(a)) _ gyy _ ﬁop (w)
Zlel Yl*(w)Xl (a)) ZZL=1 5 ;vxz(a)) §xy 7; 2

ﬁip(w) =

Computed from the same information and
general procedure as for output additive noise

Improper estimator would lead to bias errors.



g Alternative derivation: Spectral
relationships

For the constant parameter linear system with
single input: S (@) =| H(a))‘z S (o)

The cross spectra is: S, (@)= H()S,,(o)

So: S (0)=H (0)S, (0)

Since Sy(w) is real: S, (w)=H(®)S, (»)=H(w)S,,(
Given estimates of the spectra at discrete freq
wk, the FRF can be estimated as:

Most common (why later) Sxy (o
Alternatives H (o,)=H,,(0)= S (@
XX /
S (w S
Hl-p (a)k) . yy( k) Hac ((()k )‘2 _ Y (a)k)

- S,(®,) S (o)



@ Alternative derivation.: coherence

The estimated FRF can be used to calculate the
output spectra: S (w,)=H(w,)S, (o)
To what extent does this calculated output spectra

resemble the measure spectra:

Should agree well is assumptions hold (no noise, single
input, constant parameters linear system, unbiased)

Would differ due to nonlinearities, noise and extra input:
Assessed by the ‘ordinary coherence function’ defined E
the ratio

2

Xy

5 () o S(@) H)S, (o) |
7 (@) =

S (@,) S, (@) S(@) 8.8,

y

7/2(a)k) =



@ misleading coherence

Coherence based on single record (with no
averaging) is always unit, regardless of other
factors (linearity, noise, inputs)
T . T .
S (@)= 2_Xka Sy(@)=—X, Y,
T 27

T T v
Syx(a)k)~ YX Syy(a)k),vg Yk

2

N

So

w| X XY X
yi(w,)= C ek

S.S, S S X XYY,
Hence: Averagmg IS cr/t/ca/ [0 assess coherency

=1




@ Output noise

(@) =S, (©)+S,, (@)

Output noise n 2 Sy

Where S, (o) =|H (o) S,.(0)
So , CoherenkPower Spectru
S, (@) A \
S, (@) = -S..(@) = 72 ()5, ()
Hence S (@)
S, (@) S, ()-8, (o) S, (@)

i (@)= S, (®) Vi (@)= S, (@) S, ()

The coherence is the fractional portion of the output
spectrum of y(t) that is linearly due to x(t) and w.
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Input (measurement) noise

Input noise m (uncorrelated) 2s_(w)=S_(w)+S_(
Where s, (0)=|H(®)S,, (o) S, (0) = H(w)S,, (a
So the input spectrum is

S, ()

S (@) = 5 (@) =7 (@)S, (@)
ronce S.(@)-S§,,, () S, (@)
WO @ T s 5. (@)

NOTE: the coherence is preserved under linear
transformations



g Uncorrelated Input & Qutput
measurement noise

u Vv

Hw) '
S, (@) =S,.(@)=S,, (@) =0 .
My N X n

@ S.(0)=5,(@+S,,(0)2S5,,()

) S, (@)=, (®)+S,,(®)>S, (o)
(©) S, (0)=|H@) S, (@)

d S,(@)=35,(0)=H(®)S, (0)



g Uncorrelated Input & Qutput
measurement noise

S, (@)

The true coherence V2 () =

S (@)8,, (@)
The computed coherence S, (@)
A= (@S, @)
From (d) and (c)
S| =18 =|H[[S..]" =S..5.,

Hence

1 1
7)?);(&)) — Suuva — Suuva 1= Smm 1— Snn <1
AT (Suu+Smm)(Suu+Snn) Suu va

XX yy




@ Auto- and Cross-spectrum estimates

Auto-spectrum method for FRF estimation
5y (@)

Sxx (a))
Cross-spectrum method for FRF estimation
S, (@)

