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Fourier methods

• Continous signals

FS – Fourier Series : Periodic 

FT – (Integral) Fourier Transform: Transients 
(aperiodic)

•Discrete (sampled) signals

DFS –Discrete Fourier Series

DFT – Discrete Fourier Transform  
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Example:  The square wave

For this case ao = 0

Example:  The square wave

For this case ao = 0
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The convergence can be seen in the following figure.
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We may represent the decomposition by the 
spectrum. The 2-D representation is of 
magnitude at frequency location. The spectrum 
of the periodic signal is discrete: only elements 
with discrete frequencies nwo  (n = 1,3,.....) 
exist.
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The spectrum corresponding to the complex Fourier 
Series
in 2 sided shows positive and negative frequencies. 
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The Fourier (Integral) Transform
• Tool for aperiodic (transient) signals.
• We start from a periodic signal, where we extend 

periodically the transient signal to be analysed. We next let 
the period increase to infinity, and in the limit. only the 
transient remains. This is shown in figure , for the specific 
case of a square pulse in the interval 
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As  Tp grows, we are left in the limit, with a single pulse at the 
origin. 
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We analyse the periodic function via a Fourier 
Series,
with a fundamental frequency of  f1=1/Tp .
As Tp grows larger, frequencies  n f1 are more
densily packed with a separation of

In the limit
0→∆∞→ fTp

pTff /11 ==∆
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Denote

The coefficients of the complex Fourier series

as                       becomes continuous, and we will 
write  f instead of  fn. We may define an amplitude 
density
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It can be shown that  x(t) can be derived inversely via  X(f). Thus we have 
the Fourier Integral pair

Often denoted symbolically by
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The scaling theorem

If    x(t)  ⇔ X(f) 
then    

For  a > 1  the time scale is 
compressed
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The theorem states that, except for a normalizing 
factor  

the transform X is expanded in the frequency 
domain.

a
1
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Fourier Transforms of periodic signals.
Fourier Transforms of periodic signals.
We may extend the concept of  FT  to power signals, 

like periodic functions.

It can be shown that the FT of a cosine signal
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The transform exists only at the discrete 
frequencies  ± fo.
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Discrete Fourier Transform (DFT)

• We start by discretizing the FT pair

• The line interval  t → ∆Τ
• The frequency interval   f → κ ∆Τ
• The integral ∑∫ →
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Let us analyze a signal of duration Ttotal

The time interval is chosen according to the 
sampling theorem.

The frequency interval is chosen as the 
reciprocal of the analyzed signal length
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Then
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The expression is periodic for ik = N, hence the 
summation for and             are periodic 
within  N. 
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We thus limit the summation to  N samples, 
resulting in the DFT pair
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A normalized DFT pair, for             , is usually 
computed by most procedures
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The DFT is a transform between two sequences of  
N  samples

In general it is a transform between two 
complex sequences

( ) ( )ixkX ↔
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The frequency scale

a)
This is the zero  (DC) frequency. Here

and  equals N times the average of  x(i)
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c) From the periodicity of                      , and hence 
the periodicity of  x(i) and  X(k), we may define 
negative indices, and

X(-k) = X(N-k)

The upper part of  X(k), with  k>N/2, may thus be 
interpreted as transforms for negative 
frequencies.

( )Nj /2exp π



Signal Processing:Fourier

The DFT of real signals.

• For most engineering measurements,  x(t) and 
hence  x(i) is real.  From
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it follows that  X(k) must satisfy specific conditions 
in order to have the summation result in real 
samples. These conditions are one of a specific 
symmetry, with

X(-k) = X(k)*
thus

|X(-k)| = |X(k)|
and

arg[X(-k)] = -arg[X(k)]
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X=(2)

X=(1)

X=(0)

X(N-1)=X(-1)
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The Fast Fourier Transform  (FFT)

This is a procedure for an extremely efficient 
computation of the DFT pair.
The computation for a specific  X(k) necessitates  
N  operations.

Each operation consists of complex multiplication 
and summation. The complete sequence of  X,  k 
= 0.... N - 1, necessitates  N2 such computations.
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The FFT utilizes symmetries in the computation 
steps, to achieve huge savings. The necessary 
number of operations is reduced roughly to N 
log2N.  The savings for large  N  are enormous.

Many FFT procedures, especially for small 
machines, work best with a number of samples  N 
equal to some power of  2:
N = 2P

N = 32, 64, 128.... 4096....
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Basic procedure for analyzing a signal 
via the FFT

1) Choose ∆T, the sampling interval

2)  Choose N  a power of  2

The resulting resolution in the frequency domain 
is 

The frequency scale is 
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Example:
Analyzing range :  0 - 500 Hz

Sampling interval      

a) The necessary

and we would choose  N = 256
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b) The necessary

and we may choose 

N = 512  resulting in
or  

N = 1024    resulting in 

7501
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