Dr. L. Morini
School of Engineering, Cardiff University, Cardiff, UK
morinil@cardiff.ac.uk

Quasicrystalline multilayered metamaterials: negative refraction and self-similarity of the Bloch-Floquet spectrum

The seminar will be given in English

We investigate the problem of an antiplane wave obliquely incident at the interface between an elastic substrate and a laminate is investigated. The considered layered media possess a quasicrystalline structure, generated according to the Fibonacci substitution rules [1]. The substrate-laminate system is studied combining the transfer matrix method to the normal mode decomposition technique [2]. The diffraction angles associated with the transmitted modes are estimated by means of the space averaging procedure of the Poynting vector [3]. We show that, with respect to a periodic classical bilayer [4], on the one hand, beyond a certain frequency threshold, high order Fibonacci laminates can provide negative refraction for a wider range of angles of incidence, on the other, they allow negative wave refraction at lower frequencies. Moreover, the performed numerical results illustrate that the Bloch-Floquet spectrum corresponding to this class of laminates has a self-similar character linked to the specialization of the Kohmoto’s invariant, a function of the frequency that was recently studied by the authors for periodic one-dimensional quasicrystalline-generated waveguides [5]. This function is able to explain two types of scaling occurring in dispersion diagrams. The obtained results represent an important advancement towards the realisation of multilayered quasicrystalline metamaterials.

References
This work was done in collaboration with Y. Eyzat, M. Gei, geim@cardiff.ac.uk.