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Fourier methods

 Continous signals
FS — Fourier Series : Periodic

FT — (Integral) Fourier Transform: Transients
(aperiodic)

*Discrete (sampled) signals
DFS —Discrete Fourier Series

DFT — Discrete Fourier Transform
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Theory

Every deterministic periodic signal having period Ty can be decomposed using sinusoids and
cosinusoids with determined frequencies and amplitude.

This decomposition is_unigue but needs an infinite number of terms for an exact reconstruction of
the signal.

The decomposition allows the_spectral representation of the signal in amplitude with respect to the
frequency.

Different formulations of this decomposition are given and the differnet possible representation

(amplitude, power, phase).

The Parseval theorem indicating the equality between powers in the time and frequency domains
is also presented.
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Decomposition of a periodic function 1/3

Basic formulation :
Is a periodic signal of period Ty, x {1) =x {(t + T}, can be decomposed using the Fourier series :

T 2 znt St . | 2=nt
o ) L ¢ COS + b sin

a0 a0
a, and b, are unique coefficients of the series and given by :

T2

2 2

a, :F I x(t)cos( ?rjdt

0 -Tyi2 i
T, /2

b,== | x(®sin(

27R

t
di
Tu)

T

0 -, /2

One sees that this is formed by components whose frequencies are the integer multiple of the
fundamental frequency I /T Hz. These frequencies are called harmonics and are k. (I/Tp) Hz ; &

aq/ 2 represents the average value of the signal.

Remark : The Fourier series of an even function contains only cosinusoids, while the Foutier series of an
odd function contains only sinusoids.
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The convergence can be seen in the following figure.
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Decomposition of a periodic function 2/3

Complex formulation :

One can also represent the Fourier series in the complex domain by using the relationship :
e=cosH+j sing

On obtient la représentation complexe de la série de Fourier :

1 2 Lt
with  Co=n | stoe ™ a

0 -Tgi2

C» characterises both the amplitude and the phase of the component at the frequency s/ T,

Remark : The passage in the complex area infroduces the mathematical concept of negative
frequencies, it is fo fell that n is now faking values from -co fo +co

Back to the section
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Decomposition of a periodic function 3/3

Other formulation :

By defining the following variables :

M,=a?+b?

b
igp, ==

FI
One can rewrite the Fourier series decomposition under the form :

+oo
x(H) = a?”+ ZMH cos{zfr + gﬁnJ

n=1 ]

M, and ¢, are respectively the amplitude and the phase of the series terms and are related to the
coefficients of the complex representations by :

_ M.

_T

e

and arg(Cn) = - @¢n

Back to the section
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Unicity of the decomposition

Sinusoid and cosinusoid used for the decomposition in Fourier series are orthogonal functions,
this means that they verify the property :

T2
| cos(zint)sin(zmt)dt o forallm, n

-T2 0 Ty
This property allows to simplify considerably the derivation of the coefficients &, and b,.

We said that for all the formulations of the Fourier series the infinite sum of terms on the right side
of the equation converges to x{@ for every £. This is true excepted for points of discontinuity of
x{1). In these points, the infinite sum converges to the average of the right and the left limits of the
function value in the point of discontinuity.

A Fourier series is theoretically infinite. In practise, because such representation is impossible,
one uses a finite number of terms. One obtains thus a partial sum that represents the signal as
better as the number of terms is large.

For a signal having a discontinuity, the utilisation of a finite sum leads to the Gibb phenomenon
(existence of oscillations).

Back to the section
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Spectral representation

Several types of spectra represent a Fourier series, according to the value on the ordinate axes :

An amplitude spectrum is a layout of the amplitude M,, or |C,| with respect to the frequency.
A phase spectrum is a layout of the phase g, with respect to the frequency.
A power spectrum is a layout of M,? and |C,)? with respect to the frequency.

