
Signal Processing: Spectral Analysis

Spectral Analysis
Rationale

* Physical insight

* Orthogonality (no crossproducts)

* Pattern recognition

* Algebraic (closed form) solutions, as with many

transform based methods

* Performance, Standards
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Frequency domain presentation

Depends on signal class

* Transient

* Periodic

* Random

All computations via basic FFT
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For a signal 
x(i∆t) i=0,1…..…N

We have computed the FFT

Frequency scale
∆f = 1/(N∆t)

f(k) =  k∆f k=0,1……..N-1
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For EU
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Transients:

The DFT approximates samples of the continuous FT.
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This is a 2 sided representationThe computation equals 
that of the DFT except for the factor of N. The results are 
directly in [Volts]For a one sided representation
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Assume that p integer periods are spanned by the signal  length  
N∆t. Denoting the number of samples in the period by M

Tp = M∆t  

with Tp the actual period of the physical signal. The total signal 
length

N∆t = pM∆t 

and the location of fp on the frequency scale is 

k∆f = fp = 1/(M/∆t)

k=1/(M ∆t ∆f)=N/M=p

when an integral number of periods are spanned , the physical 
frequency coincide with one of the frequencies at which the 
DFS is computed.
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Random continuous signals:
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Distribution Function
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Spectral Analysis
Engineering Units

• x( ) en Volts

• Power PSD Energy ESD
• V² V²/Hz V².sec V².sec/Hz=V².sec²

• Voltage units
• V V/√Hz V. √ sec V.sec
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Frequency scales, one and two sided presentations :

The (computational) resolution is ∆f=1/(N/∆t) , the frequency 
scale is  f(k) = k∆f
the locations k =  N-1,N,…….N/2
correspond to negative frequencies according to: X(-k)=X(N-k)  
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The uncertainty principle :

For any  reasonable definition

(Time duration) x ( Frequency bandwidth)  >  C

given a signal length Tt, two components separated by 

f2 - f1 = 1/Tt will not be separated by any signal 

processing techniques.
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The frequency resolution is 

Transient analysis and zero padding
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ftransient ∆

=∆
1

N-n zeros are now appended to the signal, resulting in total span 
of N points. The computational resolution  is 
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Nothing is contributed to X(k) by the second term.



Signal Processing: Spectral Analysis



Signal Processing: Spectral Analysis



Signal Processing: Spectral Analysis



Signal Processing: Spectral Analysis

Performance, errors and controls:

The main error mechanisms in spectral analysis 

•Alias errors

•Leakage errors

•Random errors

•Bias errors
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Periodic signals  -Leakage 
:For periodic signals , with period Tp, the physical frequencies 
are 

k/ Tp, with k=1,2…
The computed frequencies will be located at k∆f = k/(N∆t)
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No discontinuities exist when extending periodically an

harmonic (or any periodic) signal composed of an integer

number of periods.
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X(k1)

fsf f fK-1 K K+1

H(k+1)

X(k)

H(k+1)H(k+1)

H(k+1)

X(k-1)
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fsf f fK-1 K K+1

H(k+1)

X(k)X(k)

H(k-1)
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Give diminishing weights to the signals beginning and end by 
means of suitable windows.
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The windowing is undertaken by multiplying the time signal by 
the appropriate window function.

x’(i)=w(i)x(i)


	
	
	
	
	

