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1. Introduction
Many modern machines, fixtures and structures are designed to maintain extremely
accurate tolerances.  For example, machines that cut silicon wafers for the

microelectronics industry have to be designed to maintain tolerances to within a few

microns (107 m). Consequently, even small temperature changes can cause thermal
distortions which are unacceptably large. Also, many microchips are layered structures
manufactured using different materials for each layer. Thus, residual stresses, thermal
stresses, and stress concentrations can be formed either during the manufacturing process
when materials shrink at different rates or during cooling and heating cycles associated
with normal usage. Such inhomogeneities in stress can lead to shortened fatigue life and
premature failure.

The main objective of this course in applied thermoelasticity is to present the general
theory of a thermoelastic material within the context of small strains and small
temperature variations. Due to their general nature, the basic balance laws apply to a
number of physical phenomena which include: purely mechanical response at constant
temperature; purely thermal response at constant deformation; coupled thermomechanical
response; and static and dynamic response.

The word applied in the title of this course is used to indicate that special emphasis
will be placed on more practical aspects of the theoretical material. Even though the
theory presented here is a linear theory, solutions of the partial differential equations for
realistic practical problems are often too complicated to obtain analytically. Therefore,
commercial computer numerical codes are usually used in industry to obtain numerical
solutions. However, it is well known that the computer will only solve the problem that
the user formulates. Consequently, special emphasis will be placed in this course on the
proper formulation of thermoelastic boundary values problems. In particular, a number
of simple analytical examples will be solved and analyzed to expose the main physical

phenomena that can occur in thermoelastic materials.



2. Indicial notation and basic tensor operations

When an engineer aligns a complicated machine with very high precision, or when an
experimentalist attempts to make a precise measurement of some physical phenomena, or
when a theoretician attempts to formulate and solve a complicated problem, it is
extremely important to use the proper tools. In mechanics, mathematical equations are
developed to predict the response of materials to mechanical and thermal loads. It is well
known from the study of statics and dynamics that there are a number of arbitrary choices
made by the engineer to formulate a particular problem. For example, the choice of the
origin of the coordinate system and the type of coordinates used are arbitrary choices. On
the other hand, it is also well known that the physical response of a material cannot
depend in any way on arbitrary mathematical choices. For this reason, it is essential to
use mathematical tools that automatically incorporate this physical fact. In mechanics,
these mathematical tools are called tensors. For convenience, this section reviews
indicial notation and some basic tensor operations which will be used throughout the
course.

In this text, attention will be confined to Euclidean three-dimensional space. In its
printed form a vector will be denoted as a bold faced symbol like a, whereas in its written

form on the board, the same vector will be denoted by a symbol with a wavy line under

the symbol like a. Similarly, a second or higher order tensor will be denoted as a bold

faced symbol like A, whereas in its written form on the board, the same tensor will be

denoted by a symbol with a wavy line under the symbol like A.

BASE VECTORS OF A RECTANGULAR CARTESIAN COORDINATE
SYSTEM

An arbitrary vector in three-dimensional space case be written as a linear combination
of any three linearly independent vectors. As a special simple case, the base vectors {e;,

e,, €5} of a rectangular Cartesian coordinate system are taken to be constant orthonormal

vectors which form a right-handed system. The notions of linear independence and right-

handedness can be written in the mathematical form



e xey*e5>0, (2.1)
where ¢ denotes the usual scalar dot product operation and x denotes the usual cross
product operation between two vectors. Also, the notion that these base vectors are
orthonormal vectors indicates that they satisfy the restrictions

ej*e; =1, e-e,=0, e °e5=0,

e =0, e;°e,=1, e;°e5=0,

e;°e; =0, e;ee; =0, eg3ee5=1. (2.2)
Moreover, it follows that these base vectors satisfy the additional equations

e Xe=ey, e3xe =€, , € xey=e . (2.3)

COMPONENTS OF A VECTOR

The components {a;, a,, a3} of a general vector a can be used together with the base
vectors {e;, e,, e;} to express a in the form

a=a e tae,tajye; . 2.4)

Now, using the dot product it follows that the components {a;, a,, a;} of a are the

projections of a in the directions of the base vectors

aj=a*e , a,=ace, , a;=ace;y . (2.5)

INDICIAL NOTATION

Often, it is convenient to use a short hand notation called indicial notation to write the
components of vector quantities. Quantities written in indicial notation will have a finite
number of indices attached to them. Since the number of indices can be zero a quantity
with no index can also be considered to be written in index notation. The language of
indicial notation is quite simple because only two types of indices can appear in any term.

The index is either a free index or it is a repeated index. Also, a simple summation

convention will be defined which applies only to repeated indices. These two types of

indices and the summation convention are defined as follows.



Free Indices: Indices that appear only once in a given term are known as free indices.
For our purposes, each of these free indices will take the values (1,2,3). For example, i is
a free index in each of the following expressions

(xX1,%Xy,%3)=%; (F1,2,3), (2.6a)
(e;,e,,e3)=¢e (i=1,2,3) . (2.6b)
Notice that the free index 1 in (2.6) refers to the group of three quantities defined by i

taking the values 1,2,3.

Repeated Indices: Indices that appear twice in a given term are known as repeated

indices. For example i and j are repeated indices in the following expressions

Xi ei . aj ej , ai bl . (27)

It is important to emphasize that in the language of indicial notation an index can never

appear more than twice in any term. Also, the notion of a term is each group of symbols

which are separated by a plus sign, a minus sign or an equals sign.

Einstein Summation Convention: When an index appears as a repeated index in a

term, that index is understood to take on the values (1,2,3) and the resulting terms are
summed. Thus, for examples, the vectors x and a can be expressed in the forms

X=X, € =X e tX,€e tX3€;5, (2.8a)

a=a;e=a e taetae;, (2.8b)
Because of this summation convention, repeated indices are also known as dummy
indices since their replacement by any other letter, not appearing as a free index and also
not appearing as another repeated index, does not change the meaning of the term in
which they occur. For examples,

X, €= Xj ej > @ b1 = aj bJ . (29)

It is important to emphasize that the same free indices must appear in each term in an
equation so that, for example, the vector equation

c=a+b , (2.10)
can be written in index form in terms of the components of a,b,c as

c;=a +b; . Q2.11)

Kronecker Delta: The Kronecker delta symbol Sij is defined by



d.=e e =

1 ifi=]
i J { (2.12)

0 ifi#j -
Since the Kronecker delta 51j vanishes unless i=j it exhibits the following exchange
property

Sijxj=(81j X ,82jxj,53jxj)=(xl » Xy, X3 ) =X, . (2.13)
Notice that the Kronecker symbol can be removed by replacing the repeated index j in
(2.13) by the free index i.

Recalling that an arbitrary vector a in Euclidean 3-Space can be expressed as a linear

combination of the base vectors e such that

a=ae (2.14)
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it follows that the components a, of a can be calculated using the Kronecker delta

a_ =a. . (2.15)

a,=eca=e-(a e )=(ee )a =0 a =a
Notice that when the expression (2.14) for a was substituted into (2.15) it was necessary
to change the repeated index i in (2.15) to another letter (m) because the letter i already
appeared in (2.15) as a free index. It also follows that the Kronecker delta can be used to

calculate the dot product between two vectors a and b with components a; and b;,
respectively, by

Permutation symbol: The permutation symbol &k 1s defined by

1 if (1,),k) are an even permutation of (1,2,3)
Eijk =€ X € * e = -1 if (i,),k) are an odd permutation of (1,2,3) (2.17)
0 if at least two of (i,j,k) have the same value

From the definition (2.17), it appears that the permutation symbol can be used in
calculating the vector product between two vectors. In particular, it can be shown that

ei X ej = 81]1( ek . (218)
Now, using (2.18) it follows that the vector product between the vectors a and b can be

represented in the form

axb= (al el) X (b_] eJ) = (el X eJ) ai b_] = 81_]]( ai b] ek . (219)



Contraction: Contraction is the process of identifying two free indices in a given
expression together with the implied summation convention. For example, it is possible

to contract on the free indices i,j in 51j to obtain

B =8, + 8y +833=3 . (2.20)

11

Note that contraction on the set of 9=32 quantities Tij can be performed by multiplying

T.5.=T. . 2.21)

ij ~ij il
HIGHER ORDER TENSORS

A scalar is sometimes referred to as a zero order tensor and a vector is sometimes
referred to as a first order tensor. Here, higher order tensors are defined deductively
starting with the notion of a first order tensor or vector.

A second order tensor: The quantity T is called a second order tensor if it is a linear

operator whose domain is the space of all vectors v and whose range Tv or vT is a vector.
For example, if T is the stress tensor and n is the unit outward normal to a surface of a
body, then the traction vector t is given by

t=Tn . (2.22)

A third order tensor: The quantity T is called a third order tensor if it is a linear

operator whose domain is the space of all vectors v and whose range Tv or vT is a second
order tensor.

A fourth order tensor: The quantity T is called a fourth order tensor if it is a linear

operator whose domain is the space of all vectors v and whose range Tv or vT is a third
order tensor.

Addition and Subtraction: The usual rules of addition and subtraction of two tensors

A and B apply when the two tensors have the same order. It should be emphasized that
tensors of different orders cannot be added or subtracted.
TENSOR PRODUCT

The tensor product operation is denoted by the symbol ® and it is defined so that the

tensor product a;®a, is a special second order tensor having the following properties

(a,®a,) b, =2a;(a,*b;) , b;(a;®a,)=(b;a))a, , (2.23)

10



where a; and b; are vectors. The tensor product operation can be used to form a string of

more than two vectors that also becomes a tensor. For example, tensor product

a,®a,®ay is a special third order tensor having the following properties
(a,®a,®az) b, = (a;®a,) (a3 * b)) ,
b, (a;®a,®a3) = (b, * a)) (a,®a,). (2.24)

Dot Product (Special Case): The dot product operation between two vectors can be

generalized to an operation between any two tensors (including higher order tensors).
For example the dot product of two second order tensors becomes a scalar
(a,®a,) ¢ (b;®b,)=(a; *by) (a, *b,) ,
(b;®b,) * (a;®a,) = (b; *ay) (b, * a,) , (2.25)
the dot product of a third order tensor with a second order tensor becomes a vector
(a;®a,®aj) * (b;®b,) =2, (ay*b;)(azb,) ,
(b;®b,) * (a;®a,®a3) =(a; *b;)(a,*b,) az, (2.26)
the dot product of a third order tensor with a third order tensor becomes a scalar
(a,®a,®a3) ¢ (b;®b,®bs) =(a; * b;) (a, * b,y) (a3 *by) ,
(b;®b,®h5) * (a;®a,®a3) =(a; *b;)(a,*b,) (ay°by), (2.27)
the dot product of a fourth order tensor with a second order tensor becomes a second

order tensor

(a,®a,®a;®a,) * (b;®b,) = (a;®a,) (a;*b;)(as*b,) ,

(b;®b,) * (a;®2a,8a,®a,) = (a; * b;) (a, * b,) (a;®a,) , (2.28)
and the dot product of a fourth order tensor with a fourth order tensor becomes a scalar

(a,®a,®a,®a,) * (b;®b,®b;®b,) = (a; *b;) (a, *b,) (a5 *b3) (ay*b,) ,
(b;®b,®b;®b,) * (a;®a,®a;®a,) = (a; *b;) (a, *by) (a3 *b3) (as*by). (2.29)

In particular, notice from (2.25), (2.27) and (2.29), that the dot product of a tensor with
another tensor of the same order is commutative, whereas from (2.26) and (2.28) it can be

seen that the dot product of a tensor with another tensor of different order is not

commutative.

11



Cross Product (Special Case): The cross product of a second order tensor with a

vector becomes a second order tensor
(a,®a,) xb; =a,®(ayxb,) ,
b, x (a;®a,) = (b;xa)®a, , (2.30)
the cross product of a second order tensor with another second order tensor becomes a
second order tensor
(a;®a,) x (b;®b,) = (a;xb,)®(a,xb,) ,
(b;®b,) x (a;®a,) = (b, xa,)®(b,xa,) , (2.31)

the cross product of a third order tensor with a second order tensor becomes a third order

tensor
(b,®b,) x (a,02,8a;) = (b, xa,)@(b,xa,)®a; , (2.32)

and the cross product of a third order tensor with another third order tensor becomes a

third order tensor
(a;®a,®a3) x (b;®b,®b3) = (a;xb)®(a,xb,)®(a;xbs) ,
(b;®b,®b5) x (a;®a,®a3) = (b;xa;)®(b,xa,)®(byxas) . (2.33)

Juxtaposition (Special Case): The operation of juxtaposition of a second order tensor

with another second order tensor is a second order tensor (2=2+2-2)

(a,®a,) (b;®b,) =(a, * by) (a;®b,) ,

(b;®b,) (a;®a,) = (b, * a;) (b;®a,) , (2.34)
and the juxtaposition of a third order tensor with a second order tensor is a third order
tensor (3=3+2-2)

(a,®a,®as) (b;®b,) = (a5 * b)) (a,;®a,&®b,) ,
(b;®b,) (a;®a,®a;) = (b, * a,) (b;®a,®a,) . (2.35)

Transpose (Special Case): The left transpose operation is denoted by a superscript

LT on the left-hand side of the tensor, such that the left transpose of a second order tensor

is defined by
LT(a,®a,) = (a,®a,) , (2.36)

12



the left transpose of a third order tensor is defined by
LT(a,®a,®a;) = (a,®a,)®a, , (2.37)
and the left transpose of a fourth order tensor is defined by
LT(a,®a,®a,®a,) = (a,®a,)®(a;®a,) , (2.38)
Similarly, the right transpose operation is denoted by a superscript T on the right-hand
side of the tensor, such that the right transpose of a second order tensor is defined by
(a,®a,)T = (a,®a,) , (2.39)
the right transpose of a third order tensor is defined by
(a,®2,®a;)T = a,®(a;®a,) , (2.40)
and the right transpose of a fourth order tensor is defined by
(a,®2,®a,®a,)" = (a;®a,)®(a,®a;) . (2.41)
In particular, notice that the transpose operations change the order of the two vectors
closest to the side of operation of the operator. In discussing the strain energy of an
elastic material it is necessary to consider higher order symmetry of the elastic moduli.
Specifically, it is convenient to introduce higher order transpose operators like LT(2) and

T(2) which interchange groups of two vectors, such that the second order left transpose

LT(2) of a fourth order tensor is defined by
LT2)(a,®a,®a,®a,) = (a;®a,)®(a,®a,) , (2.42)
and the second order left transpose LT(2) of a fifth order tensor is defined by
LT)(a,®a,®a,®a,®a,) = (a;®a,)®(a,®a,)®a; . (2.43)
Similarly, the second order right transpose T(2) of a fourth order tensor is defined by
(a,®a,®2,®a,)T(?) = (a,®2a,)®(a,®a,) , (2.44)
and the second order right transpose T(2) of a fifth order tensor is defined by
(a,®a,®2,R2a,@a5) (%) = a,®(a,®a,)D(a,®a;) . (2.45)
From these examples, it can be seen that the second order left transpose operator LT(2)
considers the first four vectors in the tensor string on the left-hand side of the tensor as

two groups of two vectors. The order of the two vectors in each of these groups remains

unchanged but the order of the groups is reversed. Similarly, the second order right

13



transpose operator T(2) considers the first four vectors in the tensor string on the right-
hand side of the tensor as two groups of two vectors. Again, the order of the two vectors
in each of these groups remains unchanged but the order of the groups is reversed. Since
these operators are applied to tensor products of at least four vectors, they can be applied
only to tensors which are fourth order or higher.

BASE TENSORS AND COMPONENTS OF HIGHER ORDER TENSORS
The space of second order tensors is spanned by the 9 (=32) base tensors (ei®ej), such

that an arbitrary second order tensor T can be expressed in the form
where Tij are the 9 (=32) components of T with respect to the rectangular Cartesian base

vectors e;. This equation is a natural generalization of the representation (2.14) for a

vector. Similarly, the equation (2.15) for calculating the components of a vector can be
generalized to a second order tensor, such that

It then follows by deduction, that (ei®ej®em) are the 21 (=33) base tensors of an arbitrary

third order tensor T which has 21 (=3%) components T.; ., such that

ijm’
T= Tl_]m (e1®ej®em) , lem =Te (e1®ej®em) . (248)

_4 .
Also, (ei®ej®em®en) are the 81 (=37) base tensors of an arbitrary fourth order tensor T

which has 81 (=3%) components T such that

jjmn’

T=T (ei®ej®em®en) , T =Te (ei®ej®em®en) . (2.49)

ijmn ijmn
From the representation (2.46), it can be seen that a general second order tensor has 9

independent components. Consequently, the second order tensor a®b, which is

determined by the tensor product of two vectors a and b, is only a special case of a

second order tensor. Specifically, since each of the vectors a and b has only three

independent components, the tensor a®b has only 6 independent components

T=a®b , Tij =T- (ei®ej) =a, bj , (2.50)

instead of nine components of a general tensor

14



Given the definitions (2.46)-(2.49), it should be emphasized that when the tensor is
written in direct notion T it can describe a physical quantity, which by definition, should
be independent of the arbitrary choice of coordinates. However, the components TIJ’ Tijm
and lemn are explicitly dependent on the orientation of the chosen base vectors e;. For
this reason, tensors are the proper mathematical entities to formulate mathematical
equations for physical laws.

Moreover, in the expressions (2.46)-(2.49), the components of a tensor are treated as
scalars and the base tensors are strings of vectors. Therefore, all of the tensor operations
defined above for the special case of a string of tensor products of vectors, apply to the

base tensors and thus also apply to the general tensors. For example, the transpose of the

second order tensor T takes the form
T=T;e®e , TN =T; (e@e) = T;; ¢®e; . (2.51a,b)
Also, it can be shown that for a general second order tensor T and a general vector v, that
Tv=vT", TlJ Vi =V, TIJ . (2.52a,b)

Furthermore, given the vectors a and b and the second order tensors A and B, it can be

shown that

Aa+*Bb=a+ATBb=ATB-(a®b) =A. _a_B. b . (2.53)

im 4m Pin n
ADDITIONAL DEFINITIONS AND RESULTS

In order to better understand the definition of juxtaposition and in order to connect
this definition with the usual rules for matrix multiplication, let A, B, C be second order

tensors with components AlJ’ BIJ’ CIJ’ respectively, and define C by

C=AB . (2.54)
Using the representation (2.46) for each of these tensors, it follows that
C=A; ¢Qe B e,Qe, =A; B, (¢°e,)e®e, =A; B, e®e, , (2.55a)

C C-e®e—A B, (e®e)* (e®e) A.

m —mn

(2.55b)

im mJ :
Examination of the result (2.55b) indicates that the second index of A is summed with the
first index of B, which is consistent with the usual operation of row times column

inherent in the definition of matrix multiplication.

