SEMINAR - סミנר

Harnessing the power of 3D printing for soft robotics

Dr. Aslan Miriyev
Mechanical Engineering Department
Columbia University in the City of New York

3D-Printable Soft Robotics

Engineering nature-like adaptive and intelligent robots requires development of material systems that permit inherent actuation, sensing and computerized control. In my talk, I will present my novel compact soft composite-actuator approach possessing actuation ability as inherent responsive property, aimed at replacing conventional rigid motors and the existing soft-actuation solutions based on pneumatic or hydraulic devices. Specifically, I will discuss the composition-structure-properties relationships in a 3D-printable silicone/ethanol composite material and its implementation as a soft artificial muscle. In addition, I will present my work on conductive elastomer composites, followed by successful fabrication of all-soft material-actuators incorporating soft conductive heaters. Automated single-step fabrication of silicone-matrix composites using a newly-developed proprietary artificial muscle 3D-printer will also be demonstrated. Finally, I will highlight the barriers that still need to be overcome before truly nature-like intelligent autonomous systems can be engineered, including development of self-sensing soft-hard material systems and prediction of their properties using artificial intelligence (AI). I see this engineering challenge as a natural next step in the development of smart multifunctional composite materials combining sensing and actuation capabilities for adaptive robotics.

Card, 217, Room 2, 15.05.18 (א' בסיון, תשע"ח, בניין די קאהן, קומה 2, חדר 217, 15.05.18)

Chair: Prof. Yoram Halpern

Host: Prof. Mario Sassi

Center for Seminars