S ()

Sy (@) =H@)| S (@ — (©H@)

2
L=

2
L=

S (@=HS, (@ —Hw

The ratio gives the coherence:

Hol |8, )

H(w) S.(@)S, (o)

a

Coherence iess than unit implies FRF based on
cross-spectra is smaller than FRF based on autc

= 7 (@)




g Auto- and Cross-spectrum estimates -

effect of noise

Auto-spectrum method (a and b in e) 2 biased
even when Smm<<Suu

2_ va+Snn _‘H‘2 1+Snn/va
© S5 +S 1+S /S

uu mm

H ()

Cross-spectrum method (a and d in f) 2 unbiase
when Smm<<Suu regardless of Snn

-1
e e ML R
© S_+S 1+S /S S

Hence the cross-spectrum method is superior to
the auto-spectrum method!!!

H ()




@ Input noise passing thru system —
cc-estimate

Includes noise in the input: H(0)[X(0)*M(0)]

X(®) ?4 H(w) ’
M(w)

Special case s, (w)=H,S, +H,S,

Of 2 inputs S (@) = H(@){S (@) +S,, ()}
In many cases the noise is correlated with the

input so Sxm>0 . 5,()
True FRF: Su(@)+S,,(w)
Measured FRF Estimate is biased only
S (o) for correlated noise S ()
H_(0)="2 H, () =H (o) 1+
xy( ) Sxx (a)) > Y Sxx (a))



g Input noise passing thru system —
bias ‘output noise’ estimate

Includes noise in the input; H(o)[X(0)+M(c
X .
S, (0)=HHS, +HH,S, ) ? 1 H) '
+H;H1Sx2xl +H;H2Sx2 M(W)
Special case  S,(@)=|H (@) {S, +S,, +S,. +S,.}
Of 2 inputs S (@) = H(@){S,.(0) +S,,,(0)}
14 7 S
Method 2 H () = (@)
True FRF: S () S (@)+S§, (o)
Measured FRF H, (0)=—>
= S (@)
Estimate is biased g (a))_ S \
even for (*) H, (0)=H(o) 1+ ym = (*)H ()| 1 + 2z (@
uncorrelated noise - S5,(@) | S (@)
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Error mechanisms and their
control

The general types of errors are similar to
those occurring in Spectral Analysis:

Bias errors

Random errors

Leakage
The coherence function is an essential
quantifier of the identification - Errors have
to be considered both for the FRF and the

coherence



Bias errors

Considered as the most severe error,
especially if resonance peaks in the FRF are
underestimated.

Sources of bias errors:
Insufficient frequency resolution (as in Spectral
analysis)
For small damping ration & BW = 2& n
Required Freq resolution BW

A ==

Bias error in coherence -> underestimated, especially at
resonance when using a window



@ Bias errors — Con'’t

Sources of bias errors:

Additive noise sources
Affects magnitude (not phase)

S

XX

H_ ()= \H(co)\(l 4 Do j

Decreases coherence. 2

7/:

u

—L}

Hw)
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Bias errors

Considered as the most severe error,
especially if resonance peaks in the
FRF are underestimated.

Sources of bias errors:

Insufficient frequency resolution (as in
Spectral analysis)

Additive noise sources.
Unmonitored additional excitations
delays between excitation and response



g Alternative derivation: Spectra
relationships

For the constant parameter linear system with
two inputs and one output:

S, (w)= Hl* (0)H, (a))le (@) + Hl* (0)H, (a))lexz (@)
+H,(0)H,()S, , (o) +H,(0)H,(0)S, (©)
The cross spectra are:

S, (w)=H, (W)le (0)+H, (a))lexz (@)

X1y
o Su(@=H(@5, (@) H @5,
8@ =H (@S, () H(@)S,,(0)

Since Sy(w) is real:

S, (@) =H(0)S, (o) + H,(0)S, (o) = H (0)S,, (0)+H,(@)S,, (

Xy X2 yXx YX,



g Alternative derivation: Spectra
relationships 2 estimated FRF

Given estimates of the spectra and cross
spectra at discrete freq wk, the FRF can be
estimated as:

For two inputs and one output:

Sx Sx _SxxSx2 lesz _Sx2x1Sx1
Hl(a)k): 2 1V 1X2 Y Hz(a)k): Y Y

S.S. —S. .S S. S, —S,..S

Xy Xy XXy 7 XXy Xy X X1 Xy

For single input:

Sxy
H(w,)= <

X



g Alternative derivation: Spectra
relationships = coherence

The estimated FRF can be used to calculate the
output specitra:
S, (o)=H(®,)S,, (o)+H,(0,)S,, (&)

To what extent does this calculated output
spectra resemble the measure spectra:
Should agree well is assumptions hold (no noise, only
2 inputs, constant parameters linear system)
Would differ due to nonlinearities, noise and extra
inputs
Assessed by the ‘multiple coherence function’ definec
by the ratio )= 5 (o)
S, (@)




g Alternative derivation: Spectra
relationships = coherence

Multiple goherence function:
S, (@) B Hl(a)k)Syxl (@) "‘Hz(a)k)Sm (@)

S,(@,) S, (@,)
2 2
+S |5, [ —2Refs, 5, 5, |

WXL XXy Xy

S,(S,S. — S, .S, )

X177 x, X1x27 X 5 x|

For the single input case the ordinary coherence
function is:

7/2(5%) =

S |s

L™ yx,

2

§y(wk) _ H(wk)Syx(a)k) . Syx
S(@)  S(o) 8.8,

7/2(a)k) =



g System Identification
Multiple input single output

For the constant parameter linear system with
two inputs and one output:

S, (0)= H (0)H,(0)S, (0)+ H (0)H,(@)S, , (@)
+H,(0)H,()S, , (o) +H,(0)H,(0)S, (©)
The cross spectra are:
S, (@) =H (0)S, (0)+H,(0)S, ()

o Su(@=H(@5, (@) H @), @
8@ =H (@S, () H(@)S,,(0)

Since Sy(w) is real:

S, (@) =H(0)S, (o) + H,(0)S, (o) = H (0)S,, (0)+H,(@)S,, (

Xy X2 yXx YX,



g Alternative derivation: Spectra
relationships 2 estimated FRF

Given estimates of the spectra and cross
spectra at discrete freq wk, the FRF can be
estimated as:

For two inputs and one output:

_ S S _
1 S O R
H (a) ) = Sx2 ley - lexz szy . ley | Sx2x2 ley _
| k/J — T 9
sz le _ Sx1x2 Sx2x1 lexl 1—- 7/x1x2

For single (or uncorrelated) input: (@) = Sﬂ

X1X



g Alternative derivation: Spectra
relationships = coherence

The estimated FRF can be used to calculate the
output specitra:
S, (o)=H(®,)S,, (o)+H,(0,)S,, (&)

To what extent does this calculated output
spectra resemble the measure spectra:

Should agree well is assumptions hold (no noise, only
2 inputs, constant parameters linear system)

Would differ due to nonlinearities, noise and extra

inputs
Assessed by the ‘multiple coherence function’ definec
by the ratio S, (@)

y (o) = Sy(a)k)



g Alternative derivation: Spectra
relationships = coherence

Multiple coherence function:
S, (w) H\(0)S, (0)+H,(,)S,, (&)

X

S,(@,) S, (@,)
2 2
+S |5, [ —2Refs, 5, 5, |

WXL XXy Xy

S,(S,S. — S, .S, )

X177 x, X1x27 X 5 x|

7/2(5%) =

S |s

1

YXo

For the single input case the ordinary coherence
function is:

2

§y(wk) _ H(wk)Syx(a)k) . Syx
S(@)  S(w) 8.8,

7/2(a)k) =
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Error mechanisms and their
control

The general types of errors are similar to
those occurring in Spectral Analysis:

Bias errors - Considered as the most severe
error, especially if resonance peaks in the FRF
are underestimated.