15



Symmetric Tensor: The second order tensor T, with the 9=3% components Tij

referred to the base vectors e;, is said to be symmetric if
_ T _
Since this equations imposes three restrictions on T, it follows that there are only six

independent components of a symmetric tensor. Moreover, using (2.52) it can be shown

that if T is symmetric and v is an arbitrary vector with components v., then

Tv=vT, TJVJ_VT (2.57a,b)

Skew-Symmetric Tensor: The second order tensor T, with the 9=32 components Tij

referred to the base vectors e;, is said to be skew-symmetric if

Since this equations imposes six restrictions on T, it follows that there are only three
independent components of a skew-symmetric tensor. In particular, the diagonal
components of T vanish. Moreover, using (2.52) it can be shown that if T is skew-

symmetric and v is an arbitrary vector with components v;, then

Tv=-vT, Tij Vi=—V; TJl . (2.59a,b)

Using these definitions, it can be observed that an arbitrary second order tensor T,

with components T;:

jj» can be separated uniquely into its symmetric part denoted by T

sym’

with components

with components T(ij)’ and its skew-symmetric part denoted by T ...,

T[ i’ such that

T= Tsym * Tokew > Tij = T(ij) + T[ij] s (2.60a,b)
1
Toym =2 (T +T7) = smi » Ty =2 (T + T = Tiy (2.60c,d)
1
Tgen =3 (T -TH ==Tyl, | Ty=g(T-Tj) ==Tyy . 2606

Trace: The trace operation is defined as the dot product of an arbitrary second order
tensor T with the second order identity tensor I. Letting Tij be the components of T it
follows that

Tel= le(e®e) (e, ®e )= Tu(e e)(e €)= T O, 0. (2.61a)

im “jm °

16



Deviatoric Tensor: The second order tensor T, with the 9=32 components Tij referred
to the base vectors e, is said to be deviatoric if
TeI=0, T,,=0 (2.62a,b)

Spherical and Deviatoric Parts: Using these definitions it can be observed that an

arbitrary second order tensor T, with components T;;, can be separated uniquely into its

ij’

spherical part denoted by T I, with components T 9., and its deviatoric part denoted by

ij’
T', with components Tiﬁ’ such that

T+I=0, T/ ,=0. (2.63c,d)
Taking the dot product of (2.63a) with the second order identity I, it can be shown that T

is the mean value of the diagonal terms of T

1 1
T=§ T°I=§ Tom - (2.64)

When T is the stress tensor, this spherical part is related to the pressure p in the body,
such that

1
p=-3 TeI. (2.65)
Also, the von Mises stress G, which is a measure of elastic distortion of the material, is
defined in terms of the deviatoric stress T', such that
2 3 ' '
GCZET T . (2.66)

For the simplest model of plasticity of metals, plastic deformation is possible only when
G, attains the value Y of yield strength (in uniaxial stress). Consequently, the material
remains elastic whenever

5, <Y . (2.67)

For later convenience, it is useful to consider properties of the dot product between

strings of second order tensors and vectors. To this end, Let a, b be vectors with
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components a; abd b;, and let A, B, C, D be second order tensors, with components Aij’

B, C.., D.., respectively. Then, it can be shown that

i “ijp P

Aa*Bb=a+ATBb=ATB+a® =A._a B. b (2.68a)

mm - inn °

A+(BCD)=A.B. C_D ., A+(BCD)=(BTA)+(CD), (2.68b,c)

- mm-mn-nj
A« (BCD) =(ADT)« (BC), A+ (BCD)=(BTADT).C . (2.68d,e)

Gradient: Let x; be the components of the position vector x associated with the
rectangular Cartesian base vectors e;. The gradient of a scalar function f with respect to

the position x is a vector denoted by grad f and represented by

grad f=V f=0f/ox = of/ox e, =T, e (2.69)

m m °
where for convenience a comma is used to denote partial differentiation. Also, the
gradient of a tensor function T is denoted by grad T and is represented by
grad T=0T/ox =0T/ox ,®e =T, ®e, . (2.70)

Note that the derivative 0T/0x is written on the same line to indicate the order of the
quantities. To see the importance of this, let T be a second order tensor with components

Tij so that

grad T = 0T/ox = J[T;; e,®e:]/0x ®e =T

1] i e‘®ej®em . (271)

ijPm i
Divergence: The divergence of a tensor T is a vector denoted by div T which is
represented by

. oT
divT= axk b ek = T’k ® ek . (272)

For example, if T is a second order tensor, then from (2.46) and (2.72) it follows that
Curl: The curl of a vector v with components v. is a vector denoted by curl v which is

represented by

ov
curl v= — 5_)(J X ej = - Vi’j guk ek = Vi’j 8_]1]( ek . (274)

Also, the curl of a tensor T is a tensor denoted by curl T which is represented by

oT
curl T=—- a_xk X e . (2.75)
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For example, if T is a second order tensor with components T.., then

ij?

curl T=- le’k 8_]1(1’11 ei®em . (276)

Laplacian: The Laplacian of a tensor T is a tensor denoted by V2T which is
represented by

V2T = div(grad T) = (T, ®e),;* ¢,=T (2.77)

‘mm

Biharmonic Operator: The biharmonic operator of a tensor T is a tensor denoted by

V2V2T which is represented by
V2VIT=T : (2.78)

‘mmnn

Divergence Theorem: Let n be the unit outward normal to a surface 0P of a region

P, da be the element of area of 0P, dv be the element of volume of P, and T be an

arbitrary tensor of any order. Then, the divergence theorem states that
[ .o Tnda=],divTay . 2.79)

HIERARCHY OF TENSOR OPERATIONS

To simplify the notation and reduce the need for using parentheses to clarify
mathematical equations, it is convenient to define the hierarchy of the tensor operations
according to Table 2.1, with level 1 operations being performed before level 2 operations
and so forth. Also, as is usual, the order in which operations in the same level are

performed is determined by which operation appears in the most left-hand position in the

equation.
Level Tensor Operation
1 Left Transpose (LT) and Right Transpose (T)
2 Cross product (x)
3 Juxtaposition and Tensor product (&)
4 Dot product (*)
5 Addition and Subtraction

Table 2.1 Hierarchy of tensor operations
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3. Kinematics: position vector, displacement vector, strain tensor, strain-
displacement relations, rotation tensor, homogeneous deformations, rigid body

motion, compatibility conditions.

Reference Present
Configuration Configuration

Fig. 3.1 Reference and present configurations, showing the position and displacement

vectors.

POSITION VECTOR
In order to describe the motion of a body it is convenient to first identify the location
of a material point in the body in a fixed reference configuration by the position vector X,
relative to a fixed origin O. In the present (deformed) configuration at time t, the same
material point is located by the position vector x. Consequently, a motion of the body is
characterized by the vector function
x =x(X,t) . 3.1)
This vector function is presumed to be one-to-one and invertible at any point in the body

and at any time.
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DISPLACEMENT VECTOR
The displacement vector u(X,t) is a vector field that represents the location of a
material point in the present configuration relative to its location in the reference
configuration. Consequently, u is defined by (see Fig. 3.1)
x=X+uX;t) . 3.2)

STRAIN TENSOR
Figure 3.1 shows a material line element dX in the reference configuration which is
deformed into the material line element dx in the present configuration. The simple
notion of the strain of this line element can be used to motivate the definition of the strain
tensor. Specifically, let dX have length dS and direction S, and let dx have length ds and
direction s, such that
dX=SdS, S-S=1,
dx=sds , ses=1, (3.3)
where S and s are unit vectors. Now, the stretch A of the line element dX is defined as

the ratio of the lengths ds and dS, such that

ds
A= s - (3.4)
Consequently, the strain E of this line element is defined by
ds—dS
=7 4s - A—1. (3.5)

Next, using the chain rule of differentiation, it follows that the deformation gradient F
characterizes the deformation of the line element dX into dx, such that

dx=FdX , F=0x/0X , As=FS . (3.6)

The deformation gradient F is a local quantity that is defined at the material point X at

time t. Moreover, F characterizes both the extension and the rotation of the material line

element. In order to determine the stretch A it is most convenient to first calculate the

length squared ds? of the line element dx,
ds?=dx+dx=FdX+*FdX=dX+*FIFdX=dXCdX ,
C=FTF=CT (3.7)
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where the symmetric tensor C is called the right Cauchy-Green deformation tensor.

Now, with the help of the definitions (3.3), it follows that
AM2=S<CS=C-(S®S) . (3.8)
Also, the Lagrangian strain E is defined in terms of C by
1
EZE(C—I), C=1+2E . (3.9)
To see that E is a strain measure, this definition is substituted into (3.8) to obtain

A2=1+2E+(S®S) . (3.10)

Moreover, the strain (3.5) becomes

E=11+2E+(S®S) -1 . (3.11)
In particular, for small values of the strain tensor E, this expression can be expanded in a
Taylor series to obtain

E~E - (S®S) . (3.12)

STRAIN-DISPLACEMENT RELATIONS
The strain-displacement relations can be obtained by substituting (3.3) into the
definitions (3.6) for the deformation gradient F and (3.9) for the strain E to obtain
F=1+0u/oX ,
C =[I+ouwoX]T [1+ ou/6X] =1+ ou/oX + (Bu/6X)T + (6u/6X)T (du/oX)

1
E=e+3 (ou/oX)T(ou/oX) | (3.13)

where the symmetric tensor e is the strain tensor associated with small displacements. In

particular, if the quadratic terms in the displacements are neglected then
1
E~e, e=7[0wdX+ (Ouw/dX)T]=el . (3.14)

Moreover, for small displacements there is no distinction between differentiation of the
displacement u with respect to X or x, so that

ou/oX ~ ou/ox

1
e = [all/ﬁx + (alI/aX)T] = eT , e]J = E (ui,j + uj’i) = CJ1 . (315)

N | —

Also, using this approximation the expression (3.12) reduces to
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In particular, notice that the six components €;; of the strain tensor e are defined at a

material point. The formula (3.16) indicates that at the same material point, different line
elements (specified by different direction S) have different strains.

Physical interpretation of the diagonal components of strain: Using (3.16) and

considering line elements that were directed in the e, directions in the reference
configuration, it follows that

E=¢;=uy, forS=e ,

E=¢ey,,=u,, forS=e, ,

E=e33=u3,; forS=e; . (3.17)
This means that the diagonal components of the strain tensor characterize the strains of
the line elements that were directed in the e; directions in the reference configuration.

Also, it can be seen from (3.17) that factor (1/2) in the definition (3.9) causes the
linearized strain e to be consistent with the simple definition of the strain of a line

element (e = uy,;) which is the differential form of the definition (3.9). However, for a

material line element in a general direction S, both the diagonal and off-diagonal
components of e contribute to the strain E.

Physical interpretation of the off-diagonal components of strain: In order to discuss

the physical interpretation of the off-diagonal components of strain it is convenient to
consider two different line elements which are characterized by the directions S(1), $©) in
the reference configuration; the directions s(1), s(2) in the present configuration, and the
strains E(D, E@), respectively. Specifically, using (3.3)~(3.9) it follows that

[1+EMsO=Fs®  [1+ED]s@=FsO . (3.18)
Thus,

(I+2E) « {SHes@)

(1)o@ =
S0S (1+EDy (1 +EQ)

(3.19)

Next, for small displacements, quadratic terms in the strains can be neglected and (3.19)

can be approximated by

s e s@ =1 -ED _E@] 8D« 8@ 1 2¢ + (SRS}
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cos® =[1 — ED) — E@] cos® + 2e « {SDRS@)} | (3.20)
where © is the angle between S(1) and S, and 0 is the angle between s(1) and s(?). Asa
special case, if S(1) and S are orthogonal (@=n/2), 6=n/2—y, and vy is small, then

c0s0 = cos(/2—y) = siny x y = 2e * {SD@SP)} |

y=2e+ {SDRS@ for S(H«s@ =0 | (3.21)

More specifically, if S(1 and S@) are in the directions e; and e,, respectively, then
y=2¢,, forSD=e andS@=e, . (3.22)
This means that the reduction y in the angle between the two line elements which were in
the directions e; and e, in the reference configuration is related directly to the off-
diagonal component e, of the strain tensor. Similar results can be derived for the other

off-diagonal components of strain. Moreover, y is often called the engineering shear

strain and €, is the tensorial shear strain. As a specific example, consider the case of
simple shear (Fig. 3.2) which is characterized by

U =yXy , Up=0,u3=0. (3.23)
Notice that the line element that was in the e; direction remains in the e; direction.

Whereas, the line element that was in the e, direction is rotated clockwise about the e,

axis through the angle v.
B b C c
Yo s
e, 4 / /
Aa C D.d

Fig. 3.2 Simple shear. The square ABCD represents the reference configuration and the

parallelogram abcd represents the deformed present configuration.
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A pure measure of dilatation (volume change): In order to derive a pure measure of

dilatation, consider a set of right-handed line elements {dX(1, dX®, dX®)} in the
reference configuration, which form a parallelepiped that is deformed to the
parallelepiped associated with the set of line elements {dx(!), dx(®), dx(®)} in the present

configuration. The volumes dV and dv of these parallelepipeds are given, respectively,

by

dV =dXMD x dX@ « dXO® | dv =dx(D x dx@ « dx®) . (3.24)
Next, using (3.6) it follows that
dv = {F dX(D} x (F dX®@)} « {(F dXO)} | (3.25)

Moreover, it can be shown that for an arbitrary nonsingular tensor F (detF#0), and

arbitrary vectors a,b,c, that
FaxFb=JFT(axb) , J=detF , (3.26)
where F~T is the inverse of the transpose of F, and J is the determinant of F. Thus, using
this result, (3.25) can be reduced to
dv =T FT {dX(D x dX@} « {F dXO =] {dXD x dX@ « F-1 {FdXO)} |
dv =7 dX(D x dX@ « dXO) =74V . (3.27)
This means that J is a pure measure of dilatation since it is a pure measure of volume
change. Next, using the definition of the determinant, it follows that
J=Fe xFe,*Fe; . (3.28)
Therefore, for small deformations, (3.13) and (3.15) can be used and quadratic terms in
the displacement can be neglected to obtain
J={e, +Ou/ox e} x {e; + Ou/Ox e,} * {e; + Ou/Ox €5} ,
J=1+ {Ou/Ox e} * (e,xe3) + {Ou/Ox e,} * (e3xe;) + {Ou/Ox e5} * (e,xe,),
J=1+{Ou/Ox e} *e + {Ou/Oxe,} *e,+ {Ou/ox ey} *e;5 ,
J=1+0u/ox * (¢;®e| + e,®e, +e;®e3) =1+ 0u/oxI=1+e-l . (3.29)
Thus, the trace of the strain tensor is a pure measure of dilatation

dv—dV
eel=g;=T-1="p (3.30)
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A pure measure of distortion: The strain tensor e describes the dilatation and

distortion of the material at each material point. It has been shown (3.30) that the trace of
e is a pure measure of dilatation. It therefore, follows that the deviatoric part e' of e is a

pure measure of distortion since its trace vanishes
1 '
e'=e—§(e-I)I , e*1=0,

1
=e.—7¢€. 0. e, =0. (3.31)

eij ij 3 ¥mm i > Ymm

ROTATION TENSOR
The displacement gradient du/Ox is a general tensor that can be separated into its
symmetric part e and its skew-symmetric part ®, such that

ou/ox=e+® ,

1 1
=5 [Ou/Ox + (au/ax)T] =el | €i =72 (ui,j + uj,i) =€

1
=5 [Ou/ox - @Quox) T =—awl | ®5 =7 (ul,J Upyp) = — 0 (3.32)

The symmetric part e has already been identified as the strain tensor and its physical
meaning has been discussed. Here, it will be shown that the skew-symmetric part @ has
the physical meaning of a rotation tensor. To this end, it is recalled from (3.13) and
(3.15) that for small deformations, the deformation gradient becomes
F=1+e+to . (3.33)

Moreover, with the help of (3.3), (3.4), (3.5) and (3.12), it follows that for small
deformations

(1+E)s=(I+e+m)S, E=(e*S®S) ,

s—-S=0S+[e—(e*S®S)I]S ,
s; = S; + oy +[e S SS]S (3.34)

ij ~j ®mn ®m *n 1j
Since both S and s are unit vectors, the vector s can only rotate relative to the vector S.

Mathematically, it can be shown that since ® is a skew-symmetric tensor, that
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®°*(S®S)=0, (3.35)
so that neglecting second order quantities in the displacements yields

(s—S)*S=0. (3.36)
Physically, this means that the change in S is perpendicular to S, which is consistent with
a small rotation.

Next, it is observed from (3.34) that, for a general line element S, the rotation of the
line element depends on both the rotation tensor @ and the strain tensor e. However, for
the special case, when S is chosen in the direction of an eigenvector of the strain e, the
rotation is totally controlled by the rotation tensor ®

s—S=wS foreS=ES , E=e*(S®S) . (3.37)
Appendix A provides details of the determination of the eigenvalues and eigenvectors of

a real second order symmetric tensor.

HOMOGENEOUS DEFORMATIONS
A deformation is said to be homogeneous if the deformation gradient F is
independent of the position X. Within the context of the small deformation theory this
means that the displacement gradient odu/0x is independent of the position x.
Specifically, take
ou/ox = H(t) , Ui = Hij(t) , (3.38)
where H is a general tensor function of time t only. Integrating (3.38) with respect to
space, it follows that the displacement field u for homogeneous deformation becomes
u=c(t)+H() x , (3.39)
where ¢(t) is a vector function of time only. It also follows that the strain and rotation

tensors associated with this homogeneous become

H+HT) , co=%(H—HT) . (3.40)

N | —

e=

Notice that there are twelve degrees of freedom associated with a homogeneous
deformation: three associated with translation vector ¢; three associated with the rotation

tensor ®; and six associated with the strain tensor e.
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RIGID BODY MOTION

A rigid body is a body for which the length between any two material points remains
constant. It then follows that rigid body motion is a special case of homogeneous
deformation for which the strain of any material line element vanishes. Consequently,
since the strain E in (3.16) must vanish for any material point x and any material

direction N, it can be shown that for rigid body motion the strain tensor e must vanish at

all points
e=0 for rigid body motion. (3.41)
Thus, the tensor H in (3.39) must be a skew-symmetric tensor
H'=—-H, o=H, (3.42)
so that (3.39) reduces to
u=c(t) + o(t) x for rigid body motion. (3.43)

Physically, this means that a rigid body has six degrees of freedom: three associated with

translation c¢; and three associated with rotation @ (with o being skew-symmetric).

