Spectral Analysis

Rationale

- * Physical insight
- * Orthogonality (no crossproducts)
- * Pattern recognition
- * Algebraic (closed form) solutions, as with many transform based methods
- * Performance, Standards

Frequency domain presentation

Depends on signal class

* Transient

* Periodic

* Random

All computations via basic FFT

For a signal $x(i\Delta t)$ i=0,1....N We have computed the FFT

$$X(k\Delta f) = \sum_{i=0}^{N-1} x(i)exp(-j\frac{2\pi}{N})^{ik}$$
 k=0,1....N-1

Frequency scale $\Delta f = 1/(N\Delta t)$

$$f(k) = k\Delta f$$
 k=0,1.....N-1

Transients:

The DFT approximates samples of the continuous FT.

For EU

$X_{EU}(k\Delta f) = \Delta T X(k\Delta f) [V - \sec]$

Periodic signals:

$$X_{DFS} \quad (f_k) = \frac{1}{N} X(k) \qquad [V]$$

This is a 2 sided representationThe computation equals that of the DFT except for the factor of N. The results are directly in [Volts]For a one sided representation

$$X_{DFS} (f_{k}) = \frac{1}{N/2} X(k) [V]$$

For $k = 1 \dots (N/2 - 1)$

$$X_{DFS} (f_{k}) = \frac{1}{N} X(k) [V]$$

For $k = 0, k = N/2$

Assume that *p* integer periods are spanned by the signal length $N\Delta t$. Denoting the number of samples in the period by M

 $T_p = M\Delta t$

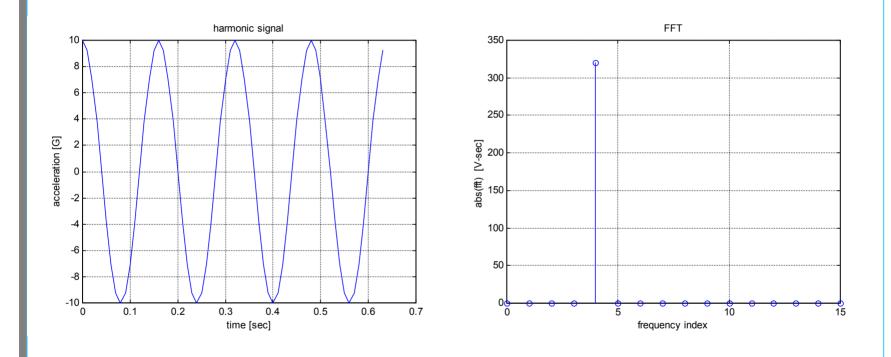
with T_p the actual period of the physical signal. The total signal length

 $N\Delta t = pM\Delta t$

and the location of f_p on the frequency scale is

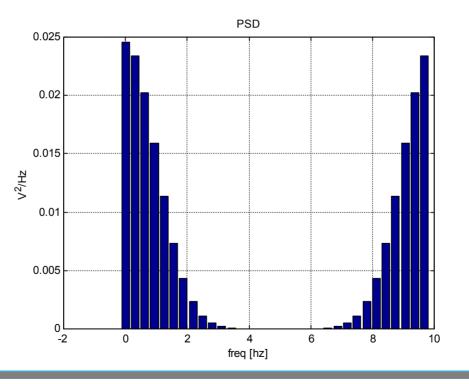
 $k\Delta f = f_p = 1/(M/\Delta t)$ $k=1/(M \Delta t \Delta f)=N/M=p$

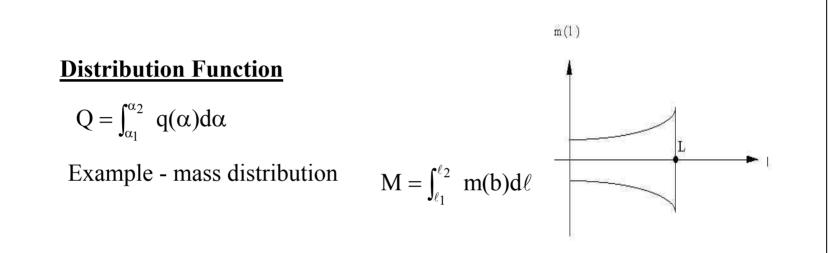
when an integral number of periods are spanned, the physical frequency coincide with one of the frequencies at which the DFS is computed.