Random errors
Leakage

The coherence function is an essential
quantifier of the identification
Coherence function should be estimated too

Errors have to be considered both for the FRF and
the coherence
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Bias errors

Considered as the most severe error,
especially if resonance peaks in the FRF are
underestimated.

Sources of bias errors:

Insufficient frequency resolution (as in Spectral
analysis)

Uncorrelated measurement input noise Not going
thru system

Correlated unmonitored excitations
Nonlineatrities
delays between excitation and response



Bias errors

Sources of bias errors:
Insufficient frequency resolution (as in

Spectral analysis) \
Bias Error in auto/ cross spectrum (Bendat p76) ¢, = —I[Be

» Be = spectral resolution bw = 1/T (Record time!!!) 3\ B, ,

« Br = Half point bw of spectral peak B, =Af =

— For small damping ratio & B =BW =2

_BW — A0
Required Freq resolution B = 4 &y & 4%

Bias error in coherence -> underestimated, especially

at resonance when not using a window (due to
leakage)



@ Bias errors — Con'’t

Sources of bias error
Uncorrelated measurement
input noise Not going thru system _

<

HOw)

- »x

Affects magnitude (not phase)
FRF is underestimated

‘ﬁl (w)‘ = ‘Ho (0))‘(1 + o j

\)

XX

Decreases coherence.

-1 -1
o) [
Sxx Syy




@ Bias errors — Con'’t

Sources of bias error -
Correlated unmonitored excitations: N Xz 5 zy

2 inputs, x and z, thru diff paths: S S S

H,(@) 11—y, H®)= Sxy - I_Z;zxy

Hreal (a)k ) 1 sz Szy N

_ Bias only for correlated
tation!!!
SZZ Sxy ) excitation!!.

Uncorrelated excitation appear as uncorrelated op
noise and cause no bias (but contribute to random err)

Correlated input z thru same path: Sxy =H {5, +5,

1 Hmeas SXZ

—_— Hl — i — 1 +
Sxx {1+sz/Sxx} Hreal Sxx




@ Bias errors — Averaging Note

Sources of bias error
Note: The estimated FRF is based on averaging

the FRF estimated from single records:

S, (@)

Sxy (@)

E[ smgle( k)] [S (a))

So A

E

I# =

S (@)

E[Hsingle (a)k )] a ﬁavg (a)k)

— Havg (a)k)

But this bias is usually negligible when using

many averages



@ Bias errors — Con'’t

Sources of bias error

Nonlinearities

The estimates produce only a linear
approximation to the system response

HOWEVER, the result is the best possible linear
approximation in the least squares sense for the
system response function UNDER THE
SPECIFED INPT CONDITIONS - MOTIVEATES
estimating the FRF of systems with suspected
non-linearities using natural inputs or simulated
natural inputs rather than arbitrary lab input



@ Bias Errors in Coherence estimate

Bias error produce indicative anomalies in the
measured coherence function

Guidelines (based on experience and common sense)

7o (@) falls broadly over a freq range where ‘H (a))‘
is not small and Gxx is relatively small >> input

noise due to meas noise
Will also cause random error

7+.,(@) notches sharply at a freq where
displays a sharp peak or notch -2 inadequate
spectral resolution (or nonlinearities at peaks of

Resolve by repeating with improved resolution.
Increased coherence confirms resolution issue;
otherwise, nonlinearities should be studied

ﬁ(a))‘
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Random Errors

Sources

Measurement noise
Output noise
Input noise

Unmonitored excitations (uncorrelated with the
measured input) — seems like output meas noise

Nonlinearities

Related to

2
The ip/op coherence function 7 x (@)
Number of averages (in spectral estimates) n,
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Random Errors