COMPATIBILITY CONDITIONS

In order to understand the notion of compatibility from a physical point of view, it is
convenient to consider a body that has been divided into a finite number of tetrahedrons
which just fit together in its stress-free undeformed reference configuration. Now, mark
each tetrahedron so that when these parts are separated they can be put back together with
the same topology (i.e. the same neighbors). Next, separate the parts and deform each
tetrahedron in an arbitrary manner. Obviously, it is not reasonable to expect that these
deformed parts will fit together without gaps between the parts. This is an example when
the strain field is not compatible. However, if the strains in each of these tetrahedrons is
suitably restricted, then the parts will fit together to form a deformed intact body.

Mathematically, this means that the strain field e;; must satisfy certain restrictions for

a displacement field to exist. More specifically, it is noted that the strain-displacement

equations (3.15) indicate that the six independent components €;; of the strain are derived

from only three components u; of the displacement vector. To derive these restrictions,
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consider integration of the displacement gradient over an arbitrary curve C in space

(Sokolnikoff, 1956)
u =] dxy =] i o) dxy (3.44)

where (3.32) had been used to express u;, . in terms of the strain and rotation tensors.
However, the rotation tensor can be rewritten in the form
- 0 0

Oim ~ [(Xn_ Xn) (Din]’m - (Xn_ Xn) Ojpom > (3.45)

and the gradient o, , . of ®,  can be expressed in terms of derivatives of the strain tensor

using the expressions

1
; n’im) + 2 (um’in - um’in) >

) (ui’nm —u

1

Ojpom ~ 5 (ui’nm + um’in) - 5 (un’im + um’in) ~ Cimn ™ Cmnoi -

(3.46)

Thus, with the help of (3.45) and (3.46), it follows that (3.44) can be integrated to obtain

U= u(i) t (Xn_ Xg) (Din(xm) T J. C Uim de

Uim = €im — 5= X9 €jon — Cmnsi) > (3.47)

0

where uj are the components of the displacement and coin(xr(r)l) are the components of the

rotation tensor ;, at the location xg. Also, U, has been introduced for convenience.
The displacement field u; will be single valued if the integral in (3.47) is zero for all

closed curves C. The necessary and sufficient condition for u; to be a single valued

function of x;, is that U;  is the derivative of a vector potential function ‘¥, and that its

curl vanishes,

U, =% Yoo = P

Pm > imij = Ui = Ujio - (3.48)

’jm m’j ij>m

Thus, substitution of (3.47) into (3.48) yields the condition that

0
€imoj ~ Cimej ~ Cmji) — Kn= Xp) (Cimonj — Cmnsij) =
0
€ij,m ~ Cjjom ~ Cjmei) ~ K Xn) Cijonm ~ Sjoim) (3.49)
which simplifies to

=0 . (3.50)

0
(Xn_ Xn) (eij snm T emn’ij - eim’nj - ejn’im)
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However, since this equation must be valid for all values of xg, it follows that the

linearized Riemann curvature tensor R:. __ must vanish

ijmn
Rijmn = €ij>mn + €mmij ~ Simenj ~ Sjmim — 0, (3.51)
at each point in the body. It is obvious, from this definition that Rijmn as the following
symmetries
Rmnij = Rijmn , Rimjn =— Rijmn , anmi =— Rijmn , (3.52a,b,c)
Riin = Rijpy (0O sum on 1) (3.52d)
Applying (3.52a) reduces Rijmn to 45 independent components given by

R Ryt Rypias Ryas Rypog Rypozs Ryqzp Rypzos Rypass
1R1212: Ri213, Ryoops Rygos Rypazs Rynzps Rynzos Rypssis
{R313 Ry321 Ryznos Ryzoz Ryzap Ryzsps Ryzssi s
Ro121> R122: Ry 123 Ryp31: Ro130, Ryp33) » {R2200, Ryop3s Ronsps Rypsps Rynsst,

{R2323> Ry331> Ro330, Rossat s {R3y315 Rap3n, Ryyas) 5 {R3530, Rynasl, {Raz33) - (3.53)

Next, applying (3.52b) reduces R.: to 9 independent components

ijmn
{R11220 Ri123: Ry1325 Ryp33: Ry230s Ryp33 Rypo3. Ry33, Rynss ) (3.54)
Further application of (3.52¢) reduces Rijmn to 7 independent componentsy
{R1122o Ri123: Ry130, Ryp33: Rypazs Rypps. Ropssh (3.55)
Finally, application of (3.52d) reduces Rijmn to 6 independent components given by
{R1122: Ro233, Ry 133, Ry103, Ryp 3, Razpnl s (3.56)

where use has been made of the conditions Ry533 = R331 and R,153 == Ryy3. More

specifically, these 6 conditions can be written in the forms

8261 1 82622 8261 >

Ry = ol + o2 2 axox =0,
62e22 62e33 62e23

Ryx33 = o2 + o3 28x28x3 =0,
82633 8261 1 8261 3

R = + -2 =0,
1133 GX% 5X% 0X10X5
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2 2 2 2
0%ey  Oeyy  O%ep  Ofes

Rip3= 0X,0X4 * ax% C0x;0xy  0X[0X, =0,
R Oy N Peyy ey Pepy _0
2213 7 0x(0%4 8x% C0X,0x3  0X0xy
2 2 2 2
R 0€s3 +8612 0°€3 0°€y3 o 357
BT ax0x, T od Oxgdxy  Oxgoxg O (3.57)
Alternatively, by contracting on m and n in the expression (3.51) for Rijmn’ it can be
shown that
Rii = Riimm = €jpmm + Cmmsij ~ Cimemj ~ Smeim = 0 - (3.58)

To see that these 6 equations are equivalent to the 6 equations (3.57), use is made of the
symmetry conditions (3.52) to deduce that
Ry =Ry # Ry P Ryp33 = Ry # Ryy33=0,
Ryy =Rpo11 T Ryp0 T Rpp33 = Ryppn T Rpp33=0,
R33 = R3311 7 Ry3p0 T Ry333 = Ryp33 F Ryp33 =0,
Rip =Ryp1p ¥ Ryppn # Ryp33=R33, =0,
Ri3=Ry311 ¥ Ry3p FRy333=Ryp3=0,
Ry3=Rp311 T Ryzp0 T Rp333=Ryy3=0 . (3.59)

Thus, when the compatibility conditions (3.57) or (3.58) are satisfied, the existence of the

displacement field is guaranteed.
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4. Basic balance laws: Conservation of mass; the balances of linear momentum,
entropy, angular momentum and energy (first law of thermodynamics); and the
reduced energy equation.

This section presents the basic balance laws controlling the thermomechanical
response of simple continua. It is important to emphasize that these balance laws are
valid for all simple continuum so they are valid for a wide class of materials which
include: inviscid fluids, viscous fluids, Non-Newtonian fluids, thermoelastic solids,
elastic-plastic solids, elastic-viscoplastic solids, etc. The equations that characterize the
response of a particular material are called constitutive equations. In this course,
attention will be focused on thermoelastic solids and the constitutive equations for these
materials will be discussed in a later section.

Following the work of Green and Naghdi (1977,1978), the balance laws will be
separated into two groups. One group includes: the conservation of mass, the balance of
linear momentum and the balance of entropy, which are used to determine the mass
density p (mass per unit volume), the position x (or displacement u) of a material point,
and the absolute temperature 6. The second group includes: the balance of angular
momentum and the balance of energy, which are assumed to be satisfied identically and
are used to impose restrictions on constitutive assumptions.

In the following, P denotes a material region which can be any part of the body under
consideration. Also, 0P denotes the smooth closed boundary of P, and n denotes the unit
outward normal vector to OP.

CONSERVATION OF MASS
The conservation of mass requires the total mass of the material region P to remain

constant
Jopdv=1 pyav . 4.1)

where P, is the region in the reference configuration associated with P, and p, is the mass

density in the reference configuration. Next, using the result (3.27), it follows that the

integral over P, can be converted to an integral over P to obtain

[olp—pod']dv=0. 42)
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Assuming that this expression is valid for arbitrary parts P and that the integrand is

continuous, the local form of the conservation of mass becomes
p=pydt, (4.3)
which must be satisfied at each point of P. Moreover, using the result (3.29) associated
with the small deformation theory, it follows that (4.3) can be rewritten in the form
p=py(l+eIyl=py(l-e-I) . (4.4)
This means that the density p decreases when the volume increases (e ¢ I > 0), which is
consistent with simple physical experience.
BALANCE OF LINEAR MOMENTUM
The balance of linear momentum is a direct generalization of Newton's second law
for a particle. In words, it states that the rate of change of linear momentum is equal to
the total force applied to the body. This physical concept is translated into the

mathematical expression

d
aPdeV:IPpbdv+japtda, (4.5)

where v is the absolute velocity of a material point,

v=x=u, (4.6)
a superposed dot () denote material time differentiation holding X fixed, b is the external
specific (per unit mass) body force (e.g. gravity), and t is the stress vector (force per unit
area da) applied to the boundary OP of the body. In order to develop the local form of
this equation, it is first recalled that the element of mass dm can be expressed as

dm=pdv . 4.7)

Therefore, the first integral in (4.5) can be written in the form
Jopvav=[vdm . (4.8)

However, since the mass is constant, the time differentiation can be interchanged with the
integration over mass to deduce that
d

dtppvdv=%,fvdm=,[;'dm=jpp\.7dv=jpp.u.dv. (4.9)

Next, it is recalled that the stress vector t is related to the stress tensor T by the

expression
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t(x,t;n) =T(x,t) n , (4.10)
where it is important to emphasize that the stress vector t depends linearly on the unit
outward normal n, but the stress tensor T only depends on position and time. This means
that the stress tensor T characterizes the state of stress at a point in the body, whereas the
stress vector characterizes the state of stress applied to a specific surface through a point

in the body. Now, using the divergence theorem (2.79) it follows that
JpTnda=[,divTay . @.11)

Thus, with the help of (4.9) and (4.11), the balance of linear momentum (4.5) can be

written in the form
Jo[pv—pb—divT]dv=0 . 4.12)

Again, assuming that the integrand is continuous and that this equation is valid for
arbitrary parts P, it can be shown that the local form of the balance of linear momentum

becomes

pv=pb+divT , (4.13)
which must be satisfied at each point of P. Moreover, for the small deformation theory it
is assumed that u, b and T are small, so that the density p can be replaced by its reference
value p and (4.13) reduces to

ppU=pyb+divT , pyu;=pyb;+T (4.14)

iy
Also, for the small deformation theory, material differentiation reduces to partial
differentiation with respect to time

e Ju
u=-5. (4.15)

BALANCE OF ENTROPY

It is well known that many thermomechanical processes proceed in a specific
direction. For example, it is known that heat flows from hot regions to cold regions and
not the reverse. This means that if a hot body is put into thermal contact with a cold body
and the two bodies are insulated from their surroundings, then the hot body will get
colder and the cold body will get hotter until they reach an equilibrium state where both

bodies are at the same temperature. One of the main reasons for introducing the notion of

34



entropy is to develop mathematical equations which can be used to quantify this type of
irreversible process.

From the point of view of continuum mechanics, it is assumed that the specific
entropy 7 is defined at each material point. In words, the balance of entropy states that
the rate of change of entropy is equal to the external rate of supply of entropy plus the
internal rate of production of entropy. This physical concept is translated into the

mathematical expression

d
Slrenav=[lppsdv-[ppenda]+[peav, (4.16)

where s denotes the specific external rate of supply of entropy at a point in the body, p
denotes the external rate of entropy flux vector through the boundary JP, and & denotes
the internal rate of entropy production (Green and Naghdi, 1977,1978). The minus sign
is used here because p * n denotes the entropy flux in the direction of n, which indicates
that the entropy is expelled from the body instead of supplied to the body.

Following similar arguments to those used to develop the local form of the balance of

linear momentum, it can be shown that

d . :
appndV:JPpndv, Iapp-ndaZIPdlvpdV, (4.17)

so that (4.16) reduces to

Jolpn-ps+divp—ptldv=0. (4.18)

Again, assuming that the integrand is continuous and that this equation is valid for

arbitrary parts P, it can be shown that the local form of the balance of entropy becomes

pn=ps—divp+pt , (4.19)
which must be satisfied at each point of P. Furthermore, if 1, s, £ are small quantities,

then p can be replaced by p), and (4.19) reduces to

PoN=pys—divp+py &, pon=pys—pptes . (4.20)

where p; are the components of the entropy flux p relative to the base vectors e;.
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BALANCE OF ANGULAR MOMENTUM

The balance of angular momentum is also a direct generalization of the balance of
angular momentum for a rigid body. In words, it states that the rate of change of angular
momentum about a fixed point is equal to the total moment applied to the body about the
same fixed point. Taking the fixed point as the fixed origin O, this physical concept is

translated into the mathematical expression
d
ajpxxdeVZIPxprdv+Ianxtda. (4.21)

Next, using the fact that

diV(xxT)Z(xxT),j-ejzxxT,j-ej+x,jxTejzxxdiVT+eijej , (4.22)

and following similar arguments to those used to develop the local form of the balance of

linear momentum, it can be shown that

% PX><pvdv=jpp X XV dV:IPp[VXV+X><\.’] dv= Ipxxp;' dv ,

JapxxtdaZJP[XxdiVT+eijej]dv. (4.23)
Then, (4.21) can be rewritten in the form
Jp[xx{pv-pb-divT} - ¢xTe]dv=0. (4.24)

Again, assuming that the integrand is continuous, that this equation is valid for arbitrary
parts P, and using the local form (4.13) of the balance of linear momentum, it follows that
the local form of the balance of angular momentum becomes
e;xTe = 0. (4.25)
Moreover, it can be shown that this restriction requires the stress tensor to be symmetric
TI=T, T;=T; . (4.26)
BALANCE OF ENERGY (FIRST LAW OF THERMODYNAMICS)

The balance of energy is usually called the first law of thermodynamics. In words, it
states that the rate of change of internal energy and kinetic energy equals the total rate of
external work supplied to the body plus the total rate of external heat supplied to the
body. It is important to emphasize that the first law of thermodynamics expresses the

equivalence of the rates of work and heat.
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In order to express this physical law in mathematical terms it is necessary to introduce
a few more variables that characterize the state of the material. To this end, let € be the

specific internal energy and let E be the total internal energy in the part P

E=[opedv; (4.27)
let K be the total kinetic energy in the part P

gl .

K= P2pV’VdV, (4.28)
let W be the total external rate of work done on the part P of the body due to body forces
and surface tractions

W:IPpb'VdV+IaPt'Vda; (4.29)
and let H be the total external rate of heat supplied to the part P of the body due to the

specific external rate of heat supply r (e.g. radiation) and due to the heat flux q vector per

unit area of OP
i=Joprdv—]pqenda. (4.30)

The minus sign is used here because q * n denotes the heat flux in the direction of n,
which indicates that the heat is expelled from the body instead of supplied to the body.

Using these definitions, the balance of energy becomes
E+K=W+H . (4.31)
Also, using the divergence theorem it can be shown that
[ ptevda= [ ,veTnda=],diviveT)dv . (4.32)
However,

diV(V°T)=(V°T),j°ej=v0T,j-ej+v,j-Tej s

div(veT)=vedivT+T-L , (4.33)

where L is the velocity gradient
L =ov/ox . (4.34)

Moreover, since T is symmetric
T-L=T-+D, (4.35)

where D is the symmetric part of the velocity gradient
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1
D=5(L+LT)=DT . (4.36)

Thus, following similar arguments to those used to develop the local form of the

balance of linear momentum and using the results (4.33) and (4.36), it can be shown that
ﬁ Z,[Pp(::dv , I.<= IPV-p\.'dV ,

[ptevda=l,[vedivT+TeD]dv . | pqenda=[,divqdv. 437
so that the balance of energy (4.31) can be written in the form
Jo[ve{pv—pb-divT}+{ps—pr+divq-T-D} ]dv=0. (4.38)

Again, assuming that the integrand is continuous, that this equation is valid for arbitrary
parts P, and using the local form (4.13) of the balance of linear momentum, it can be

shown that the local form of the balance of energy becomes

pe=pr—divq+Te+D , (4.39)

which must be satisfied at each point of P. Furthermore, if €, r, T are small quantities,

then p can be replaced by p,, D can be replaced by the strain rate é, and (4.39) reduces to

ppe=pgr—divg+Tee, poszpor—qj,jJrTij e > (4.40)

where q; are the components of q relative to the base vectors e;.

THE REDUCED ENERGY EQUATION
Next, the absolute temperature 0 is introduced and the external rate of entropy supply

s and entropy flux p are related to the external rate of heat supply r and heat flux q by the

relations
_I _9
=9 p 0 (4.41)
It then follows that
L _ %% q _divq p-g
divp=p,;*e¢= 0 —ez-e,jej— 0 " o (4.42)

where g is the temperature gradient

g = 00/0x = 0 (4.43)

€ -
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Now, using the balance of entropy (4.19) and the expressions (4.41) and (4.43), it can be

shown that

pr—divq=pdn-peg-pot | (4.44)

Moreover, it is convenient to separate the internal rate of production of entropy & into two
parts (Rubin, 1992)

PO =—p-g+pbS , (4.45)

where the first term (— p ¢ g) is a thermal part related to entropy (or heat) flux and the

second term is related to material dissipation. Then, (4.44) simplifies to

pr—divg=pon - poE . (4.46)
Also, with the help of this expression, the energy equation (4.39) can be rewritten in the

form

PO =pbn —pe+TeD , (4.47)

Since the derivative of the entropy appears in this equation, it is most appropriate to

use this equation when entropy m is considered to be an independent variable.
Alternatively, it is possible to introduce the definition of the Helmholtz free energy y

y=eg—-0n, (4.48)

to rewrite (4.47) in the form

pOE = —pnd —py+T+D (4.49)
which is called the reduced energy equation. Specifically, the definition (4.48)
transforms the equation (4.47) into one in which temperature 0 is considered to be an
independent variable. Furthermore, if &', n, y, and T are considered to be small

quantities, then p can be replaced by p, and D in (4.36) can be replaced by the strain rate
¢ to obtain the simplified form

pePE =~ poné — po\.ll +T- é , P9 =~ poné — po\j.j + Tij éij . (4.50)

In the remainder of this course attention will be focused on the forms of the equations
which consider the strain e and the absolute temperature 6 to be the independent
variables. Moreover, it is noted that although the equation (4.50) has been developed

using simplifications associated with small deformations, no assumptions have been used

39



yet about the magnitude of the temperature changes. It will be seen later, that for the
complete linearized theory, additional simplifications will be introduced which assume
that the temperature 0 remains close to its reference value 0.