Random continuous signals:

$$P = \int_{-\infty}^{\infty} S(f) df$$
$$P_{f_1 - f_2} = \int_{f_1}^{f_2} S(f) df \qquad S(k\Delta f) = \frac{\Delta T}{N} |X(k\Delta f)|^2$$





Example Power Distribution in the frequency domain PSD = Power Spectral Density $P = \int_{f_1}^{f_2} S(f) df$

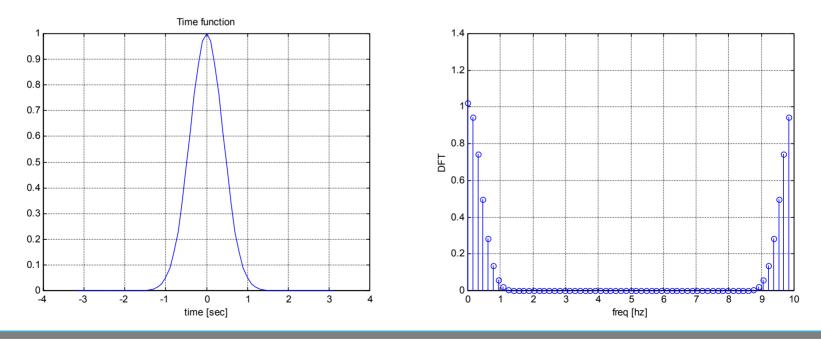
Spectral Analysis Engineering Units

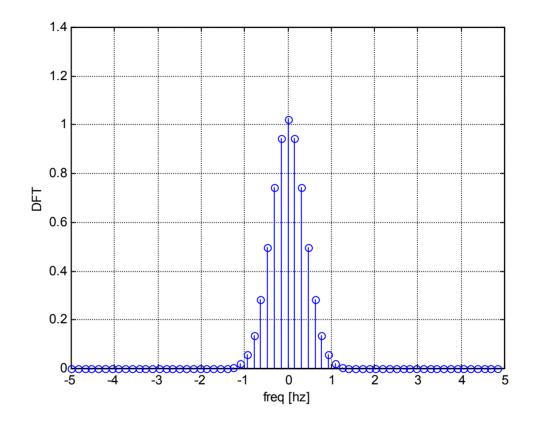
- x() en Volts
- PowerPSDEnergyESD• V^2 V^2/Hz $V^2.sec$ $V^2.sec/Hz=V^2.sec^2$
- Voltage units
- V V/\sqrt{Hz} V. \sqrt{sec} V.sec

Frequency scales, one and two sided presentations :

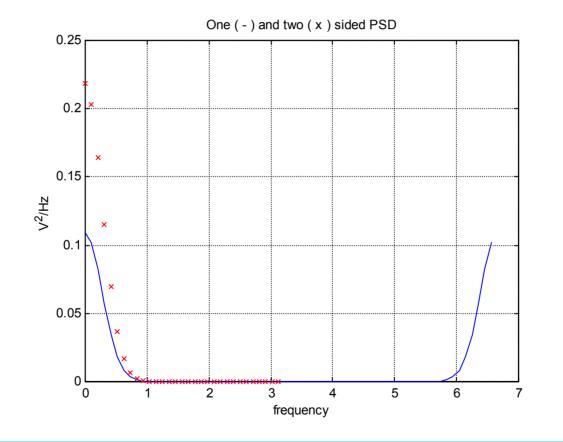
The (computational) resolution is $\Delta f=1/(N/\Delta t)$, the frequency scale is $f(k) = k\Delta f$ the locations $k = N-1, N, \dots, N/2$

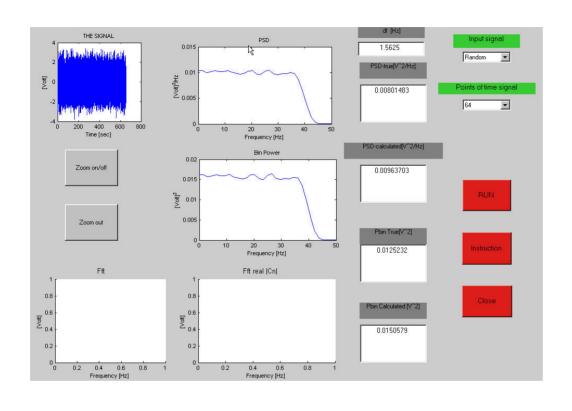
correspond to negative frequencies according to: X(-k)=X(N-k)