Normalized random error in the
estimated ) 1

Autospectrum xx \/a

S

xy

m(a))\\f

Cross-spectrum

Gain factor \/ 1— ]/xy (w)
Phase V(@) 20

A(@)] = sin” {2 H ()1}



@ Random Errors — con’t

Normalized random error in the estimated
Coherence U 2 \/1_ ﬁy ()
T @),

Low coherence 2 large random error

Lab vs Field conditions

In lab: Experiments designed with well defined
single input and low meas. noise So coherence is
close to one >>modest number of averages

In field: coherence might be low especially with
natural inputs




@ Random Errors - guidelines

Guidelines (based on experience and common sense)

Q?jy (w)falls broadly over a freq range where ‘H (@)
Is small >> output noise due to meas. noise or
contributions of uncorrelated input

75 (@) fapis broadly over a freq range where ‘H (a))‘
is not small and Gxx is relatively small >> input
noise due to meas noise

Will also cause bias error

Sharply peaked gain factors (at resonance), 7, (@)
will usually peak sharply too (high SNR)
No peak, or even notches>>
* Non-linearties
* Resolution Bias error
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Signal Processing: Modal Analysis



Modal description of vibrating system

—A— A
.. —+

Two deflection shapes exist for each eigenfrequency.
They are described by the modal matrix

Deflection shapes are eigenvectors of modal matrix

Lp:. (clx))j =[(®), (@) ]

@.~[3.]

The eigenvalue matrix describes natural frequencies

5 3

A= @

Signal Processing: Modal Analysis
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IMPACT RESPONSE
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Signal Processing: Modal Analysis



mi +ox +c,(X —x,)+kx +k,(x —x,)=f

m,¥, +(c, +¢; )X, +(k, + k3 )x, —c, X, —k,x, = £,
m, + (¢ +c,) )% +(k +k )x —c,x, —kx, = f

mzxz +Cz(x2 —X1)+k3x2 +k2(x2 _xl):fz

m, 0 c,+c, —c, k,+k, —k,
[MJ=L) } [C]{ } [k]{ }
m2

-, c, +c; -k, k, +k,

X : X, . X, /i
(x)=[ j(x)=[.j(x)=(..j (f)=( j
X, Xy Xy /5

General: [m/(3)+[c](3)+[k](x)=(])
m(NxN) ¢(NxN) x(Nx1) f(Nx1)
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Undamped system:
[c] =0
(X)=-0"(y)exp( jot)

o’ [m](y)+[k](y)=0

—Mmj(y)+[k](y)=0

{[m] ™ [k]=A[1]}(w)=0

», eigenvalue

(y) eigenvector
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m;=5kgm,=10kg k, =k, =2N/m ky = 4N/ m
s 0T[4 2] 10
0 10 -2 6 0 1

A =2/5 o, =(2/5)""  [rad/sec]

—0  (4/5-2)(3/5-A)—(=1/5)(=2/5)=0

A, =1 0, =1 [rad / sec]
4/5-2/5 =2/5 0
A =o; =2/5 Vi) _
-1/5 3/5-25|\wy,, 0
2/5 vy, =2/5y,, =0
Vi =Wy
(v) :[Wn}:(q’n)
“|]21 \ljll
\|]12
hy=0; =1 (W) =| 1
_EWD
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Multi Degree of Freedom Models

® Mode Shape

(Bpo)] {x}, ={0} (1)

x} = {¢} mode shape for mode # r

Example: 5
I 0,00
s o ,07
-:‘.':"-"' A7
{¢} - ,33
1 Svey 50
2 o 67
1,00
0,00

2 - ! 128
- S 4

2— P i > =X il

~ £ 3 1 ;0'0

{v} < -
’ é . \“s . \‘:‘\ 67
~=T ’ 0,00

-.50

{¢}], is solution for homogenous
equation (1), i.e. only the relative
deflections are found
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A 7&7"; (\V)iT [m](\V)J =0