For later convenience, the small deformation forms of the conservation of mass (4.4),

the balance of linear momentum (4.14), and the balance of entropy are summarized here

p=pg(l-e*D, p=py(l—ep), (4.51a,b)
Pou=pob+divT . pyu;=pyb;+Ty, - (4.51c.d)
PoN=pgs—divp+py& ., PpN=pPys—PjjT P& - (4.51e,f)

Also, the reduced forms of the balance of angular momentum (4.26) and the balance of

energy (4.50) are summarized here

T™'=T, T.=T., . (4.52a,b)

PoOE =—pgnd —pow +Tee , peOE =—pnd —poy +Tj;e;. (4.52c,d)
Moreover, the quantities in these equations are related by the expressions (4.41), (4.43),

(4.45) and (4.48), which are collected here

T
s=5. P :g . g=00/0x=0,¢ (4.53a,b,c)
pOE =—peg+p0E , y=e-0n . (4.53de)

In the thermodynamic procedures proposed by Green and Naghdi (1977,1978), the
balance laws (4.51) are used to determine the density p, the displacement vector u and
the temperature 6, and the balance laws (4.52) are used to place restrictions on

constitutive equations which will be described later. Alternatively, the energy equation
(4.40)

can be used instead of the balance of entropy to determine the temperature field.
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5. Constitutive equations for an isotropic thermoelastic material within the context
of the small deformation theory.

A thermoelastic material is considered to be an ideal material because it exhibits no
material dissipation. Moreover, a material is said to be anisotropic if different samples,
which are taken from different orientations relative to the material microstructure, exhibit
different material responses. Single crystals of metal, silicon and composite materials are
examples of such anisotropic materials. However, if all such different samples exhibit
the same material response, then the material is said to be isotropic. For simplicity,
attention will be confined in this course to the simplest case of isotropic thermoelastic
materials within the context of the small deformation theory.

The constitutive equations for such materials can be developed by making the
following assumptions:

(A1) The response functions

{v.n,e,0, T}, (5.1)
depend only on the variables
{e,0} . (5.2)
(A2) The response function

P, (5.3)

depends only on the variables (5.2) and on the temperature gradient

00

8= - (5.4)

Using the assumption (A1), the reduced form of the energy equation (4.52¢) becomes

v

. a °
pode =—po[n+55 10+ [ T-pzt] e . (5.5)

Now, the assumption (A2) requires &' and the coefficients in square brackets to be

explicitly independent of the rates

(e,0) . (5.6)
Thus, since the reduced energy equation (5.5) must be valid for all thermomechanical
processes, it follows that the constitutive equations for a thermoelastic material must

satisfy the restrictions that
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=0 . (5.7a,b,c)

Thus, once a functional form for the Helmholtz free energy w is specified, the
constitutive equations for the entropy m and the stress T are determined by mere
differentiation. Also, since e is a symmetric tensor, the stress T given by (5.7b) is
symmetric and thus automatically satisfies the restriction (4.52a) associated with the
reduced form of angular momentum. Furthermore, the result (5.7c) proves that a
thermoelastic material is nondissipative.
For an isotropic material, v must be an isotropic function of the strain e, and p must
be an isotropic function of the strain e and the temperature gradient g. In particular, y
can depend on e only through its invariants (see Appendix A), which can be taken to be
el , ee, dete . (5.8a,b,c)
For the simplest case,  is taken to be a quadratic function strain so the invariant (5.8c) is
omitted. Also, p is taken to be independent of strain e. Specifically, v and p are

proposed in the forms

1
PoV = poC, [(6-0,) — 6 In(6/0,)] + 5 K(esI)2+pe e —3Ka (00 (e 1),

K
P=—5 &, (5.9a,b)
where C, is the constant specific heat at constant deformation, 0 is the reference

temperature, K is the constant bulk modulus, p is the constant shear modulus, a is the
constant coefficient of linear thermal expansion, and « is the constant heat conduction

coefficient. Notice that the term associated with C,, is purely thermal, the term associated

with K is the strain energy of dilatational deformation, the term associated with u is the
strain energy of distortional deformation, and the term associated with o characterizes the
coupled thermomechanical response to temperature and dilatation. Also, using (4.53b),
the assumption (5.9b) leads to the usual form for Fourier heat conduction with

q=-xg, (5.10)
which indicates that heat flows in the direction parallel to the temperature gradient.

Now, using the definition (3.31) of the deviatoric strain tensor €', it can be shown that
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po¥ = - [PoC, In(0/0,) + 3Kot (e + T)] 6

+[K{e T-30(0-0)}1+2pe ] e . (5.11)

Thus, the entropy and stress associated with the constitutive assumptions (5.9) become
poN = PoC, In(0/6y) +3Ka (e 1) , (5.12a)
T=-pI+T, p=—K{e*I-3a(0-0)}, T'=2pne , (512bcd)
where p is the pressure and T' is the deviatoric stress. Moreover, using the definition
(4.53e) it can be shown that the internal energy & associated with the constitutive

assumption (5.9a) becomes
1

P = PoC, (0-0,) + 3Kab, (e 1) + 5 K(e*IZ2+pe'-e'. (5.13)

It is clear from this functional form that C, is the specific heat at constant deformation

[ ]
since when the strain remains constant € = C, 0.

Often, an engineering approach is taken which generalizes the purely mechanical

theory by defining the thermal strain ey by
eg =00, I, (5.14)
and replacing the total strain e in the constitutive equation for stress by the quantity
e—ey . (5.15)
However, if this is done in the (5.9a) for the Helmholtz free energy, then y is proposed in

the form
PoW = Po¥ = PoCy [ (8-67) — 0 In(6/6)]
1 2 v
+7K{esT-30(0-6))} +pe'-e, (5.16)

instead of the form (5.9a). Next, using this expression it can be shown that

L]

poW =~ [poC, In(6/8,) + 3Kau{(e * I) — 301(6-0,) } | 0

+[K{e+T-3a(0-0) 1+ 2ue ] e , (5.17)
so that the constitutive equations for the entropy becomes
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poN = PoN = [PoC,, In(0/0,) + 3Ka{(e * I) — 30(0-0) } | , (5.18)

the stress is again given by (5.12b,c,d), and the internal energy becomes
— 1
PoE = Poe = PoCy(0-0p) +5 K{e = 1-3a(0-0))} {e + I+ 3a(6+6y)}

+ue'-ee'. (5.19)
However, since the expression (5.19) is more complicated than (5.13) and since the

interpretation of C,, in (5.19) is not clear, the constitutive assumption (5.9a) is preferred

over (5.16).
In addition, it is noted that for the purely mechanical theory of an anisotropic elastic

material, the strain energy function (or Helmholtz free energy) is given by
1
PV =5 K-« (e®e) , (5.20)

where K is a fourth order tensor having the following symmetries

KT LT = kT2 — — -
K=Kl =LTK=KT®@ i = Kk = Kiirg = Ky - (5.21)
Also, it can be shown that (5.7b) holds so that the stress is given by
_ v _

Thus, the material properties of the this anisotropic material are determined by the
stiffness tensor K. In general, since K is a fourth order tensor it has 34=81 independent
components. However, the symmetry conditions (5.21) impose restrictions that reduce

the number of independent components to 21

K K Ky Koo Koz Kypsz Ko
Koz Koo Kiooz Kyozz Kyzpz Kyzpp Kysoz (5.23)
K333 Koo Kooos Kopsz Kozpz Kozzz Kyssg
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6. Summary of the basic equations

For convenience, the basic equations associated with the small deformation theory of

a thermoelastic material are summarized as follows:

KINEMATICS

Strain-displacement relations (3.15)

1 1
e=5 [owox + (@uox)T]=el, ;=7 (up+u,)=¢; .

Deviatoric strain (3.31)

1 1
e':e—g(e°l)l, 613:GIJ—§ emmSU .

Compatibility (3.58)
0.

+e €

eij’mm mm°ij ~ Vim'mj ejm’im -
BALANCE LAWS
Conservation of mass (4.51a,b)

p=pp(l-e-D), p=py(l-ey,) .

Balance of linear momentum (4.51c¢,d)

pou=pyb+divT , pouizpobiJrTij,j .

Balance of entropy (4.51e,f)

PoN=pos—divp+py& , poMn=pys—pjit P& -

Balance of angular momentum (4.52a,b)

Balance of energy (4.40)

p0é=p0r—divq+T-é , poézpor—qj,jJrT

CONSTITUTIVE EQUATIONS
Helmholtz free energy (5.9a)

45

ij ®ij -

(6.1a,b)

(6.2¢,d)

(6.3)

(6.4a,b)

(6.5a,b)

(6.6a,b)

(6.7a,)

(6.8a,b)



pow = poCy [ (0-89)— 0 In(@/89)] +3 K (e + 1Y + pe'»
3 Ko (8-6y) (e* 1) , (6.92)

1
Po¥ = PoCy [ (6-69) — 0 In(6/6p)] +5 Key e + e el

-3 Ka (0-9y) €\, > (6.9b)
Entropy flux vector (5.9b)
K K
| I g =00/0x , Pi=—9 & > g=0, . (6.10a,b,c,d)
Heat flux vector (5.10)
=-xg, g=00/0x , q;=-x g , g=0, . (6.11a,b,c,d)
Entropy (5.12a)
poN = PoC, In(0/6y) + 3Ka (e 1) , (6.12a)
poN = PoC, In(0/6y) +3Kare, . , (6.12b)
Internal rate of production of entropy (4.45), (5.7¢)
PoYS =-P°-g , (6.13)
Stress (5.12b,c,d)
T=-pI+T, p=—K{e*I-3a(0-0)}, T'=2ne, (6.14ab,)

T =-p&;+ T} , p=—K{ey, 3000}, Thi=2ue} . (6.14de,f)

Internal energy (5.13)

1
PoE = PoCy (0-0¢) + 3Kaby (e +7 K (e I?+pese'. (6.15)

SMALL TEMPERATURE VARIATIONS AND SMALL STRAINS
For small temperature variations and small strains it is possible to neglect quadratic

terms in e and (0-0,)) to obtain the following simplified constitutive equations

Entropy flux vector
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p ‘eﬁo 0/0x . pi=—p O, (6.16a,b)
Entropy
PoOon = PoC, (0-6y) +3Kab, (e-1I) , (6.17a)
PeOon = PC, (0-0,) +3Kab, e ., » (6.17b)
Internal rate of production of entropy (4.45), (5.7¢)
PBE =0 , (6.18)
Internal energy
Pt = PoC, (0-0,) + 3Kab, (e-1T) . (6.19)

LINEARIZED HEAT EQUATION
It then follows from (6.16)-(6.19), that the balance of entropy (6.6) and the balance of

energy (6.8) reduce to the same linearized equation
Ppe=pPor—divg , pye=pyr—qj; (6.20a,b)

where s has been approximated by r, and the quadratic term T * ¢ has been neglected in

the energy equation.

SUMMARY OF THE LINEARIZED THEORY
Using the above approximations the main balance laws and constitutive equation used
to determine the mass density p, the displacements u;, and the temperature can be

summarized as follows.

Balance laws

p=py(l—eD, p=py(1—e,), (6.21a,b)
Pou=pob+divT . pyu;=pyb;+Ty, - (6.21c.d)
Poe=Por—divg , poe=pyr—dj; - (6.21e,0)
Constitutive equations
T=-pI+T, p=—K{e*I-3a(0-0)}, T'=2ne, (6.22ab,)
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Ty =-p8;+ T, p=—K{en,—3a0-0p)}, Th=2uel, (6.22de,f)
=—Kk00/0x , q=—K0, , (6.22g,h)

P = PoC, (0-0,) +3Kab, (e+I) , poe=pyC, (09, +3Kabye, ., . (6.221))

MATERIAL CONSTANTS

Table 6.1 lists material constants for a few materials. The values of {p, , K, u} were
taken from p. 201 of Kolsky (1963), the values of {a , C, , k} were taken from p. D-185
of the CRC Handbook of Chemistry and Physics (1988), and the values of {Y , o} were

taken from Ashby and Jones (1995). Here, o7 is the tensile strength for brittle materials.

Material Steel Aluminum Silicon
Property (Iron) (Glass)
Po (Mg/m?) 7.8 2.7 2.5
K (GPa) 167.0 73.0 47.0
i (GPa) 81.0 26.0 28.0
E (GPa)" 209.0 69.7 70.1
v 0.291 0.341 0.251
Y (GPa) 0.220 0.27 —
o1(GPa) — — 7.20
a (K 12.0 x107° 25.0 x10°° 3.0 x10°°
C, (kl/kg/K) 0.452 0.900 0.712
« (J/s/K/m) 80.3 237.0 83.5

Table 6.1 Material constants for steel, aluminum and silicon.

*Calculated using the formulas presented in Table 9.1.




7. Initial and boundary conditions, Saint Venant's principle

In general, the number of initial conditions and the type of boundary conditions
required will depend on the specific type of material under consideration. However, for
the thermoelastic material under consideration these initial and boundary conditions are
quite clear.

To this end, it is recalled that the local forms of balance of linear momentum
(6.21c,d) and the balance of energy (6.21e,f) are partial differential equations which
require both initial and boundary conditions. Specifically, the balance of linear
momentum (6.21c,d) is second order in time with respect to displacement u so that it is
necessary to specify the initial value of u and the initial value of the velocity v at each

point of the body
u(x,0) = ﬁ(x) onP fort=0 , (7.1a)
u(x,0) = v(x) onP fort=0, (7.1b)

where u(x) and v(x) are specified function. Also, the balance of energy (6.21¢,f) is first
order in time with respect to the temperature 6 and the displacement u so that it is

necessary to specify the initial value of 0 at each point of the body
0(x,0)= 0(x) onP fort=0 , (7.2)

where 6(x) is a specified function.
Guidance for determining the appropriate form of the boundary conditions is usually

obtained by considering the rate of work done by the stress vector and the rate of supply

of heat in the balance of energy (4.31). From (4.6) and (4.29) it can be observed that t 1.1
is the rate of work per unit area OP done by the stress vector. Now, at each point of the
surface OP it is possible to define a right-handed orthogonal coordinate system with base

vectors { $; , S, , n |, where n is the unit outward normal to OP and s; and s, are

orthogonal vectors tangent to OP. Then, with reference to this coordinate system it can be

shown that
teu=(tes) (Wes)+(tesy) (Uesy)+(tem) (u+n) on P . (7.3)
Thus, using this representation it is possible to define three types of boundary conditions
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Kinematic: All three components of the velocity are specified

(1.1 *s)) (1.1 *s,) , (1.1 *n) specified on 0P for all t >0, (7.4)

Kinetic: All three components of the stress vector are specified

(tes;) , (tes,) , (ten) specified on oP forall t=0, (7.5)

Mixed: Conjugate components of both the velocity and the stress vector are specified

(1.1 *s;) or (tes;) specified on P for all t >0, (7.6a)
(1.1 *s,) or (tes,) specified on P forallt>0, (7.6b)
(1.1 *n) or (t*n) specified on OP forall t>0. (7.6¢)

Essentially, the conjugate components (t ¢ s;),(t * s,),(t * n) are the responses to the
motions (u * s;),(u * s,),(u * n), respectively. Therefore, it is important to emphasize that,

for example, both (1.1 * n) and (t * n) cannot be specified at the same point of 0P because
this would mean that both the motion and the stress response can be specified
independently of the material properties of the body. Notice also, that since the initial
position of points on the boundary OP are specified by the initial condition (7.1a), the
velocity boundary conditions (7.4) can be used to determine the position of the boundary
for all time. This means that the kinematic boundary conditions (7.4) could also be
characterized by specifying the position of points on the boundary for all time.

Next, it is observed from (4.30) that (— q * n) is the rate of heat supplied to the body
per unit area of OP. It then follows using the constitutive equation (5.10) that at each
point of the surface P two types of boundary conditions can be specified
Kinematic: The value of the temperature is specified

0 specified on OP for all t >0 , (7.7a)
Kinetic: The normal component of the heat flux vector is specified

q * n specified on OP for all t >0 . (7.7b)

STRESS TENSOR AND STRESS VECTOR
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It is important to emphasize that the state of stress at a point in the body is
characterized by the stress tensor T(x,t) which is a function of positions and time only.
However, the boundary conditions (7.5) and (7.6) are specified in terms of components of
the stress vector t(x,t;m), which is a function of position, time and the unit outward
normal n to the surface OP at the point x. Specifically, from (4.10) it follows that t is a

linear function of and n, such that

t(X,t;n) = T(X,t) n, tl = Tl_] nj . (78)
This equation can also be written in the matrix form
f Ty Tip Tys n
=9 T Ty To3 n - (7.9)
t Ty3 Ty; T3 ng

where use has been made of the fact that T is a symmetric tensor. In particular, notice

that if the values of t; are given on a specific surface, then (7.9) represents only three
equations in terms of the six stresses Tij~ This means that not all of the stress components

can be determined from boundary conditions on a single surface. For example, consider

the surface whose outward normal is n = e;. It then follows that
Thus, no information can be obtained about the components (T,,, T,3, T53) of the stress

tensor from this boundary condition.