Remarks :

When the complex form of the Fourier series is used, the spectra traced for frequencies going from -« fo
+oo are symmettic (C, = C, for all n going from 0 fo +a).

Consequently, it is frequent that one prefers fo frace spectra with frequencies going from 0 to + and to
use the value 2C, in ordinates.

The Amplitude spectrum |C,| and the power spectrum |C,|? are even functions of the frequency.

Back to the section
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We may represent the decomposition by the
spectrum. The 2-D representation is of
magnitude at frequency location. The spectrum
of the periodic signal is discrete: only elements
with discrete frequencies nwo (n=1,3,.....)
exist.
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The spectrum corresponding to the complex Fourier
Series
in 2 sided shows positive and negative frequencies.
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The Parseval law

The periodic signal x{#) has an average power given by :
b
1 ¢ 2
Prgy- —— I x()" dt
TU 0

This can be expressed in function of the Fourier coefficients as :

Pry= oy 3 Mo _ 50
= n—1 w——rn

This result is called Parseval theorem and it exhibits a fundamental result. The power in the
temporal domain is equal to that in the spectral (frequency) domain.

+ j@
T
Note that if partial sums are used then Xr (f) = Z Cne :
=—N

and the average power of the partial sum becomes :
1 T 5 M .
—Jx, ®ar=3|C,|
TD 0 n=—A

Back to the section
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Spectrum of the three sinuses
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Sum with 2 component (s ) {in majenta ) and final sum with 3 component (s} {in blue }
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Sum with 15 component { s } {in majenta } and final sum with 16 component (s} {in blue )}
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Spectra of the vibratory signal { blue ) and
of the synthetised signal with 33 component(s) (red )

Vibratory signal ( blue } and
Synthesis with 33 component(s) { red }
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Spectra of the vibratory signal { blue ) and
of the synthetised signal with 46 component(s) (red )

Yibratory signal { blue ) and
Synthesis with 46 component(s) { red )
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Amplitude modulated Sinusoidal signal
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Frequency modulated sinusojdal signal
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The Fourier (Integral) Transform

« Tool for aperiodic (transient) signals.

« We start from a periodic signal, where we extend
periodically the transient signal to be analysed. We next let
the period increase to infinity, and in the limit. only the
transient remains. This is shown in figure , for the specific
case of a square pulse in the interval

As Tp grows, we are left in the limit, with a single pulse at the
origin.
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We analyse the periodic function via a Fourier
Series,

with a fundamental frequency of £,=1/T
As T, grows larger, frequencies n¥,=atembre
densily packed with a separation of

In the limit

I — oo A —0

p
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Denote nAf =7

The coefficients of the complex Fourier series

C, = limAf j_T;/fz x(t)exp(—j27 f, t)dt
T , > ®
Af =0

as Af > 0,nx f;, becomes continuous, and we will
write f instead of f,. We may define an amplitude
density

Tp/2
lim j x(t)exp(—j27 f)dt

-T,/2
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It can be shown that x(t) can be derived inversely via X(f). Thus we have
the Fourier Integral pair

x(t)= | X(f)exp(j27 fi)df

X(f)=]_ x(®)exp(j27 fi)dt

Often denoted symbolically by )C(t ) = X ( f )

Signal Processing:Fourier



The scaling theorem

If x(t) < X(f
then
x(at) <> 1 X (i)
a \a

For a>1 the time scale is
compressed
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The theorem states that, except for a normalizing
factor

1

a

the transform X is expanded in the frequency
domain.
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Fourier Transforms of periodic signals.

Fourier Transforms of periodic signals.

We may extend the concept of FT to power signals,
like periodic functions.

It can be shown that the FT of a cosine signal

cos(2f 1) > %[(ﬂf —f)ES )]
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The transform exists only at the discrete
frequencies = fo.