)T [k](y), =0 Weighted Orthogonality

relations
A=A, (V) [m](y) =M,
(\V),T[k](\lj)z - Ki

[v]"[m][y]=| M,

L . Generalized mass and
stiffness

[v]'[k][v]=] K

K/M, = O
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1/2 1
o, =(2/5)"" set y, =1 (Wl:(j

O 0

1
K1:(,012M1:6 (1)2 =1 Set \|]12:1 (\V)zz _l
2
T
1 - 1 =M, =15/2
2 2

K, =M, =15/2
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M =1
K, =o;M, = Mass normalized
o = (2/5)" (dm) {5 OMd)“]:MIZI eigenvectors
o, ) |0 10|,
¢11:¢21
(V1715
(), _(—Tlsj
(%ﬂs oM%j
®, =1 =M, =1
¢, ) [0 10]\D,,
o), - J2/15
1 >l 20.542/15
(¢)i=ﬁ(\lf)i
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Generalized
coordinates

[v]=[(V)...(v,)...(w),]
(x)=[v]q qg=[y] (x)

[m](X)+[k](x)=(])
[v]' [m][w](G)+[vw] [k][w](q)=[v](f)
[M](G)+[K](q)=[w]"(f)

MG +Kgq, = (W)z(f) = fz

. (W) (f)
o = /M = ,
it ong, = 1/M, (W) [m](y)

g; + (Dizqz' = fz = ((I))IT(f)
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15 0
[w] [mifvi=|, 1
6 0
[v]'[k] [v]=|, 15

o e ao ) 20
+ + 15 = |
0 15/2] \4) |O S \a) |1 5 \f

15.. 15 1, Uncoupling of equations

o4 +7% =/ )
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mi + kx = fexp( jot)

(k—o'm)x =

{[k]-o*[m]}(x)=(f)

[H](x)=

[H]" =[k]

[6] [H] ' [6]=[6] [k][d] =0 [6]" [m][$]=| o -

[H]=[0¢]

/ Transfer Function approach

(f)  (x)=[H]([)

~'[m]
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(x)

0
’xl (1)11
X | :
xN _(I)Nl

X = (d)il(l)iZ .

iy

uJf
b5,

O,

¢12

(I)lz (I)IN B

(I)NN_ -

e
(I)kZ

Oy

‘-1_(|)11 (I)Zl (I)Nl 0
0, :
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- (I)IN (I)NN_

S
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Summary:
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Frequency Response Function and Modal Parameters

® Mode Shapes from Quadrature Picking
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Modal Analysis Introduction

Modal Behaviour

® The dynamic response of a structure can
be decomposed into a discrete set of
independent particular motions

® These motions are called Modes of
Vibration

® A Mode is described by the Modal
Parameters:-
* Natural Frequency & Damping
* Mode Shape

1 1

x(yt) = ay(t) {4} +qzm{¢]2+qa{t}{¢]+---+qn(t)[¢}
1 3

® Modal Analysis is the process of
determining the modal parameters

and ultimately to

® Create a mathematical Model

Signal Processing: Modal Analysis




Modal Analysis Introduction

® Mathematical Models

e Wave Equation

yr DB ar
TTTT a? 62 gz_y' )
‘ L e [ERGEme G
X

[m] {%} + [e] {x} + (K] {x} -

y .
‘/ c—— %/"2 [k]2><2
2 . X

’ "o

% Apx - Ko
ﬁ —X

[m] {x} + (k] {x} = {f}
e Experimental Modal Model
{X} = [H] {F}

an ), Wi 0
M =2 jlla,{—j}wd, 4

841
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The Modal Transformation

® Fourier - vs. Modal Transformation
Fourier

x(t) X(w)

- 1 hllln..