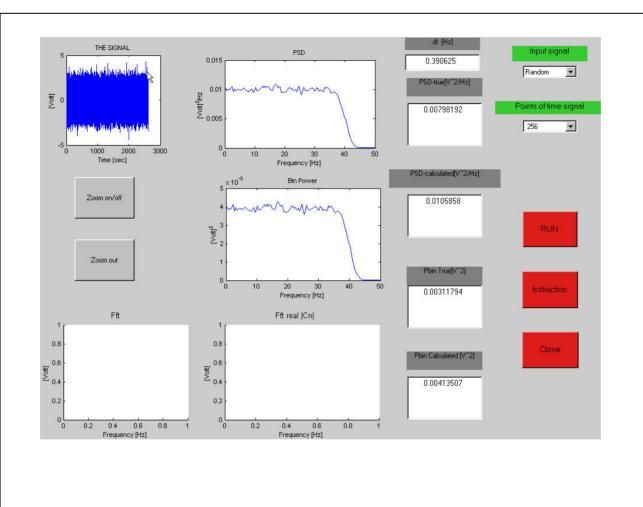




$$X_{1}(k) = \begin{cases} X(k) & k = 0, \ k = N/2 \\ 2X(k) & k = 1, 2...N/2 - 1 \end{cases} \quad G(k) = \begin{cases} S(k) & k = 0, \ k = N/2 \\ 2S(k) & k = 1, 2...\frac{N}{2} - 1 \end{cases}$$







The uncertainty principle :

For any reasonable definition

(Time duration) x (Frequency bandwidth) > C

given a signal length T_t, two components separated by

 $f_2 - f_1 = 1/T_t$ will not be separated by *any* signal

processing techniques.

Transient analysis and zero padding

The frequency resolution is $\Delta f_{transient} = \frac{1}{n\Delta T}$

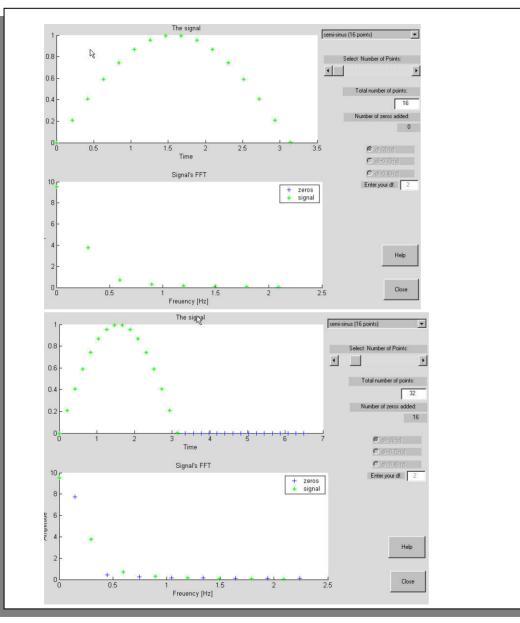
N-n zeros are now appended to the signal, resulting in total span of N points. The computational resolution is

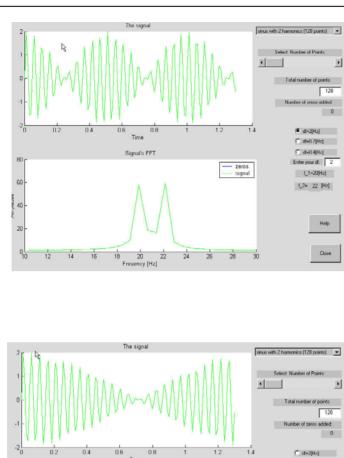
$$\Delta f = \frac{1}{N\Delta T} < \Delta f_{transient}$$