SAINT VENANT'S PRINCIPLE

The global forms of the balance of linear momentum (4.5) and the balance of angular
momentum (4.21) depend on the net effect of the tractions t (stress vector) on the
boundary OP of the body. In particular, with reference to the surface S which is part of
the boundary OP, the resultant force F and moment M, (about the point x;) applied by t

can be written in the forms

F= tda , My=Jg(x—xp) xtda . (7.11)
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Consequently, any distribution of the traction vector t which produces the same values

for F and M, will have the same net effect on the response of the body. Such

distributions of traction vectors are called equipollent.
Saint Venant's principle states that:

The differences between the solutions associated with two equipollent

tractions vectors diminishes with distance from the boundary at which

they are applied.
Therefore, an approximate solution of a boundary value problem can be obtained by
replacing the specified traction vector field with another simpler equipollent field. This
principle is used often in approximating boundary conditions like those associated with a

clamped edge of a beam.
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8. Superposition

t=tD) +¢2

t(D t2
q q? q=q+q?
_|_ =
{u® oy {(u® 0@ {u=uD+u@ g=0D+p2}
R ONOR! {(b®@ @) {b=bWD) +p@ =D+

Fig. 8.1 Sketch of the principle of superposition.
A complete initial value and boundary value problem associated with thermoelasticity
requires the determination of the displacement and temperature fields
{u,0} , (8.1)
and the kinetic quantities
{lp—pol.T,e,q} , (8.2)
which satisfy the balance laws (6.21), the constitutive equations (6.22), the initial
conditions (7.1) and (7.2), and the boundary conditions (7.4)-(7.7) associated with a
specific problem for specified values of the body force and the external heat supply
{b,r} . (8.3)
Since all of these equations are linear functions of the given variables, it follows that
the principle of superposition holds (see Fig. 8.1). Specifically, the principle of
superposition states that the sum of two solutions which satisfy the balance laws and the
constitutive equations is also a solution. In particular, let the one solution be

characterized by the displacement and temperature fields

fu® ey (8.4)
the kinetic quantities
{IpM-pgl, T, M, gD}, (8.5)
and the external fields
OO (8.6)
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and let the second solution be characterized by the displacement and temperature fields

{(u® 0@ | (8.7)
the kinetic quantities
{[pP—pol, T, @), q@ 1}, (8.8)
and the external fields
{(b@ @1 (8.9)

Then, the principle of superposition states that the displacement and temperature
{u=uD+u® o=001+02} (8.10)
and the kinetic quantities
{ [p-pol = [P—pgl + [pP—py] , T=TD + T@, g = D) + £2), q=qD +q? } , (8.11)
satisfy the balance laws and the constitutive equations when the external fields are given
by
{b=bW +p@ r=rD+2Dy (8.12)
Moreover, the traction vector on the boundary OP of the body is given by
t=t)+¢2 | (8.13)
It will be shown through examples that the main use of the principle of superposition
is to combine a number of known solutions to obtain a solution of a particular set

boundary conditions.
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9. Simple examples with quasi-static uniform fields: Free thermal expansion,
uniaxial stress, uniaxial strain, simple shear, adiabatic processes, restrictions on
material constants

In this section, attention is confined to quasi-static uniform fields for which the strain

e and the temperature 0 are independent of the position x. For quasi-static response the

inertia is neglected. Consequently, in the absence of body forces (b = 0) the balance of

linear momentum reduces to (6.21c¢)

divT=0, T., =0 . (9.1)

i
Now, for uniform fields, the constitutive equations (6.22) indicate that the stress T is
independent of position so that the balance law (9.1) is satisfied. Also, the constitutive
equations indicate that the heat flux vector q vanishes so that the balance of energy

(6.21¢) reduces to

E=T . 9.2)

When T is nonzero it is necessary to apply appropriate surface tractions t to the

boundary OP of the body. Also, since q vanishes, no heat flows through the boundary

OP. However, when ¢ is nonzero, it can be observed from the balance law (9.2) that heat
must be supplied or extracted by r.

Since the strains e;; are independent of position, it follows from (3.39) and (3.40) that

the strain-displacement relations (6.1) can be integrated to deduce that
ui:Ci+°31j Xj+einj R
up=cpte Xt (0 e X, +(o3+e3)X3 ,

Uy =yt (o tepp) Xy ey Xy T (03 +ep3) X5,

Uy =c3 + (-3 T €13) X| T (—0y3 +€53) Xy T €33 X3, 9.3)
where the constants c; represents rigid-body translation and the constants ;; represents
rigid-body rotation.

Before considering a number of special cases it is convenient to develop some results
for the constitutive equations which are valid for general thermoelastic problems
including dynamics and inhomogeneous deformations. Specifically, with the help of

(6.2) the constitutive equation for stress becomes
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1
Tij =K{emm—30((9—90)}8ij +2u [e-~ -3 €. 0. ] ,

] 3 “mm 1

2
Ty = K[(1 - 55 e — 301(0-00)] 8+ 2pr e - (9.4)
This equation can be solved for the strain by first multiplying it by Sij to deduce that

T

T, =3K[e,. —30(6-6,)] , =30(0-0,) + 31 (9.5)
and then using (9.4) to obtain
T.. 2
&= 2—’: 1 3K) —= 5 + a(6-0) 3y (9.6)
Also, equation (9.4) can then be expanded to yield
4 2 2
Ty =K+ ey + (K3 ey + (K- 3) eg3 - 3Ka(8-6)
2 4 2
Ty, = (K- —3E) e;; +(K+ —SH) ey + (K- —SH) €33 — 3Ka(6-9,) ,
2 2 4
= (K~ ey + (KT ey + (K+73) e33 — 3Ka(6-6y) .
Tip=2nepy , Ti3=2pe;, Ty3=2ney;, ©.7)
and equation (9.6) can be expanded to deduce that
2u T 2u T 2u. T33
e11:(2+3K) -(1 3K) on (1 3K)_ +a(6-6,)
2u Ty 2u. T 2u Ts3
(130 g + 030 e~ (150 ¢ +a(0-0y) .
2u Ty 2u T 2u 133
e33=—(1 3K) - (1 3K) 2+ 3K) ou 00y .
e T Ty
€1p = PR €13 = 2 €93 = S (9.9)

However, it is usually more convenient to define Young's modulus of elasticity E and

Poisson's ratio v, such that (9.7) can be rewritten as

33
‘=g " ~E "9,
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vT T vT
11 22 33
ep=-"p tF g ta00,

VI VI Ti

T Ty Ty
€1n = PR €13 = SR €3 = e (9.9)

Thus, comparison of (9.8) and (9.9) yields relationships between the material constants of

the forms

poOKp (K2
T3K+n Y 23K+p)

E
E=201n . K=3054 -
u _ _(A=v)E 2u  VvE
75T iy B3 T @iy (9.10)

Next, the constitutive equation (6.22j) for the energy is expanded to obtain

PoE = pOCV (9—90) + 3K0L90 (e11 Tey t 633) ,

Po {8 - Cv(e_eo)}
3KOL90 . 9.11)

€11t ey tez=

FREE THERMAL EXPANSION

For free thermal expansion, the stress Tij vanishes
Tij =0, (9.12)
and (9.9) yields
€11 = a(0-9y) , ey =a(0-0,) , e33=a(0-0) ,
€p=€3=€3=0 . (9.13)
Moreover, it follows from (3.16) that the strain of all materials fibers are equal

E= ;i N; Nj = o(0-9,) . (9.14)

For this reason a is called the coefficient of thermal expansion. Also, (9.11) yields

Po = [PC, + 9Ka20,] (6-6,) . (9.15)
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UNIAXIAL STRESS

For uniaxial stress in the e, direction, the only nonzero component of stress is Ty,

T, #0, all other Tij =0, (9.16)
so that (9.9) yields
Ty VT
en="T * a(0-0,) , €5y =€33=— TE * a(6-9,) ,
€p=€3=€3=0 . 9.17)

In particular, notice that the lateral strains e,, and €35 are equal and nonzero. Also,

(9.11) yields
(1-2v)Ty4

= (9.18)

pot = [pC, + 9Ka20,] (6-0,) + [3Kad, ]

For the simpler case when the temperature 0 remains the reference temperature 0,

these results reduce to

S A T I
€= F »©2~€3=-"F  €n=¢3=¢3=0,
(1-2v)Ty

pot = [3Kab,] , for =0, , (9.19)

E
which show that tension (T;;>0) causes extension (e;;>0) in the axial direction,

contraction (e,,=€43<0) in the lateral direction, and increase in internal energy.

UNIAXIAL STRAIN

For uniaxial strain in the e, direction, the only nonzero component of strain is €4,
e;; 70 , all other e = 0, (9.20)
so that (9.7) yields
T, =K+ %H) ey — 3Ka(0-9,) , Ty, =T33=(K —%E) 11 — 3Ka(0-0,) ,
T, =T3=Ty3=0. (9.21)
In particular, notice that the lateral stresses T,, and T;5 are equal and nonzero. Also,

(9.11) yields
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Po€ = PoC, (0-0,) +3Kab, e . (9.22)

SIMPLE SHEAR

For simple shear in the e;—e, plane, the only nonzero component of strain is €,

€1, #0 , all other e = 0. (9.23)

so that (9.7) yields
Ty, =T,, =T33=-3Ka(0-0y) , T, =2pne;, , T;3=Ty;3=0 . (9.24)

Also, (9.11) yields
Pt = PoC, (0-9,) . (9.25)

In particular, notice that if the temperature 6 remains the reference temperature 6, then
T, is the only nonzero component of stress

T, =2ue;, , all other Tij=0 ,e=0, for 0=0, . (9.26)

ADIABATIC PROCESSES

For adiabatic processes no external heat is supplied to the body so that r vanishes in
the energy equation (9.2). Consequently, the internal energy & remains zero, which
means that the temperature is determined by the equation (9.11)

3Ka0,
e=0, 6=90—m (€] T ey te33) - (9.27)

This result can then be substituted into the constitutive equation (9.7) for stress to deduce

that

_ 4 _ _
Tll=(K+—3H)e11+(K——3H)ezz+(K——3H)e33 ,
_ _ 4 _

Ty = (K- e; + K+ ey + (K-F) e,

_ _ _ 4
T33=(K——3H)ell+(K——3H)e22+(K+—3H)e33 ,
Ti,=2pe, , Ti3=2pe3, Tyy=2uney;, (9.28)

where the constant K has been introduced for convenience
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=K |[l+ 9.29
poCy 9:29)
In particular, for an adiabatic process in uniaxial strain it follows that
— 4 — 2 — 2
Ty = (KJF_;;H) er» Ty :(K—EH) ey, T33 :(K—_;:.E) €y >
Tp=T;3=Ty3=0,
for e;; #0, all other e = 0,e=0". (9.30)

RESTRICTIONS ON MATERIAL CONSTANTS

The material constants which characterize the response of a thermoelastic material
{p()aKaMaaaCV}’ (931)
are specified at the reference temperature 0, which is usually specified by
0,=300K . (9.32)

(Here, the use of the symbol K for degrees Kelvin should not be confused with the use of
the same symbol K for the bulk modulus.) Since these material constants model the
response of real materials, they must satisfy certain physical restrictions. For example,
for uniaxial stress at reference temperature (9.19), it is expected that the material fiber in

the axial direction will extend (¢;,;>0) when the material is in tension (T;;>0), which

requires Young's modulus to be positive

E>0 . (9.33)
Similarly, for simple shear (9.26), is expected that the material will shear in the direction
of the shear stress so that the shear modulus must be positive

u>0 . (9.34)
These restrictions can be used together with the expressions (9.10) to show that the bulk

modulus is positive

K>0, (9.35)
and that Poisson's ratio is limited to the range
1
—1<v<;y. (9.36)

60



In this regard, it is interesting to note that the restriction (9.35) can be alternatively
obtained by requiring the part of the Helmholtz free energy (6.9) due to dilatational

deformation to be positive definite
1
EK(e°D2>O for e #0 . (9.37)

Also, the restriction (9.34) can be alternatively obtained by requiring the part of the
Helmholtz free energy (6.9) due to distortional deformation to be positive definite
peee>0 for e#0 . (9.38)
Moreover, it is expected that for zero strain (eij=0) the temperature of the material
must increase if heat is added (r >0), which requires the specific heat at constant
deformation to be positive
C,>0 . (9.39)
Also, since heat flows from hot to cold regions the heat conduction coefficient k is
positive

K>0. (9.40)

61



RELATIONSHIPS BETWEEN ELASTIC CONSTANTS
Table 9.1 records the relationships between various pairs of elastic constants for

isotropic elastic materials. In this table: A is Lame's constant, p is the shear modulus, E is

Young's modulus, v is Poisson's ratio, and K is the bulk modulus.

A m E v K
N n(3A+2p) A 30+2u
S At 2(MHp) 3
A1-2v) A1+v)(1-2v) M;ﬂ)
AL,V 2v v v
3(K=A 9K(K—L) ﬁ
ALK 2 3K\ a
uu-E) E2u 3_3ELE
uLE B n (Gu-E)
2uv h oy
TIRY 1-2v 2u(1+v) =)
3K-2p 9Kp Shaw
" K 3 3K+ 2(3K+pw)
E
Ev E
By Ty R 3(1-2v)
3K(3K—E) 3EK 3164—;5
E.K 9K-E 9K-E
3Kv 3K(1-2v
v K ey 21 3K(1-2v)
. (E-30)F\ (E-30)2+8AE v —(EHF (E+)2+822
(30+E)+\| (3)+E)>—4AE
K= 6

Table 9.1 Relationships between various pairs of elastic constants.
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10. Beltrami-Michell compatibility equations
For dynamic problem where inertia cannot be neglected it is necessary to solve the

equations of linear momentum (6.21c,d) directly for the displacements u,. Consequently,

there is no need to check for compatibility since a displacement field exits. However, for
static problems the equilibrium equation becomes

0 =pyb;+T (10.1)

ijj >
which sometimes can be solved for the stresses without determining the displacements.
Under these conditions it is necessary to limit the possible solutions for the stresses only
to those stresses for which a displacement field exists. Specifically, it is necessary to
ensure that the strain field associated with the proposed stress field satisfies the
compatibility equations (3.58)

t+e

e 0. (10.2)

eij’mm mm°ij ~ Vim'mj ejm’im -
To this end, it is noted that the expression (9.10) for E can be used to rewrite the
constitutive equations (9.9) in the forms

_h VT, Vs,

=g g g "0,
vT T vT
11 22 33
2=~ T ~E %%,

VI VI, Ty

3=~ ~ g T g T%00),

(I+v)T4, (1+v)T 5 (I+v)Ty4
ep="fg -3~ E %3~ F - (10.3)

Moreover, these equations can be written in the compact indicial form

1
%iTE [(1+V) Tij -v T, 8ij ] +oU(6-6) Sij . (10.4)

Next, with the help of this result, the compatibility equations (10.2) can be written in

terms of the stresses and the temperature field in the forms

() Titomm * T — 1Y) [Tiomg  Tjmoim] =V T 8

ij"mm mm’ij nn’mm ~ij

+Ea [0, +0

i+ O 85 ] =0 (10.5)

Moreover, by contracting on ij it can be shown that
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ERERY 2
T omm = v T smn — — Ea 0, . - (10.6)
which can be used to reduce (10.5) to the equation
v(l+v)
(I+v) lemm mmij —(1+v) [ im’mj ij’im] o (1-v) ~nm’mn 8ij
I+v
+ Eo [0, + 77 B 8 1 =0 (10.7)
Next, the equation (10.1) can be used to deduce the results
Tlm’mj ~Po bl’_] > T]m’lm ~Po b_]’l > Tnm’mn ~—Po bm’m > (10.8)
so that (10.7) can be rewritten in the form
1
Tij’mm + [m] Tmm’ij ~——Po [bl’_] + b it { } bm’m 1]]
Ea 1+v

These equations are called the Beltrami-Michell compatibility equations.
For the special case when the body force is constant and the temperature gradient is

constant

b, = constant , 0,; = g, = constant , (10.10)

the compatibility equations (10.9) reduce to

T, +L]T

ij>mm [1+V =0, (10.11)

mm?ij

which in expanded form become
1
Tionn + Tioo + Triss + [ ITinn + Ty + T3] =0

1
Tooot1 *+ Toon + Toos + [ 15 Il Ti100 + Tonion + T3] =0

1
Tygo11+ Taz0n + T3z + [T Tira3 + Tonias + Ta3.33] =0

1
Tion1 + Tioon + Tioas + [ ITin2 + Topern + Ta3010] =0

-

1
Tiznr + Tizon + Tizas + [ I Tias + Tz + Ta303] =0
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1
Tozs11 F Tozipn + Tozizz + [m ][Tnaz3 T Thomnz t T33,23] =0 . (10.12)
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11. Two-dimensional plane strain and generalized plane stress problems

Consider a thermoelastic body which has a right-cylindrical shape with a general
lateral surface OP', and flat bottom and top surfaces OP; and OP,, respectively. If
appropriate boundary conditions and body forces are applied then the response of this
body can be purely planar. For these two-dimensional problems the displacements,
temperature and stresses depend on only two space variables and time. More
specifically, these two-dimensional problems can be either plane strain problems (which
are special exact solutions of the three-dimensional equations) or they can be generalized
stress problems (which often are only approximate solutions of the three-dimensional

equations).

PLANE STRAIN PROBLEMS
For plane strain problems all field quantities are independent of one spatial coordinate

which here is taken to be x5. Specifically, the displacements u;, the temperature 0, the

stresses T;., and the body force b, take the forms

ij
u,=u, (X, , u3=0, 0=0(x,1t) ,
TOLB - TaB(Xa’t) > T3OL =0, T33 - T33(Xa’t) >
b, =b (X,t) , by=0, fora,p=1,2 (11.1)

where for convenience, throughout the text Greek indices take only the values 1,2.
Using the expressions (6.1), it then follows that the strain-displacement relations reduce
to
1

Cap = eaB(Xa’t) =5 (ua,B + uB,a) , €3;=0 . (11.2a,b)

Moreover, the balance laws (6.21) become
P =Py (1- eGG) » Po Uy =Po ba + TOLB’B s POE=PYT—dgog - (11.3a,b,c)
Next, with the help of the expression for E in (9.10), the constitutive equation (10.4)

can be rewritten in the form

1 v
% ~on [Ty~ 1oy Ton 85 1 + 2(6-69) &;; . (11.4)

In particular, using (11.4) it follows that
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1

\

€34, =0 , e33=

1

33 = 21y [Ty v Ty, ] +a(6-6y) , (11.5)

where use has been made of the expression
Tn=Tost Ts3- (11.6)
Thus, the strain €55 will vanish provided that T55 is given by
T33=v Tys—2u(1+v)a(6-6) , (11.7)

so that (11.4) can be rewritten in the form

1
Cop = Z [TOLB —VTss 6OLB ] + (1+v)ou(0-6p) 80‘3 > 23i=0 . (11.8)

Moreover, this equation can be inverted and the constitutive equations for stress can be
summarized as

\% 2u(1+v)
TG’B = 2“ [eaB + {1—2\/} eGG SGB] - (1—2\/) a(e_eo) SOLB 5

In particular, notice that for plane strain, a nonzero stress Ts; is required to cause the

strain €33 to vanish.