time ’ freq.
N/2

xm= 3 Xke N

k

N/2

°F Xt =[] {X(w)} = T sin (wpt) X X,

Modal

k

x(t)

physical
space

modal space

X(n) = ¢nr © Qe

or  {x=(e)fa} = % 4], -

r=1

Imagine:

=[] and @ ={(])-]
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Experimental Modal Analysis

Conduct test excitation/response

Compute transfer functions FRFs

Extract modal parameters from FRFs

A

Hik _ i d)ird)kr _ Z v “tik

2 2 . o 2 2 .2
o O -0 +j2e 00 T OO -0 +jE00

rAik = (I)ir(l)kr
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SDOF - Peak method

H. = Aik
Kol (0/,) +2/5,0/o,]

r

®;  where H peaks

& 3 db frequencies W), O
&=
Assuming & <<l, o= o,
[H(y) =
28,0;
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SDOF - circle method

o, maximum angular spacing

»Re
Wy —

=0

& =

Dr=-t ik
26,07

Note: Frequencies, damping — global

Shapes - local
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MDOF - complex exponentail fit

hy (1) = Z rhik (V)

Ak

WSin[wr(l —£)! ]

rhik(t) =
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Finite Element Model of Disc Head e

Flg. 8 Finlle oloment modsl of readiwilte head suspension

342.9 He
Flg. 7 Experimental

344.1 Hz

. {lel) and numarical (¢
head vibrallon tesl (Compllance Madas) S0P Sese pheps . ok

Frequency Response Function (FRF) of head

2 8

Cantllever

Amplitude (40}
s

o 2

=]
2
g

Frequency (Hz)

Bode Plot
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rAik -
rAjj
TRANSFER FUNCTIONS
Hy M My
H

MODAL FUNCTIONS

synthesize H; from H,; H, and H;
VALIDATION

(response moved)
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‘H;; - Hy |
H g2k H
[H]=| ! 2k ' N |« moving excitation
i Hi Hyn
T

moving response

Moving excitation: Impact testing

Moving response: Shaker

Mathematical equivalence does not imply technology equivalence!
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Modal Analysis applications

Model updating
Structural modifications
Diagnostics

Force evaluation via response
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CORRECTION
ERS

& PARAMET

e

ANALYSIS
(MODEL)

EXPERIMENTALLY
DERIVED MODE
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STRUCTURAL MODIFICATIONS

{[m]+[Am])(%) + {e]+ [Acl}(¥) + [K]+[AkTH(x) = (f)

Am
Ac
Ak

2t |+[0"][Ac][4]
\

[M1(§)+[€1(9) +[K (@) =[¢]" (/)

[C]=

Find eigensolution for

Signal Processing: Modal Analysis
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Diagnostics

Change in Modal parameters
Frequencies (cracks etc)

Type (and changes) of deflection shapes
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Force evaluation via response

[X]exp(jor) =[H]( f)exp(jor)

() =[H]'(X)exp(jor)

Problem often ill conditioned

Appropriate numerical approaches needed
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Model Based Signal Processing

Vz Fourier ( which is non parametric )

Signal Processing: Model based



Signal modeling:

Consider a signal x(iAT), withi=0,1 ... n.
It may be possible to model the signal with a number of
parameters p, where p <n.

Signal modeling is thus concerned with the
representation of signals in an efficient manner.

Applications of such signal models include data
compression, signal prediction, classification,
diagnostics and spectral analysis techniques.