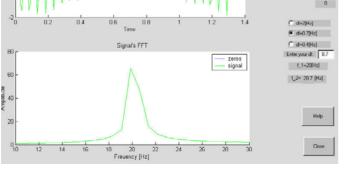
The DFT

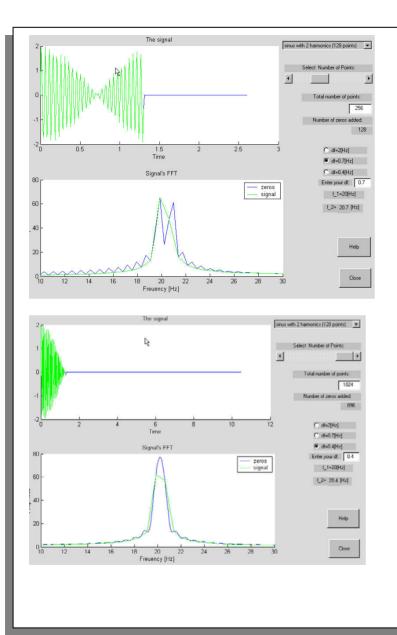
$$X(k) = \sum_{i=0}^{n-1} x(i) \exp(-j\frac{2\pi}{N})^{ik} + \sum_{i=n}^{N} 0 \exp(-j\frac{2\pi}{N})^{ik}$$

Nothing is contributed to X(k) by the second term.









Performance, errors and controls:

The main error mechanisms in spectral analysis

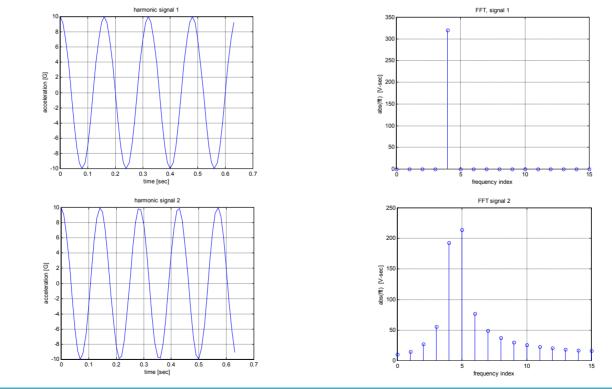
- •Alias errors
- •Leakage errors
- •Random errors
- •Bias errors

Periodic signals -Leakage

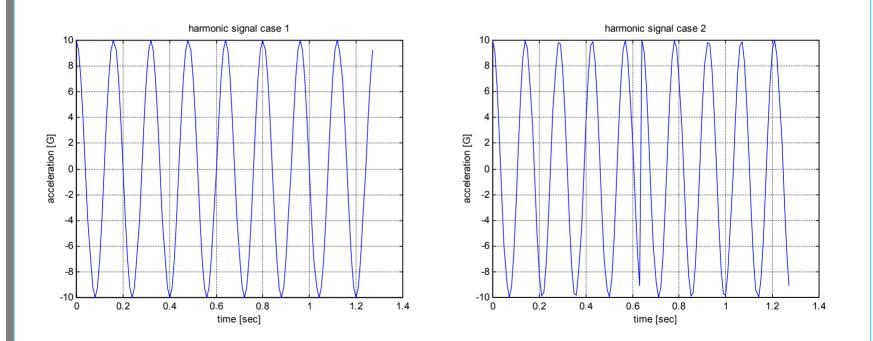
For periodic signals , with period $\mathrm{T}_\mathrm{p},$ the physical frequencies are

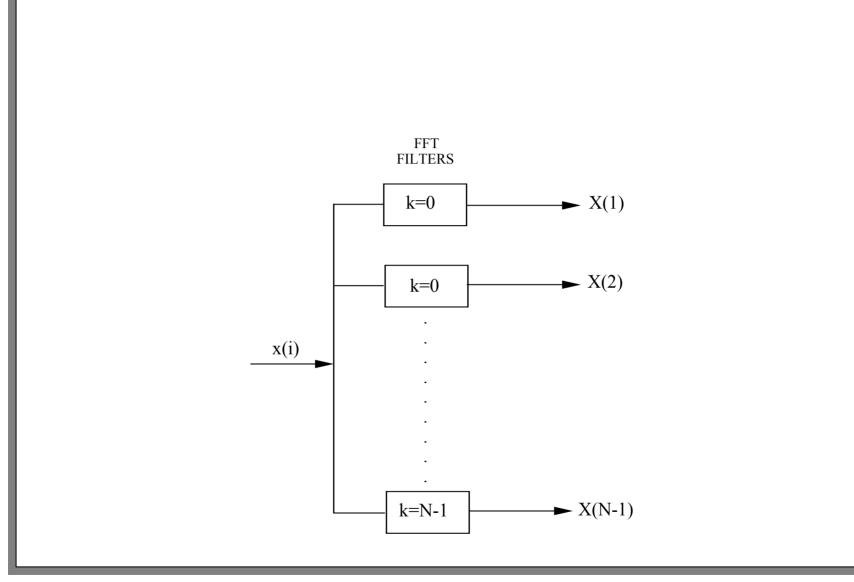
 k/T_p , with k=1,2...