X(®)
Cos (2Tt )

A

//\ //\\ //\\ //\\ > ‘
VARVARVERVY

1/24
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1 Hertz Sinusoid
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Discrete Fourier Transform (DFT)

We start by discretizing the FT pair

. The line interval t > AT
The frequency interval f - « AT
The integral | -3
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Let us analyze a signal of duration T, .,
T . =NAT

total

The time intervalAT is chosen according to the
sampling theorem.

The frequency interval/ is chosen as the
reciprocal of the analyzed signal length

1
 NAT

Af

Signal Processing:Fourier



Then

X(f) > X(kAf) = ATZ x(iAT)exp(—j %)ik
x(t) > x(iIAT) = L Z X (kAf)exp(j 2—”)”‘
NAT N

The expression is periodic for ik = N, hence the
summation forx(k Af) and AT)  are periodic
within N.
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We thus limit the summation to N samples,
resulting in the DFT pair

N-1 272. ©

X(kAf)=AT) | x(iAT)exp() W) EU. X(kf)V —sec]

1 & 27

x(iAT) :NTTZ X(d@‘)exp(/ﬁ) EU. X(kYV]
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A normalized DFT pair, forAT=1 , is usually
computed by most procedures

X(k)= Nzl x(OW

x(i) = %Z X (W

with the compact notation

27
Wy =exp(—J W)
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The DFT is a transform between two sequences of
N samples

X (k) x(i)

In general it is a transform between two
complex sequences
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The frequency scale

a) k=0, f=kA =0
This is the zero (DC) frequency. Here

X(0)= Y x(i)

and equals N times the average of x(i)
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b) k% o f=

N N 1 ]
_ A —
2 V= 2 NAT 2AT = Jwouisr

c) From the periodicity ofxp(j2z/N) , and hence
the periodicity of x(i) and X(k), we may define
negative indices, and

X(-k) = X(N-k)

The upper part of X(k), with k>N/2, may thus be
interpreted as transforms for negative
frequencies.
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The DFT of real signals.

 For most engineering measurements, x(t) and
hence Xx(i) is real. From

1 N-1

K=o 2 X(K)exp(; %’”)
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it follows that X(k) must satisfy specific conditions
in order to have the summation result in real
samples. These conditions are one of a specific
symmetry, with

X(-k) = X(k)*
thus
IX(-k)| = [X(k)]|
and
arg[X(-k)] = -arg[X(k)]
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X=(2)
X=(1)
x(N/2 X=(0)
X(N-1)=X(-1) @
x(1T4
0““‘|||||l|...,,._ﬂ“(a)
(XkA
AN AT (N-1)
| ]
| 1
i
I T T T | l IAfN/2‘ kA f (©)
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The Fast Fourier Transform (FFT)

This is a procedure for an extremely efficient
computation of the DFT pair.

The computation for a specific X(k) necessitates
N operations.

Each operation consists of complex multiplication
and summation. The complete sequence of X, k
=0.... N - 1, necessitates N2 such computations.

Signal Processing:Fourier



The FFT utilizes symmetries in the computation
steps, to achieve huge savings. The necessary
number of operations is reduced roughly to N
log,N. The savings for large N are enormous.

Many FFT procedures, especially for small
machines, work best with a number of samples N
equal to some power of 2:

N=2P

N =32, 64, 128.... 4096....
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Basic procedure for analyzing a signal
via the FFT

1) Choose AT, the sampling interval
2) Choose N a power of 2

The resulting resolution in the frequency domain
is Af = 1
 NAT

ok
The frequency scale is NAT
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Example:

Analyzing range : 0 - 500 Hz
Sampling interval
1 1

AT = = =0.8 [msec]
2.5f  2.5x500
a) The necessaryy =5
3
_ b 125100 o
Af x AT 5

and we would choose N = 256
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b) The necessaryy =2 [H:]

N: 1 =
Af x AT

and we may choose

N = 512 resulting inf =2.44 [H:]
or
N =1024 resulting ix =122 [HZ]
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