Signal Processing: Model based




25

w10 PSD, 100 averages
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512 data points 512*1000 data points
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1
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1
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Data reduction problem
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Measured signal > X Modeling of Signals

Random
Whitenoise e ——{ Model — § =S
Deterministic

Im pulse o(t) ——» Model | — =
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Signal Models

1. MA — Moving Average
All zero

x;=¢; tbe_ +bye,

H(z)=B(z)

d .
H(z)=B(z)=b,+bz" +bz” +...= Z b,z"
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2. AR — Autoregressive
All Pole

~1)

X, =aX, ,+tax ,+...c (a,

H(2) = : -—
A(Z) ag—a;z —a,z >.. Z
az’

i=0
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3. ARMA
Autoregressive Moving Average
Pole/zero

X, =aXx, , +a,X,,+...+¢ +be,  +bse , (b, =1

1+1

_B(®
A(2)

H(z)
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R(v) = E[x()x(t+7)] Correlation Functions

R(0) = E[x*()] = MS
R(-1)=R(7)

R(k) = E[x; x;.4]

S () = FIR ()] = j:Rxx(r) exp(—jor)dt

R, (1) = F[S,, (D]

Signal Processing: Model based



delays for correlation cormputations

1] 10 20 a0 41 50 5]

Autocorrelation Rxx (’C) — E[x(t)x(t + ’C)]
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5000

4000
3000
2000 r--

1000 -

-1000
0

Autocaorrelations, NBE and YWB

\:"‘u’ide Bénd

———————————————————————————————————————————————————

—————————————————————————————————————————————————

77777777777777777777777777777777777777777777777

spectra, NB and WWEB

__________________

/ Wide Band

i\larrow iﬂand E

————————————————————————————————————————

0 & 10 15 20 25 30 35 40 45 a0

Autocorrelations and PSD

Narrow and wideband signals
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X; =-a,x;_, —a,x; , +e,;

Computation of AR parameters

E[x, x;]+a E[x;, x, |+a,E[x;, x,,]=0
E[x, ,x;]=a,E[x, ,x;, ]+a,E[x;, x;, ,]=0
R(1)=-a, R(0)—a, R(1)
R(2)=-a, R(@i)—a,R(0)

E(x;x;1=-a, E[x;x; ]-a,E[x;x,,]+ E[x;e,]

R(0)=-a,R(1) -a,R2)+ E[-ax,,—a,x,, +e;)e,]
=-a,R(1)-a,R(2)+c’

1 2
!R(O) R(1) R(Z)] °
R(1) R(0) R(1)||a,
R(2) R(1) R(0)
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R(0) R R(p) |(! c’
R(1)  RO) R(p-Dfja |_|0

R(p) R(p-1) R(O) |\a, 0
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See =58 Model based Spectral Analysis

Sex = Sed H(jo) |2

H(z)=————

1+ Z aiz_i

i+l

H(](D) - H(Z){ z=exp(joAI')
_N+(p+1) 2
FPE() = (T 0 oe®)
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Time Signal

I HH\MH
i

fffff i =

AR Spectrum

77777777777777777777777777777777777777777777

FFFFFFFF
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Model Based Diagnostics

e —1 Model H, — v

The signal x , monitored from a no-fault
system 1s first modeled:

The result 1s H, (parameters) and white
noise variance G
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| .Apply and inverse filter

2. Check properties of resulting output

) Inverse filter
X i HO_I

v
O

Example: AR model

Inverse: e~x,ta,x, ;+a, X,
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Inverse filter output
If H=Ho , e has white noise properties

Else H=H, , i.e a change occured

Residual is investigated via inverse filter. Tests for
whiteness of e can be based on Spectrum or autocorrelation
of residual

The method can detect changes, not identify cause !
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exact model output

data no.
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inverse model output (~white noise) of exact & changed models

800 1000 120(

xll..“l'.‘lﬂllll.‘ﬂﬂ"m-_
N TV VIR VRO S Y VU

MaLL ] A e o WP ATV WY
Y ARAP VYT VY FTTY \ i o

800 1000 120(
data no.
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exact inverse model output (~white noise) frequency domain

li
Ui

W

I A N .
A sl L AL
A O Al

0
-300 -200 -100 0 100 200 300

changed inverse model output (~white noise) frequency domain
200

0
-300 -200 -100 0
frequency
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