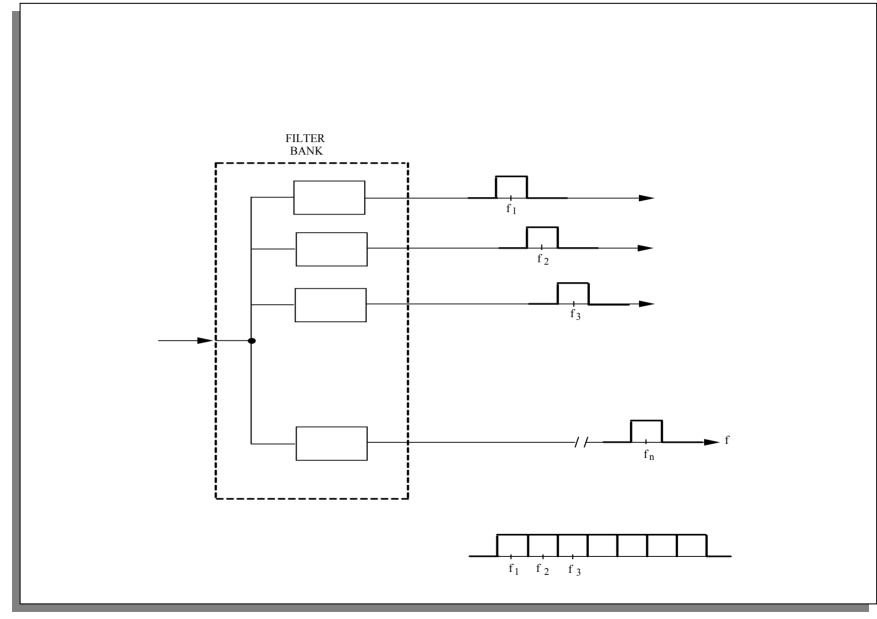
The computed frequencies will be located at $k\Delta f = k/(N\Delta t)$