GENERALIZED PLANE STRESS
For generalized plane stress problems the displacements, temperature, stress and body

force are independent of the variable x5, such that
u, = u, (Xt , 0=0(x,t) , TOLB = TaB(Xa’t) , T3;,=0,
b, =b, (X, , by=0, fora,p=1,2 . (11.10)

Next, the constitutive equations (11.4) can be written in the forms

1 \Y
Cap =20 [TaB ~Tov Too Bap ]+ o(6-6p) Bup

lrv

,5[1+V]T66+a(efeo) : (11.11)

€30, =0, e33=
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which indicates that the strain €33 does not vanish. In this regard, it is important to

emphasize that often generalized plane stress problems are only approximate solutions of

the three-dimensional equations because a function for the displacement u; may not exist
even though the displacements u, do exit. Moreover, this equation can be inverted and

the constitutive equations for stress can be summarized as

Y% 2u(l+v
Top =20 [eqp + {75} €0 80p] ——*(14132 a(8-09) 8o » T3=0 . (11.12)

GENERAL TWO-DIMENSIONAL CONSTITUTIVE EQUATIONS
Comparison of the constitutive equations (11.8) and (11.9) for plane strain with
(11.11) and (11.12) for generalized plane stress indicates the constitutive equations for

both plane strain and generalized plane stress can be brought into a one-to-one
correspondence by introducing a modified value v for Poisson's ratio and the modified
value a for the coefficient of thermal expansion, such that

v=v and a=a for plane strain ,

1+v

_ A% _
v=_—__ and a=[m]

Ty o for generalized plane stress , (11.13)

where v and o are the actual value of Poisson's ratio and the thermal coefficient of
expansion of the three-dimensional material. More specifically, it follows from this

definition that

—— _ v (1+v) __(1+v)
(I+va=a, v v ° (1—2§)a (l—v)a'

Thus, with the help of the equations (11.8), (11.9), (11.11), (11.12) and the definitions

(11.14)

(11.13), it can be shown that the general two-dimensional constitutive equations can be

written in the forms

1 o —_
Cop = Z [TOLB ~VTss 80tl3 ] + (1+v)a(6-0,) 8(1[3 > 23070

v 2u(1+v) —
Top =20 [egp + 17—} o0 S0pl - —’5—} a(0-09) 8o » T3, =0 . (11.15)
1-2v (1-2v)

Also, for plane strain
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V=V , o=o0o,
e33=0 , Ty3=v T, —2u(1+v)a(0-0y) , (11.16)

whereas for generalized plane stress

-__VvV —_[1+V]
Vi Tyl
N Sy ~
e33__2p[1+v]ch+0‘(9_90) » T33=0 . (11.17)

Next, with the help of (6.22) it follows that the constitutive equations for the heat flux

q; and the internal energy ¢ for planar problems can be written as
qQu=—k0,,, 43=0, (11.18)
and
ot = PoC,y (0-0,) + 3Kl [e , +e33] - (11.19)
Thus, for plane strain (11.19) reduces to
pot = PCy (0-0,) +3Kad, [e ] (11.20)

whereas for generalized plane stress it follows from (11.12) that

Ly

Too =20 [17] L6 —200-0y)] (11.21)
so that (11.17) yields
\4
e33 =~ [1, ] Leos —20(0-09)] + a(0-0)
1-2v I+v
eoo T €33 = [Ty 1 eoo + [75,] 2(0-0p) (11.22)

Consequently, substituting (11.22) into (11.19) yields the internal energy for generalized

plane stress in the form

e, . (11.23)

I+v
pot = [poC, +3Ka20, {E ] (0-0,) +3Ka0, [ v

INITIAL AND BOUNDARY CONDITIONS
The balance of linear momentum (11.3b) and the balance of energy (11.3c) are partial

differential equations which are second order in time for the displacements u,,, first order
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in time for the temperature 6, and second order in space for both the displacements and
the temperature. It therefore, follows that the initial conditions in the region P occupied
by the body are specified by (7.1) and (7.2), whereas the boundary conditions used to
solve the equations (11.3b) and (11.3c) are specified in forms similar to (7.4)-(7.7) on
the lateral surface OP' of P. More specifically, for two-dimensional problems the traction
vector on the boundary of the body becomes

ta=TaBnB , =0 onoP',

t, =0, t3=—Ts3 ondPy , t

=0, t;=Ty3 ondP, . (11.24)

(03
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12. Compatibility equations and Airy's stress function for two-dimensional
problems
For two-dimensional dynamic problem where inertia cannot be neglected it is
necessary to solve the equations of linear momentum (11.3b) directly for the

displacements u,. Consequently, there is no need to check for compatibility since a

displacement field exits. However, for static problems the equilibrium equation becomes

Po boc+T0cB’B=0 ’ (12.1)
which sometimes can be solved for the stresses without determining the displacements.
Under these conditions it is necessary to limit the possible solutions for the stresses only
to those stresses for which a displacement field exists. Specifically, it is necessary to

ensure that the strain field Cup associated with the proposed stress field satisfies the

compatibility equations (3.58).

COMPATIBILITY EQUATIONS
Specifically, with the help of the expressions (11.2) it follows that the compatibility
equations (3.58) reduce to

+e 0, (12.2)

eocB’cc coaf eac’GB - eBG’ca -

which restrict the inplane components of strain so that the displacements u, exit.
However, these three equations represent only one nontrivial equation since one of them
(a=1,=2) automatically vanishes and the other two equations (a=p=1; and a=p=2) are
identical and require

€112t e1 ~2€12:1270 (12.3)
which is the same as the first of (3.57).

Next, with the help of the constitutive equation (11.15) it can be shown that

1 _ _
Cop = E [TOLB -v T 8a[3 ] + (1+v)a(6-6,) 5(1[3 ’ (124)

where the variables v and a have been defined in (11.13). Thus, it follows that

|

ey = M[(I—V) T) =V Ty |+ 1+V)a(6-6,) ,

[\
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1

€= [V Ty +(1-v) Ty, |+ (1+V)a(0-9,) ,
e12=L[T12] ’ (125
2p

so that the compatibility equation (12.3) can be rewritten in the form

[V T2 =V Topupn ] [=V Ty + (1-9) Topoy 1= 2T 0015

- (16, (12.6)
Rearranging this equation it is possible to deduce that
[T1120 + Tonet1 = 2T12012] =V [ T10o11 + T + Taoor + Tonomo ]
= 2u(1+v)al, . . (12.7)

Thus, the stress field must satisfy this compatibility equation in order to a strain field u,

to exist.

AIRY'S STRESS FUNCTION

For the simple case when the body force is derivable from a potential V

Po by, == V.o s (12.8)
the equations of equilibrium (12.1) reduce to
TQB,B—V,QZO . (129)

Now, it can easily be seen that these equilibrium equations are automatically satisfied if

the stress field TaB is determined by derivatives of the Airy's stress function ¢(x ), such

that
T(XB = [¢’GG+ V] SQB - (I):OLB s
T11=00ptV , Ty =0, TV, Tp==0,, . (12.10)

Moreover, it can be shown that

_ _ w22 2
T1122+ Tao11 = 2T 12012 = Drguapp ¥ Vies = V7V O T VIV,
_ _ w22 2
Tro T Tieoa T Tooor1 + T22020 = Dogapp + 2Vise = V7V2 0 +2VEV, (12.11)

so that for the body force (12.8), the compatibility equation (12.7) reduces to
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1-2v

—] vzv—zp[@]a V2o | (12.12)
1-v 1-v

vavzo=-[

Alternatively, it follows from (12.10) that
V2p=T,,-2V , (12.13)
so that the compatibility condition (12.12) can be rewritten in the form

V2T, = [L] V2V - 2M[lﬂ]a V2o . (12.14)
1-v 1-v

Thus, when the body force potential V is a harmonic function (V2V=0), the temperature

field 0 is steady (independent of time) and there is no heat supply (V20=0), the
compatibility equations require the Airy's stress function to be a biharmonic function

V2V2 $=V2T_ . =0 . (12.15)

Using the Airy's stress function it is relatively easy to find stress fields which satisfy

the equations of equilibrium and the compatibility equations for two-dimensional

problems. Consequently, the main effort in finding the solution of a two-dimensional

problem is shifted to the problem of satisfying the boundary conditions.

73



13. Two-dimensional problems in rectangular Cartesian coordinates
In this section attention is confined to the solution of two-dimensional problems in
rectangular Cartesian coordinates for which the temperature is constant
0=0,, (13.1)
and the body force is constant

b, = constant . (13.2)

It then follows that the body force is determined by a potential V such that
Pob ==V » V==pgbX, - (13.3)

Moreover, the stresses for equilibrium are determined by the equations (12.10) in terms

of V and the Airy's stress function ¢, such that
T =0tV , Tp=¢ 1V, Tp=—b5 (13.3)
and the compatibility equation (12.12) then requires
V2V2 $=V2T =0 . (13.4)
Also, the expressions (12.5) for the strains reduce to

T T T T T
— 11— 722 — 11 — 22 12
eH:(l—v)E —v—2M , 6222—\/—2M TA-Vv) 5, ep= 2 (13.5)

where v is defined by (11.13). Furthermore, with the help of (11.20) and (11.23), the

internal energy becomes

pot = 3Kab, [e ] , (13.6)
for plane strain and becomes
1-2v
poe = 3Kab,, [:] €ss - (13.7)

for generalized plane stress.

A number of problems for beams can be solved by considering polynomial solutions

of the biharmonic equation (13.4). Specifically, let ¢ ™ be a polynomial of order m
defined by

m
¢(m) - ¢(m)(X1’X2) - 2 Cm—n’n erl_n XIZ1 > (13.8)
n=0
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where C_pop @re constant coefficients. This function will be biharmonic if it satisfies the

equation

B 4 p(m) oM pigm) B

= +
Jaapp 6)(‘1t 8x%8x% 8)(‘21

V22 ¢(m) = p(m) 0. (13.9)

For polynomials of order (m < 4), the function (13.8) satisfies the biharmonic

equation (13.9) for all values of the coefficients Cij- However, for polynomials of order

(m > 4) the coefficients Cij must satisfy certain restrictions in order for ¢™ to be a

biharmonic function. These restrictions can be developed by substituting (13.8) into

(13.9) to obtain

mi:[<m—n)(m—n—1)(m—n—2>(m—n—3>] Conpon X" x8
_ m—2
£ [(m-n)(m-n-1)(m)(n-1)] Cpy y XT2 5572
+ % [()(n-1)(n-2)(n-3)] C,, oy XT"x54 =0 . (13.10)
Then, the indices can be changed so that
mf;{[(m—n)(m—n—l)(m—n—zxm—n—s)] Cinmn

+2 [(m-n-2)(m-n-3)(n+2)(n+1)] C

m—n—2°n+2
+ [(0+)(+3)(n+2)(n+1) ] o 1 gonag § XT4X5=0 . (13.11)

Now, since the coefficient of each of the (m—3) terms must vanish, it follows that

coefficients are restricted by the (m—3) equations

[ (m—n)(m-n—1)(m-n-2)(m-n-3)] C

m-n’n

+2 [(m-n-2)(m-n-3)(n+2)(n+ )] Cp 5o

+ [(n+4)(n+3)(n+2)(n+1)] Cp o gonig =0

forn=0,1,2,..m4 and m=>4 . (13.12)

75



The stresses vanish for the polynomial with m=1. Moreover, the following give the
polynomials of orders 2-5 as well as the associated stresses. The specific values of the
constant coefficients can be determined by using superposition to combine the solutions
to match specified boundary conditions.

For m=2
03 = Cygxf+Cyy X X+ Cpp %3
2) — 4(2 — 2) — 4(2 — 2) — 2 —

TR =019, =2Cpp , TH =03, =2C5 . TRP=—0¢3),1,=-Cy; . (13.13)
For m=3

03 = Cypx} +Cy  xPxy+ Cppx x5+ Co3 X3

T = 09,5, =6 Co3xp +2Cppx , T =90),;; =6 C3 %, +2Cyy x5,

TR =—¢0),1,=-2Cy x,-2Cpp %y (13.14)
For m=4

O =CyoxP+Cyy x{ %y + CppxPx3+C3x; X3+ Cy X3,

3C gt Cyyt3Cyy=0,

TG = 09,5, =2 Cpy xF+ 6 Ci3x X, + 12 Coy x5

T = 09,11 =12 Cyoxf+ 6 Cy Xy %+ 2 Cpp X3

TH=- 0@, ,=-3C3;x7 —4Cyyx;x,-3C3%3 , (13.15)
For m=35

) = Csox] + Cyy xT %)+ Cp x} x5 + CoyxPx3 +Cyx X3+ Cos X3,

5C5p+C3p+C =0, Cyy+Cy3+5CH5=0,

T =019, =2 C3p x7 + 6 Co3 X7 x5 + 12 Cpy x; X5 +20 Cp5 X3,

T = 409,11 =20 Cso x] + 12 C X7 X, + 6 Cyp X x5+ 2 Cp3%3

5) — 5 _ 3 2 2 3
TR =— 00, ,=-4Cy x3 —~6C3yxTxy)—6Cryx; x5 —4C4x3 , (13.16)
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14. Two-dimensional beam problems

A g
Ao / t(x;)
Vv
7] L
/|
/—> e @ H —_— ML
N
i AN =~
_ L
t(Xl)

Fig. 14.1 Sketch of a cantilever beam
This section considers a class of two-dimensional beam problems. Specifically,
consider a rectangular cantilever beam of length L, height H, and depth W which
occupies the region of space such that (see Fig. 14.1)

H H W \

AN
The beam is subjected to surface tractions t on its top surface (x,=H/2) and surface

tractions t on its bottom surface (x,=—H/2)

AN —
t(x,.H/25e,) = t(x)) , t(x{,—H/2;—,) = t(x}) , (14.2)
and axial force N;, shear force V| and bending moment M; (about the centroid of the
cross-section) at its end (x;=L). Also, the force of gravity g (per unit mass) acts in the

negative e, direction so that

b;=0,by,=-g,
Pob ==V » V=pggx, . (14.3)

In addition, the beam remains at constant temperature
0=0, . (14.4)

In order to compare the elasticity results with those of standard beam theory it is

convenient to define the axial force n(x), the shear force v(x;) and the bending moment

m(x,) by the expressions
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n(x,) = WI Ty dxy , V(X)) = WI Ty, dx, ,

—H/2 —H/2

mix) =W %, Ty dyy (14.5)

—H/2
Moreover, it is convenient to define the average displacement w(x;) and the average
rotation 6(x) by the formulas

Ju 1
w(x,) = HJH/zudxz,S(Xl) HIH/2 5, 00 =i [06x.H2) ~u(x, )] . (14.6)

Next, the equations of equilibrium of beam theory can be obtained by averaging the
equilibrium equation of two-dimensional elasticity
T+ Tiza tPe b =0,
Tyt Thry T Peby =0 . (14.7)

Specifically, since for two-dimensional problems there is no dependence of quantities on

X3, these equations can be integrated over the cross-section of the beam to obtain the

averaged equations

J‘H/Z
—H/2 [Tll’l + T2, TP b1] dx, =0,
J‘H/Z
W [Tope + Top +pg by 1 dxy =0 (14.8)

Now, using the definitions (14.5) these equations can be rewritten in the simpler forms

dn dv

d_X1+q1:O’ d—X1+q2=0, (14.9)
where q; and q, are assigned fields which represent forces per unit length of the beam

applied in the e, and e, directions, respectively,
qy(x1) = po HWb; + W [T1,(x,H/2) - T (x;,-H/2)] ,
Qp(x1) = pg HWb, + W [Ty,(x,H/2) — Toy(x1,-H/2)] . (14.10)

In particular, notice that g include both the effects of body forces and the loads on the

top and bottom surfaces of the beam.
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The equations (14.9) represent the averages of the equations of equilibrium (14.7). In
order to derive the equation for the moment in standard beam theory, it is convenient to
consider a weighted average of these equilibrium equations. Specifically, the first of

(14.7) is multiplied by the weighting function x, to obtain

(X3 Ty T (X9 Typ)y = Tip ¥ X5 pg by =0 . (14.11)
Now, integrating this equation over the cross-section of the beam yields the result
dm
_d_xl —v+yx)=0, (14.12)

where %(x;) is an assigned field which represents a couple per unit length that is

generated by the shear stresses that are applied to the top and bottom surfaces of the beam
HW
1) =5 [Tyo0,H2) + T (x,~H/2)] (14.13)

The simplest standard beam theory usually does not consider these shear forces. It also
does not consider the additional equation of equilibrium which is obtained by taking a
similar weighted average of the second equation of equilibrium in (14.7).

In order to solve the problem sketched in Fig. 14.1 it is convenient to consider
superposition of the following simpler problems. For each case it is necessary to
determine the stresses, strains, displacements, average displacements and rotations, and

the resultant forces and moment.

Case I: Rigid body displacements

Boundary conditions on the top and bottom surfaces

1 1
tlx)=0, tlx)=0,

tx) =0, thx) =0, (14.14)
Body force
|
b, =0, (14.15)
Stresses
T&B =0, (14.16)
Strains
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Displacements

I = j
u=0ax,tc;, [, =—oax;+tc,,

Average displacements and rotations

Boundary conditions on the average displacements and rotations

wi(0)=c, , wi0)=c, ,

3l =a , 840)=0,

Resultant forces and moment

n'=0, vI=0, ml=0,

Boundary conditions on the resultant forces and moment

nl(L)=N;=0, vi(L)=V,=0, mi(L)=M;=0 .

