
Signal Processing: Signals

SIGNALS

The characterization as well as analysis methods 
depends on the signal structure.

The following are some classification possibilities.

Deterministic vs. random
Transient vs. continuous

Stationary vs. nonstationary

In practice we often encounter combinations of signal types.
An example would be a harmonic signal 

contaminated by random noise.
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Descriptions

Transient signals - energy

This is defined as

where  T  is the signal duration. 

The units are

E [V2 - sec, G2 - sec...]

and such a signal is also called an energy signal.
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where  T  is the signal duration. 
The energy is finite for a signal limited within an interval  T.

The units are

E [V2 - sec, G2 - sec...]

and such a signal is also called an energy signal.

( )∫=
T

0

2 dttxE

The energy is finite for a signal limited within an interval  T.
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Continuous signals - power
For such a signal  

E → ∞
as 

T → ∞
and power can be used instead of energy.

and  P  exists for  T → ∞ (but not  E).  The units are
P [V2 , G2 ...]

and such signals are called power signals.
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Random signals

While specific signal shapes can define deterministic signa
only statistical properties can describe random signals.

Probabilities can be defined as percentage of time for which a lie
 a specific amplitude range. A histogram (discrete) or probabilit

density function p(x) (continuous) can be defined. Thus

here   Ti   are  the intervals where  the signal lies in the amplitud
window between  x  and  x + ∆x.

The area under  p(x) is set to  1  for normalization. 
Then the area under p(x) is the percentage of time 

the signal is in the corresponding range  of  x.
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Signal parameters can be based on  p(x). 
Statistical moments  µk are

where  E[ . ]  denotes expectations.

The first and second moments are called 
"mean" and "mean square"  

M(mean),

MS(mean square):
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Often central moments, around the mean, are used. 
This is especially convenient for vibration signals, 
where the mean is set for zero by the measurement 
process.

The second central moment is called variance

Variance:

( )[ ] ( ) ( ) ( )∫∫
∞

∞−

∞

∞−

→= dxxpxdxxpµ-xµ-xE 22
1

2
2

and is square root is the standard deviation  σ,  hence

σ2 = variance
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For signals, moments are computed via time averages
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Hence σ2 (the variance) is also called the Mean 
Square - MS,  and  σ the Root Mean Square - RMS.
For a random signal with zero mean,

RMS ≡ σ
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Many random phenomena have distributions 
which approximate the Gaussian distribution, also 
called the Normal distribution:
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p(x)  is described by two parameters only, the mean µ
and the variance   σ2.  The spread (width) of this bell 
shaped function depends on  σ.  A normalized function 
is defined by
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Such a signal is practically enveloped within ± 3σ.
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Modulations: Periodic
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Vibrations of rotating machines
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Impulse response of SDOF system
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White noise:
3 realizations
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• Response of system excited by white noise
• 3 Realizations
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• Gear system:
• Good and faulty gear
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Monitoring of tool wear
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• Acoustic impulse response of room
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Biomedical signals

Evoked potentials , response to flash 
(measured on scalp)
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