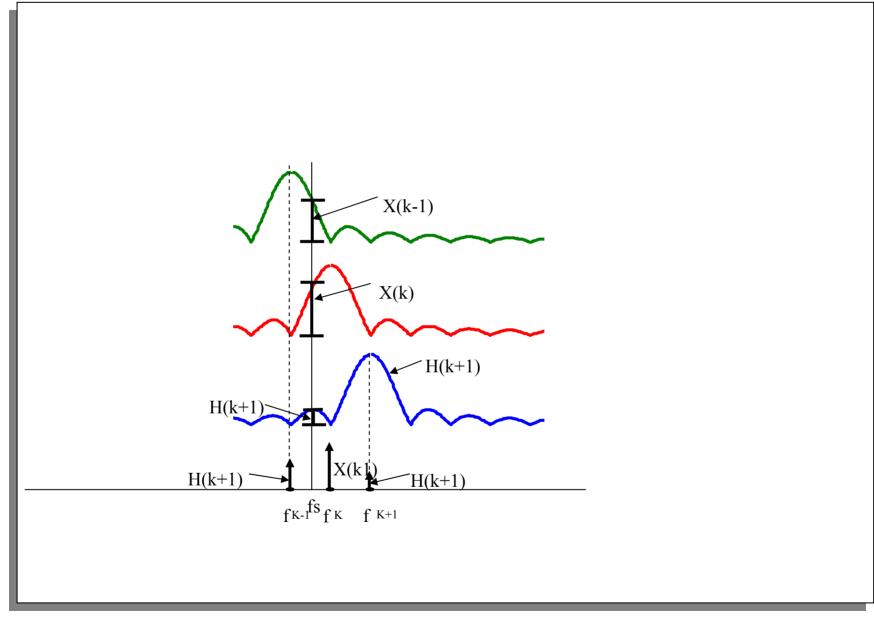


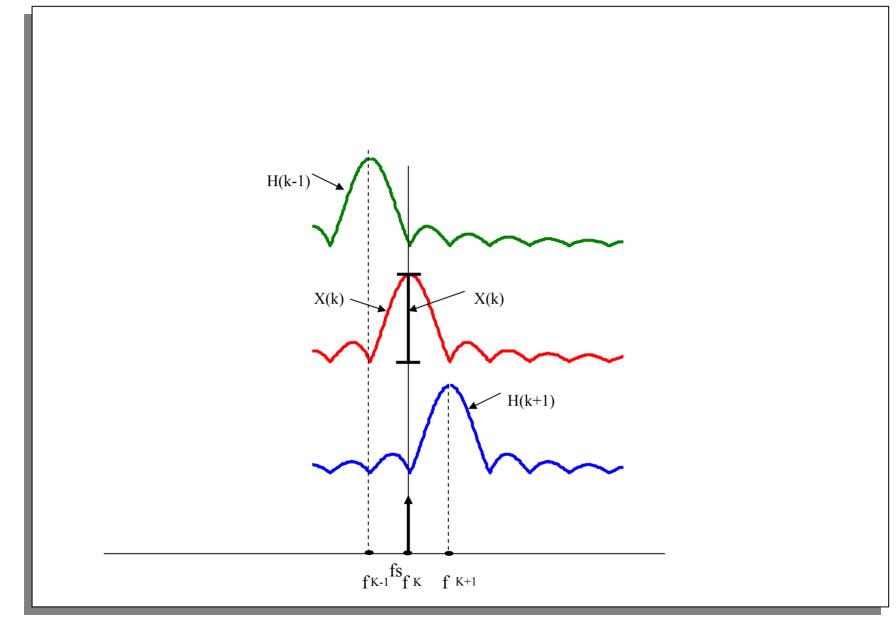
No discontinuities exist when extending periodically an harmonic (or any periodic) signal composed of an integer number of periods.



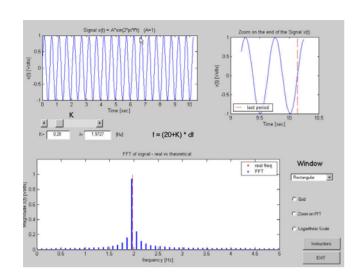


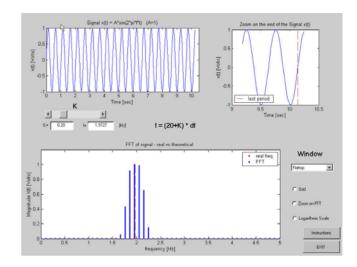


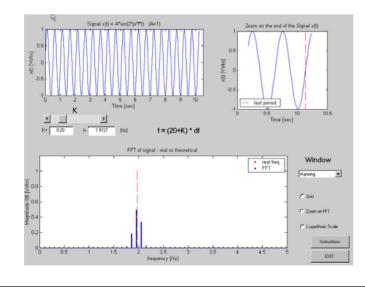




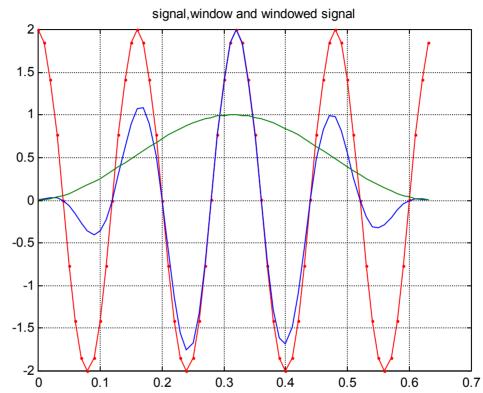
Signal Processing: Spectral Analysis







Give diminishing weights to the signals beginning and end by means of suitable windows.



The windowing is undertaken by multiplying the time signal by the appropriate window function.

x'(i)=w(i)x(i)