Case II: End forces and moment

Boundary conditions on the top and bottom surfaces

Body force

Stresses

Strains

T

AN 7N
tHxp=0, tdlx)=0,

txp=0,tlx)p=0,

bll=0 ,
Ny 12My; 12V
IHI - {HW} - {H3W }XZ o {H?’W}(L_Xl) X2
Th=0,

II — H_z 2
T12_ {H3W} { 4 _XZ} >
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(14.18)

(14.19)

(14.20)

(14.21)

(14.22)

(14.23)

(14.24)

(14.25)



Ny 12My; 12V

= (1 V) [{ZMHW} { ZHHSW} 2 { 2].J,H3W}(L_Xl) XZ] ’

S

- Ny 12My 12Vy
€n = [{2MHW} { 2},I.H3W} 2 { 2”H3W}(L_Xl) XZ] ’
efy=1 ng} o 7 %) (14.26)
Displacements

3V
ufl=(1 V)[{2 HW} {MH—33V} X] Xy — {MH3W} {20x, - x}} x, ]

e . I | T [
pH3W? b4 T2 2 H3W

| N
up -V [{2 HW

W $x; - {HH3W} 57— {H3W}(L 1) %3 ]

My Yy
+(1-v) [{MH3W} x? + {HH3W} {3Lx7 x3}] , (14.27)

Average displacements and rotations

H_(l V)[{z HW}XI]

wil=v [{zmw) * {aw) )]

My L, Vi
+(1-v) [{uH3W} X+ {HH3W} {3Lxf x3}]

6MH 3VH 2 1 _ 11
8T=-(1-v) [{ H3w} a {MH3W} 2%, —xi} ]+ uHW +V{4MHW} ’

NH }
2uHW? 2

sll=—v { (14.28)

Boundary conditions on the average displacements and rotations

wil0)=0,

WEI(O) =V [{4},LHW} {4MHW}L]
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v,
6”(0)—{ Wi v HW} :

0) -7 {5
2 2uHW?
Resultant forces and moment
nf=Ny , vil=v, mT=M;+ Vv (L)) ,
Boundary conditions on the resultant forces and moment

n(L)=N, , V)=V, mllL)=M, .

Case III: Uniform loads on the top and bottom surfaces with gravity

Boundary conditions on the top and bottom surfaces

AN AN
tHx)=0, tilx)=

=0, ) =Q .

Body force
bI{IZO , bI%I:_g ,
Stresses
6Q 4Q
T = —{H3}X% Xy + {H3}X%
6 8 H —
-3 2+ {ipho - {shd 1+ poelxa +31-Q.
6Q, H2
I RL ) P
— A
Q= Q+Q-pygH,
Strains

ef] = (1-v) [ j SExT Xy + {},LH3}X2]
_ 6 8 Po& Q
R i P R et S R §
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(14.30)

(14.31)

(14.32)

(14.33)

(14.34)



el=—v[- e }X1X2+{ }Xz]

+(I—V)[ (2+ {H}Xz {gz}xg)+p0g{"2 25 2|u]

elll = MH3}{ 1 X5, (14.35)

Displacements

ufll=(1-v) [- { }X1 Xy + { }XIXZ]

_ 6 8 Pog H Q
[ 2 @ xR by, oty - il

_ Q
ult=—v[- {2MH3}X1 X2+{2HH3}X§]

09 [ 2 - G s+ B3+ 1) - {521 ]

3 _ _¢3
eI g i, (1436

Average displacements and rotations

pogH
W=y [ 228 (Qy

W%H -V [_{&L_H}X {16()“}]

Pog

a2 (-l 2T

3Q Pog
TR el S o iR
P2
st =(1 V)[{ }Xl {ZMH}Xl] [%&H X) - 4%{ 20M x; ],
o[ Q L Pegt 0
85“—(1—v)[4u+ i _{2“}]. (14.37)

83



Boundary conditions on the average displacements and rotations

will0y=0 ,

111(0)__\,{160 b v)[ {( ) (40)}

81y =0,

810) = (1-v)

Resultant forces and moment

plll=0

Q Pt Q
L3 72 G,

e

Boundary conditions on the resultant forces and moment

m't(L) = My, =

) VHI(L) =V =-QWL,

QWL2 H2

Case IV: Linear loads on the top and bottom surfaces

Boundary conditions on the top and bottom surfaces

Body force

Stresses

TIV =

7N 7N AN
tHVix)=0, tdVx)=Sx, ,

V) =0, tVx)=Sx; ,

v —
plV=0,

Tll\f:{ }X1X2+{ }X1xzs

-Gilg
?—?}[11

31- { }[1 Hzxz]
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1

48p ]’

QW H2
VIT=_Qwx, , mlll= T[X%_E] ,

b

(14.38)

(14.39)

(14.40)

(14.41)

(14.42)



S=5+8, (14.43)

Strains
2S
el =(1-v) [- }X1 Xy + 4 H3} x; 3]
¢S 3 4 S
—V[{4_M}[1+EX2—EX%]X1— {2_M} x],
ey =-v[- { }X1X2+{ H3} X %3]
¢S 3 4 S
+<1—v>[{@}[1+ﬁx2—gx3]xl— x]
4
= -] G [ -8 1% (14.44)
Displacements

_ S S
u{V =(1-v) [ —{—4MH3}X‘1‘ Xy + {E} x% x%]

4

(S 3 S
VI U e -Ex i - g il

gl gl 09 [ 8+ g+ o) - (3],

_ S S
u£V ==V [_{2HH3}X% X% + {ZHH3} X1 Xé]

3 S
+(1-v) [{4 Fixg+ H X H3 X3} xp - s X, |
S _
~ g ¥ 91 - 5H2 SHE (14.45)
Average displacements and rotations
S 8 SH?  SH?
wlV = 2 1.2 SH”
Wi -V [8M 4n ] X1 (1- ) [96M 481
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Wi ==V [ + {gont ¢

_ 2
+(1 V){320H} X — {8 H}[ +(1_V){X%_@X?}]

_ s s
oY = [ it + G o]

_ 9SH 11SH
+V{_}X {160 j- (- {320
S 'S
81V =(1-v) [@ - 2_M]x1 . (14.46)

Boundary conditions on the average displacements and rotations

VO =19 B - 3]
wiV(0)=0,
310 = Vgt 193300+
8IV0)=0, (14.47)
Resultant forces and moment
nlV=0 , VV—S};E)W —STWX% ,

Xi-"50 X1 s (14.48)

Boundary conditions on the resultant forces and moment

SWL2 H?2
nIV(L) — NIV =0 , VIV(L) = VIV = D [1 - IOLZ ] ,
SWL3 3H2
v — _
mV(L) =M, == [1 *10L2] : (14.49)

Case V: Uniform shear loads on the top and bottom surfaces

Boundary conditions on the top and bottom surfaces
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A N A
tYxp)=1, t¥(x))=0,

tYexp) =1, t3(x))= 0

Body force
by =0 ,
Stresses
T
T1V1=—{ﬁ}x1 , T)h=0,
{2}[1+%x2] , r—$+r,
Strains
_ _ T
el = [ {2 H} . ep=-vl {ZH_H}Xl] ’
v_ % 2 T
S {4H}[1 +HX2] _2H s
Displacements

1
WY = D bt v b 3+ e+ 18]S,

— T
Wy =V g X%

Average displacements and rotations

WY:_(I_G){%LH}X% -V {48H} {24H}

VvV _
wy =0,
VoI T oy T

Boundary conditions on the average displacements and rotations

(O)_ V{48u} {24H} W2(0) 0,

87

2

(14.50)

(14.51)

(14.52)

(14.53)

(14.54)

(14.55)



T T
8Y(O)=Z L 3Y(0)=0, (14.56)

Resultant forces and moment
A —

nV=—rWX1 , vV=HW [T;T

], mY=0, (14.57)

Boundary conditions on the resultant forces and moment

>

T—7T

2

nV(L)=Ny=-tWL, vV(L)=V,,=HW [ ], mV@L)=My,=0. (14.58)

Superposition
It is important to note that the solutions for Cases I-V generate average displacements

and rotation at the clamped end (x;=0) and forces and moment at the end (x;=L).
However, the constants ¢, ¢, and a associated with average displacements and rotation
in the rigid body solution (Case I), and the constants Ny;, V{; and My; associated with the

forces and moment in the solution for Case II, can be specified arbitrarily. Thus, the
solution for the general boundary conditions and body force associated with all of the
solutions (Cases I-V) can be obtained by superposition.

Boundary conditions on the top and bottom surfaces

AN AN A AN N A
L) =t T4 T AV Y
t,(x) = tL+ t gl g IV eV (14.59)
Body force
— Kl 11 111 v A%
b,=b, tby, b, +b/+b} , (14.60)
Stresses
—7l 11 111 v \"%
Strains
—al 11 11T v \%
eaB(xl,xz)—eaB+eaB+eaB+eaB+eaB , (14.62)
Displacements
u, (x1,%,) = u& + u&l + u&H + uOILV + uX , (14.63)
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Average displacements and rotations

A%
o 9

w, (X)) = W& + W&I + WéH + W&V +w
8y (x)) =8L + 81+ +51V+5Y (14.64)
Boundary conditions on the average displacements and rotations
Wo(0) = o + Wi (0) + will(0) + wg Y (0) + wy(0)
8,(0) = o+ 8110) + 3]1(0) + 31V (0) + 5Y(0) , (14.65)
Resultant forces and moment
n(x;)=nl +nll+ o+ 0V 40V
vix) = vVl yIV 4V
m(x;) =m! +ml + mM + m!V+mV | (14.66)
Boundary conditions on the resultant forces and moment
Np =n(L) =Ny + Ny + Ny + Ny + Ny,
Ve =v(L)=V{+Vy+V+Vy+Vy,
M; =m(L) =M + My + My + My + My, (14.67)
Now, for a clamped end the average displacements and rotation are specified by
w,(0)=0, 6;(0)=0 . (14.68)
Also, general forces and moment can be specified at the end (x;=L), such that
n(L)=N; , v(L)=V,, m(L)=M; . (14.69)
Thus, with the help of (14.65) and (14.67) it follows that these boundary conditions can
be satisfied by the specifications

¢y =— [wll(0) + wll0) + wl V() + wY(0)] ,
o =—[6110) + 8{1(0) + 5] V(0) + 8Y(0)] ,
Ny =Np = [Ny + Nypp + Nyy + Ny ]
Vip=Vo-VitVin * Viv + Wyl

My =M — [M] + M+ My + My ] - (14.70)
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15. Cylindrical polar coordinates

€

Fig. 15.1 Definition of cylindrical polar coordinates and base vectors.
The position vector x of a material point can be expressed in terms of cylindrical

polar coordinates in the form

x=re(0) +x3e;, (15.1)
where
{r,0,x3}, (15.2)
are the coordinates and
{e.eg.e5} , (15.3)

are the unit base vectors. Moreover, the base vectors e_ and e, can be related to those of
the rectangular Cartesian coordinate system by the formulas
e(0)=cosO e, +sinb e, ,
eg(0) =—sin0 e; + cosO e, . (15.4)
Also, by substituting the expression for e_ into (15.1) it can be seen that the coordinates of

the cylindrical polar coordinate system can be related to those of the rectangular
Cartesian coordinate system by the formulas

Xy =r1cos0 , X, =rsin0 ,

r=x/x%+x2 , 9=tan*1(x2/x1) . (15.5)

Here, the coordinate 6 should not be confused with the same symbol that is used for the

temperature.
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Now, the displacement vector u, the body force b, the stress tensor T, the strain
tensor e and the heat flux vector q can be expressed in terms of their cylindrical polar
components in the forms

u=u.e.tugesgtuses,
b=b e +byey+bses,
T=T, (e®e)+ T,y (eXey) + T, (eRe3)
+ T,g (eg®e,) + Tyg (eg®eg) + Tyz (€g®e3)
+ T (e3®e) + Ty (e;®ey) + T35 (e5Re3)
e=¢. (e®e)+ey(e®ey) +e,(e&ey)
+ €9 (€g®e) + g (eg®eg) + €93 (€g®e3)
T e (e3®e) +eps (e38ey) + €55 (e3®e3)
q=q,e.tqgeygtqses , (15.6)
where no summation is implied here for repeated values of the indices r and 0. Since the
balance laws (6.21a,c,e) are expressed in coordinate free form they can be easily

translated to any set of coordinates. In particular, it is necessary to emphasize that the

base vectors e, and ey depend on the coordinate 0, so the expressions for the gradient and

the divergence operators are more complicated than those associated with rectangular
Cartesian coordinates. Specifically, it can be shown that

ov ov 1 oV

VV:E e .+ % ?e9+8_x3 e ,

Vuza—u@)e +8_u®1 Ou

or ' 50 ;ee+g3®e3,

| oq 1 . 0oq
dva=73 "&*5p "r e ox, "G

o o1 or 1. . or
V=3 "& a0 "t o, t 0

LoV 1 aVV)
00

o(VV
V2V =div (VV) = iar—l ‘e Tt ok
3

ce; . (15.7)

T
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Next, using these formulas it follows that the gradient of the displacement vector is given

by
8u 1 Ou, u9 ou,
Vu (e ®e)+ [T 79 — 7 ] (€®e) +ox, (€®e3)
t o (eg®e,) + [ T % ] (eg®eg) * o (e9®e3)
or (e3 e) r 00 (e3 ee) 5X3 (e3 e3) 5 (15.8)

so the strain components become

dug 15‘13

au3
%, T a0 1 (159

1 | 1
ww=2lr 3 v 11 emmalag T el

Also, the divergence of the heat flux vector becomes

99, 4 1 99 aqs (15.10)

dva=7"4747 20 Tox,
the divergence of the stress tensor becomes
disz[aaT—rrJr@ . Mo +% e
r r r 00 Ox3 - T
My 2T 1 Tey Moy

or + T Jrr 00 8X3 €9

all

or r r 00 0X3 €

(15.11)

and the Laplacian of the scalar V becomes

o2V 1 av 1 62V 8%V
vZ = 4= — +— . 15.12
Vo T T2 e 0x3 (15.12)

Thus, the balance laws (6.21a,c,e) can be written in the forms

P =P (l_err_eee_e33) >
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5T TIT_TGO l aTre aTr3

o0 rr
pour—pobr+ o + " +r 20 +aX3 ,

PoUe=Pobe* 3 * Tt T g T oxg
PoUs=Po D3 ¥ 5+ TY g T kg
. aqr qr 18q9 aq3
poszpor—[a—k?—l—;%—ké—&] . (15.13)

Also, the strain-stress relations can be written in forms similar to (10.3)

‘™ E T E T E

* *

+a(6°-6}) ,

vT Tee vT33

669:— Err + E — E + OL(B*—GS) 5

vT vT66 T33

(1+v)Tg (1+v)T3 (1+v)Tg3
&%= F -3~ E %~ E - (15.14)

and the constitutive equation for the heat flux vector (6.22g) becomes

00" 1 60" 00"
G=-K5 > 9 ="K 59 > q3=—1<§3, (15.15)

where, for clarity, the temperature has been denoted as 0" to avoid confusion with the

coordinate 0. Also, using (6.221) the internal energy can be expressed in the form
po = PoC, (07-0p) + 3Kabp(e,, +egg + €33) - (15.16)
Next, it is of interest to determine the form of rigid body displacements in cylindrical
polar coordinates. To this end, it is recalled from (3.43) that rigid body displacements
can be expressed in terms of rectangular Cartesian coordinates in the forms
u=ue; ,

i€, 4=t Hyx , Hy=—H;,

u=[c; +Hy,xy tHyzx3] e; +[c; —Hpp x; + Hyy x3] €,

+[e5 —Hy3x; —Hyy x5 €5, (15.17)
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where ¢; and Hij are independent of position. Now, the cylindrical polar components of
these rigid body displacements can be obtained by using (15.4) and (15.5) to deduce that
u=uce. = [Cl +Hy, rsinb+ H 3 X3] cos0 + [Cz —Hy, rcosd + Hysy X3] sinf
ug = — [Cl +Hy, rsin® + Hy, X3] sin@ + [Cz —Hy, rcosd + Hys x3] cosO ,

uy = [c3—H13rcose—H23rsin9] , (15.18)

which can be rewritten in the forms
u, = [Cl cosO + ¢, sinf ] + [H13 cosO + Hy, sin | X3,
ug = [~ c; sind + ¢, cosf] - Hy,r+ [~ Hy5 sinf + Hys coso ] X3 ,

Uy =C3— [H13 cosO + Hy3 sin@] r . (15.19)
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16. Two-dimensional problems in polar coordinates
The equations for polar coordinates can be obtained by considering the equations for

cylindrical polar coordinates section 15 and neglecting dependence on the coordinate xj5.

Thus, the position vector x of a material point can be expressed in terms of polar

coordinates in the form

x=re/(0) , (16.1)
where
{r.0}, (16.2)
are the coordinates and
{e..e} (16.3)

are the unit base vectors. Moreover, the base vectors e, and ey can be related to those of
the rectangular Cartesian coordinate system by the formulas
e(0)=cosO e; +sin e, ,
eg(0) = —sin0 e; + cosO e, . (16.4)
Also, by substituting the expression for e_ into (15.1) it can be seen that the coordinates of
the cylindrical polar coordinate system can be related to those of the rectangular

Cartesian coordinate system by the formulas

Xy =rcosh , X, =1sind ,

r=«/x%+x2 , 0=tan"(x/x)) . (16.5)

Here, the coordinate 0 should not be confused with the same symbol that is used for the
temperature.

Now, the displacement vector u, the body force b, the stress tensor T, the strain
tensor e and the heat flux vector q can be expressed in terms of their cylindrical polar
components in the forms

u=u.e.tugeq ,
b=b e +byeqy ,
T=T, (e®e) + T (eRey+ey®e.)+ Ty (eg®ey) + T35 (e3Re5) ,

e=¢, (e®e)+ e (e®ey) +ey (eg®e) +eyy (€g®ey)
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q=dq.¢e.Tqgeq » (16.6)
where no summation is implied here for repeated values of the indices r and 6. For
generalized plane stress, the strain €55 is determined so that T;; vanishes. Since the
balance laws (6.21a,c,e) are expressed in coordinate free form they can be easily
translated to any set of coordinates. In particular, it is necessary to emphasize that the
base vectors e and ey depend on the coordinate 0, so the expressions for the gradient and

the divergence operators are more complicated than those associated with rectangular

Cartesian coordinates. Specifically, it can be shown that

VV—a—VeJraV 1e
or 00 r 6>
Vuzg—lrl®er+g—g®%ee,
diqu%(rl-erJr%g-%ee,
divT= gf e+g—g %ee,

V2V = dw(VV)—i—2 % "€ - (16.7)

Next, using these formulas it follows that the gradient of the displacement vector is given
by

ou, aur
Vu = 8_ (e ®e) + [r 0 ] (e, Bey)
au 6ue u,
(ee®e )+ [— 20 + 71 (eg®ey) , (16.8)
so the strain components become
ou, 1 aue Yy 1 1 0y 5“9 Ug
=T 0 roe Tr % 2l T xl- (169
Also, the divergence of the heat flux vector becomes
04 109
divq= ar Tt o0 (16.10)

the divergence of the stress tensor becomes
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Ty 2Ty 1 0Ty

+[ar t— ty ae]ee , (16.11)

and the Laplacian of the scalar V becomes

2V 10V 1 63V
N7 — =1 -z =z v
VV—8r2 T o T2 g (16.12)

Thus, the balance laws (6.21a,c,e) can be written in the forms
p=py(1-er—egg—e33) ,
oo aTrr Trr_TOO l aTre

“ 0Te 2Ty 1 9Tgo
pOuE)_pOb9+ or + r +r 00 ’

. 09, 4y 1 99
Poe=PoT [ T 77T ol (16.13)

where €35 vanishes for plane strain and is given by (11.22) for generalized plane stress.

Also, the strain-stress relations can be written in forms similar to (11.15), such that

1 _ — —— Nk A
S T Z [(1=v) Ty = v Tgpl + (1+v)a(® -0p)
1 — — —— kA%

, er3:ee3:0 . (1614)

where, for clarity, the temperature has been denoted as 0" to avoid confusion with the

coordinate 0. Also, the stress-strain relations can be written as

2u _ _ 2u(1+v) — s
T.,= —[(1-v) e, +Vveyl - — (00 ,
(1-2v) (1-2v)
2u _ _ 2u(l+v) — s o«
Tee = —[v €+ (1-v) eee] - — o0 —60) ,
(1-2v) (1-2v)
To=2neqy, Ty=Te3=0, (16.15)
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where v and o are defined by (11.13). In addition, the constitutive equation for the heat

flux vector (6.22¢g) becomes

00" 1 60"
4 =-K > ="K] 25 - (16.16)

Furthermore, with the help of (11.20) and (11.23), the internal energy becomes
pot = poCy (0°-0y) + 3Kad, (e, + €gp) (16.17)

for plane strain and becomes
P = [PyCy + 3Koc290{ }] 0" 90) + 3Koc90 [ ] (e Tepg) - (16.18)

for generalized plane stress.
If the body force is derivable from a potential V, then

ov 1 oV

Pob==VV ., pob.=="5 > Pebe=—7 o -

(16.19)

and the equations of equilibrium can be satisfied using the Airy's stress function ¢, which
from the first of (12.10) can be generalized to yield

=[V+ V2 1-V(V) , (16.20)
where I is the two-dimensional identity tensor. Thus, using expressions (16.7) and

(16.12) it follows that

v%—ﬁ +% % +ri2 %g ,
VO =V e+ S 1ey),
v =128 o) ik L 5 28 ey
+ [% aar% _r% ﬁ] (e, ®ey + (e®e,) . (16.21)

Then, the stresses can be written in the forms

L2 10 )
Ta=Vr 202 Trar o Too™ Vg2
_ 120 10p. 0 13
Tro =LY Bro0 12 01~ arlt a0l (16.22)



Next, the compatibility equation can be written in the form (12.12) or (12.14)

1-2v 1+v. _
V2V2 § = [ V2V 2u[—] & V20"
1-v 1-v
) 1 ) | S
VAT, + Tog) =[] V2V — 20— a V20" . (16.23)
-V 1-v

Thus, when the body force potential V is a harmonic function (VZV=0), the temperature

field 0" is steady (independent of time) and there is no heat supply (V20*=0), the

compatibility equations require the Airy's stress function to be a biharmonic function

V2V2 ¢ = V(T + Tgg) =0 , (16.24)
where
e e Tl Tra TR ! (1625)

Next, it is of interest to determine the form of rigid body displacements in polar
coordinates. To this end, it is only necessary to eliminate dependence of the results

(15.19) on the e direction so that the rigid body displacements in the plane become
u, = [cq cosO + ¢, sin0] ,
ug = [~c¢q sinf + ¢, cosO] —Hy, 1, (16.26)
where ¢, and H, are independent of position.

Michell developed a solution of the biharmonic equation (16.24) which is quite useful
for problems in cylindrical polar coordinates. The main features of this solution are
summarized in the following pages which has been taken from Little (1973).
Specifically, use is made of a separated solution of the form

¢ =1f(r) g(0) . (16.27)

It then follows that the biharmonic equation becomes

df 2 &% 1A 1 df 2 df 2 df 4 d
2

V2 =[5+ - += et l5 55— oot
VaVEe d* r a3 2 a2 3 dr]g [r dr2 3 dr r4ﬂd62
1 44
4 r—4f£§ -0 (16.28)

The Michell solution considers functions of g of the forms
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g={lor0}

g = {sin@ or cosO}

dr 2P 3 P13 ar
dr* rdd3 2 dr2 S droy

g={0sinb or O cosO}

g = {sin(nB) or cos(nB)} forn=23,...
if+g df  (1+2n?) d_2f+g1+2n2)d_f n2g4—n2)f_0

drt rdrd 2 dr? PP dr r4

The next four pages are copied from the book
Elasticity by R.Wm. Little, Prentice-Hall 1973

which is out of print.

(16.29a)

(16.29b)

(16.29¢)

(16.29d)

The displacement fields in these solutions correspond to generalized plane stress.
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166 Problems in Polar Coordinates » Chap. 8

The solution is
¢ =ay,+byInr 4 cy> +dyr2Inr
+ (4, + Bylnr 4 Cyr? + Dyr2 In r)8

sin 8

+ (alr +brinr+ Sy d1r3) (8-4.9)
cos @

+ (4;r + B,rinr)f s

+ i (@r” + b2 + ™ + dyrmyinre.

The notation for sin n and cos nf is meant to imply that b,r2*" sin né
is one term and b,r2*” cos nf is another independent term available to satisfy
boundary COHdlthnS Later, b, and &, are distinguished by “upper” and
“lower” superscripts.

This is essentially the solution obtained by J. H. Michell, except that
he omitted some of the repeated roots. It should be pointed out that this is
not a general solution because a may take any noninteger value. These, how-
ever, do not lead to periodic solutions or allow the use of orthogonal func-
tions on the boundaries and are not of practical value in many problems.
Particular examples using these will be shown later.

Using the stress definitions in terms of the Airy stress function pro-
duces the following stresses: -

o, = ‘%’. + 2¢y + d,21nr + 1) + BO% +2C,0 + Dy2Inr + 1)8

sin cos 8
(2= R 2a) ™ ()

r cos 8 r -3sin &

(o) ()

—sin 8

- i {a,n(n — Dr=2 4 b(n+ 1)(n — 2)r" -+ c,n(n -+ 1)r=*2)
n=2
dn— Do+ 2r

oy = _%«z+ 2, + dy(21nr + 3)~§ﬁ+2ce £ D,2lnr+ 3)0
sin 8
+< + 2C1 + 6d >c058 + <§%9>cosﬂ (8-4'11)

+ Z {an(n — D=2 + b (n + 1)(n + 2)r" 4+ c n(n + )=+
n=2 .
+d,(n — 2)(’1 — Droeiise,
| ) b 2¢
o0=20+ B, =1 ¢, Dyinr+ 1)+ (—7‘+~;—1-2d1r)_m

N <—Bil>sm6 . (—Bilg>cos9
r/cose r —sin @ (8"412)
- i {an(n — D)r=2 4 bnn + 1)r" — ¢ n(n + 1)r=+2
n=2

- dnn(n - l)r"n c—ossigona'

cos @
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Sec. 4 Michell Solution 167

The displacements may be obtained from the following relations:

du, 1

5= f{a" — VO g}, (8-4.13)
1 1
2 — L (0w —va,) — (8-4.14)
IL4+v du, , 1 du, ug} i
V0, = = {dﬂ“ L2 (8-4.15)
Substituting equations 8-4.10 and 8-4.11 into 8-4.13 and integrating yields
u, = %{m~(1 V) 4 2041 — V) + dy(l — v)2rInr — ) — 2doyr

+ [_.70(1 + ) + 200(1 —V)r + Dy(1 — v)2rlnr — r) — 2D0vr]0

[b (I =wnr+ ‘(1 + V) + dyr¥(1 — v) — 2d,vr l:g (8-4.16)
+ 24, 107353, + [By Inr(1 — v sing + [B, In? /=3¢,
+ ZA [a,n(1 + v)r*=' + b {(n — 2) + v(n + )}
— ol vt —df(n 4 2) + v(n — 2 ViR 4 g (),

where g() is an arbitrary function of integration. From equation 8-4.14,
we may now obtain

Uy — %{461001' + 2D 0% + [bl(l — (1~ Inp) 4 9LEY)
(s [ - pagnr + e
+ B,[(1 —v) — (1 +v)Inr — In?rfizg (8-4.17)
= B[(1 —v)—Inr(l —v)Pef, + Z [a,n(1 4 v)rt
B AL+ )+ AP (L 4 o |
) — 4l — [ g©)d6 + 7))

Substituting equations 8-4.12, 8-4.16, and 8-4.17 into equation 8-4.15
- yields

~20+ 0% 4 (1 B[ 2m1“’ + 1] £ AC, + Df4lnr + 1 + 3]
éél_ cos 6 B 2;4_1 . sin 8 i 6 cos 8 g—v— sin 8 :
+[ r ]—sine [ r (1 V):Icosﬂ + Bll: r :lﬁé?sinﬂ + [Bl r :|cosﬂ (8 4'18)
EACERERFIOR: f g®aof — 10—,
7}

This leads to the following differential equations for the functions of integra-
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168 Problems in Polar Coordinates Chap. 8

tion:
P~ £ =21+ w1+ v)BD[%‘“—rr—_l] —4C  (8-4.19)
—DJ4rInr + (1 +vy] + K
gO) + [ g0)d8 = —[4b 1228, + [24,(1 —v) — B2k
— [B 4530, — K.
To solve equation 8-4.19, we introduce the change of variable ¢ = In r,

af _ 1df
dr r d&
Therefore, equation 8-4.19 becomes
f1&) — f(&) =201 + v)dpge™ + (1 + v)By(2¢ — 1e™*
— (4C, 4 (1 + v)D)e* — 4D et 4 K.

(8-4.20)

Solving yields

£(r) = Ryr — (1 + B, llr}; _4C,rlnr — (1 +vDyrlnr

~ (_Lj%v_)f_‘i_o _2D,rIn?r — K, (8-4.21)

where R, is an arbitrary constant.

Tréating J g(0) df as the unknown function, the solution of 8-4.20 is
)

[ 80)d0 = —2,}5sks — (Bl g — [4,(1 — )
+ B(1 + )Pese, + S, sinf + S, cos § — K,

(8-4.22)

where S, and S, are arbitrary constants.
Differentiating equation 8-4.22 yields

g(0) = —[2b,125%%0 — 26,155 — [B)E#575055 000
— [4,(1 —v) + B,(1 + m)E%dslseds + S, cosf — S, sin 6.
(8-4.23)

We now examine terms that lead to multivalued displacements or stresses.
Examining equations 8-4.10, 8-4.11, and 8-4.12, we note that the coefi-
cients B,, C,, D,, and B, must be selected to be zero if we wish single-
valued stresses, that is, for cases where the origin of the system lies within
the body under consideration. In a simply connected region, these terms are
single valued if the origin is placed outside the body or on its boundary.
In this case they should be included for a complete set of integer solutions.
Examining equations 8-4.16, 8-4.17, 8-4.21, 8-4.22, and 8-4.23 indicates that
the coefficients d,, B,, C,, Dy, A,, B,, and b, multiply multivalued displace-
ment terms. For a problem requiring single-valued stresses and displacements,
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Another class of solutions can be obtained by taking
f=rm, g= {sin(nB) or cos(nb)} , (16.30)
where m and n are no longer integers. Using this form the biharmonic equation (16.28)

will be satisfied provided that

n% — 2(m?-2m+2) n? + m¥(m-2)2=0 . (16.31)

For example, basic solutions for cracks with stress singularities can be obtained by taking
3 1 3

m=5,n=+5o0r+5 . (16.32)
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17. Lame's problem: Internal and external pressure on a cylindrical tube

%)

Fig. 17.1 Sketch of a cylindrical tube subjected to internal pressure p,
and external pressure p,.

Lame's problem considers two-dimensional deformation of a cylindrical tube that is

subjected to an internal pressure p; and an external pressure p,. The internal radius of

the cylinder is take to be a and its external radius is take to be b. Also, the body force

vanishes

b, =by=0, (17.1)
and the temperature 0" is taken to be uniform but not necessarily equal to 93.

For this problem it is sufficient to assume that the Airy's stress function ¢(r) is a

function of r only so that the biharmonic equation (16.24) reduces to

@ 10 Po 1o o 28% 1P 13
- 2

o))

[6r2 T o [6r2 r or) ot rord 12 orr or -0 (17.2)
The relevant solution for Lame's problem is
A
0=7 2+ B In(r) , (17.3)

where A and B are constants to be determined. Now, using (16.22), with the potential V

set to zero, it follows that the stresses are given by
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B B
T =A+r_2 , T99=A—r—2, Te=0.

1T
However, the boundary conditions can be expressed in the forms
Onr=b, n=e,,

B
Trr(b)=A+_2 — P2

t=—p,e.=T(b)e =T (b)e b

T 9

Onr=a,n=-e_,

B
t=p; =T (-e)=-Tya)e . T()=A+3=-p, .

These equations can be solved to deduce that
azpl_bzpz azbz(pz—pl)
T2 0 p2a?
Thus, using these results it follows that

(a®+b?)p, — 2b%p,
Trr(a) == pl s Tee(a) = bz_az )

2azp1 — (a2+b2)p2
b2_a2

T (b)=—p, , Toe(b) =
Next, the constitutive equation (16.14) is used to determine the strains

1 — B — =,k AF
€ = E [(1-2v) A+ ;] + (1+v)au(0 -0) ,

1 _ B o
0= 3, [(1-2v) A- 3] + (1+v)a(0™-0p) , e4=0 .
Consequently, for axisymmetric deformation
u =ul(r), ug=0,

so the strain-displacement relations (16.9) yield

u, = i [(1-2V) Ar— %] +(1+v)a(0™-0p) r .

(17.4)

(17.5)

(17.6)

(17.7)

(17.8)

(17.9)

(17.10)

(17.11)

Notice that if the cylinder is solid (a=0), then B vanishes and the solution reduces to

a=0, A=-p,, B=0,

Te=Tgp=-P2 > Tg=0 .
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299, L
U= g H (a0 0p)T T, ug=0 (17.12)

which corresponds to homogeneous deformation in the plane.

Fig. 17.2 Shrink fitting of a cylindrical tube onto a solid cylinder.

As another example consider the case when the cylinder is subjected to only an

exterior pressure (p, > 0 and p;=0). Then, the stresses (17.8) simplify to

2b2p2
Trr(a) =0 B Tee(a) = - b2_a2 5
(a%+b?)p,
Trr(b)Z—pz , Tee(b)Z—W . (17.13)

Now, if the inner radius is much smaller than the outer radius (a << b), then these

expressions further simplify to

T (@)=0, Tgg(@)= - 2p, ,

T, (b)=—p, , Toe(d)=—p, , (17.14)
which shows that there is a stress concentration of a factor of 2 at the inner boundary.

Moreover, by taking the thickness of the tube to be H it follows that

a=b-H ,
H H?
bp, AT
Tog@ = - "1 » Toe®) =~ T , (17.15)
H[1 - 5] H[1 =5

which yields the simple strength of materials solution for a thin tube (a=b—H, H/b<<I)
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bP,
Too~— T - (17.16)

As another example, consider a solid cylinder (1) of outer radius by, and a hollow
tube (2) of inner radius a, and outer radius b, [see Fig. 17.2]. Both bodies are made of
the same material, but b, is slightly larger than a,

b, >a, . (17.17)
In order to fit the hollow tube over the solid cylinder, the hollow tube is heated to the
temperature 9; which is the minimum temperature required to have the hollow tube just
fit over the solid cylinder (which remains at temperature 93). It therefore, follows that
the heated location of the inner radius of the hollow tube is given by

b, =a, +u@(a,) . (17.18)

Since the stresses in the hollow tube vanish, it follows (17.4), (17.7) and (17.11) that
u@(ay) = (1+v)a(05-0;) a, , (17.19)

so that the temperature 6; is given by
05 =05+ . (17.20)

After placing the hollow tube over the solid cylinder, the hollow tube is allowed to
cool down to room temperature 98 and the contact pressure p develops at the interface of
the solid cylinder and the hollow tube. To determine this pressure it is necessary to
specify both a kinematic and a kinetic boundary condition at this interface. Specifically,
the kinematic boundary condition requires the deformed location of the outer radius of

the solid cylinder to be the same as the deformed inner radius of the hollow tube
b, +uDb)) =2, +u@(a,) , (17.21)

and the kinetic boundary condition requires the radial stress to be continuous at this

interface
T(rlr)(bl) - T(gr)(az) =—p. (17.22)

Now, using (17.12) for the solid cylinder it follows that
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(1-2v)b,

uPoy =1 - (17.23)
and using (17.7) and (17.11) for the cooled down hollow tube it follows that
aZ 2 2
A(z)—[ ]p, Bz)——[ ]p,
2
a3 a,b3
Wy =5 [ Wi i ale (17.24)

Then, (17.23) and (17.24) can be substituted into the kinematic condition (17.21) to

determine the contact pressure

(1-2v)b, 0 a) a,b3
bl — [—] P= az 2 [(1 2V){b2 2} + {bZ 2}]
2u(b,—
. by 2)) , (17.25)

_ (1-2v)a3  a,b3
[(12v)b, + =5 +
bj-a3  bj-a3

which then can be used in (17.21) to determine the deformed radius of the interface.
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18. Kirsch's problem: Loading of a plate with a circular hole

€
(¢
- €y ! S

'\\
e < ’a‘ o b= 1
Y/

- =

Fig. 18.1 Sketch of a plate with a circular hole of radius a,
which is subjected to a tension T in the e, direction far away from the hole.

Kirsch's problem considers two-dimensional deformation of a plate with a circular
hole of radius a, which is subjected to a tension T in the e, direction far away from the
hole. The surface of the hole remains stress-free, the body force vanishes

b.=bg=0, (18.1)
and the temperature 0" is taken to be uniform but not necessarily equal to 63.
LOADING IN THE e; DIRECTION

The boundary conditions for the hole are most easily stated in terms of cylindrical
polar coordinates, whereas those for the loading far away from the hole (at infinity) are
most easily stated in terms of rectangular Cartesian coordinates

t="T() (€)=0 ,
=T (a)=0, Ty@=0, (18.2a,b)

limit t= limit T(+b,x,) (+ e;) =+T{] ¢,
b—w b—w0

= limit T} (#b,x,) =T} , limit T ,(xb,x,) =0 , (18.2¢,d)
b—oo b—w

limit t = limit T(x,£+b) (+ e,) =0 ,
b—w b—w
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= limitT|,(x,£#b) =0 , limit T,,(x{,xb) =0 . (18.2¢,f)
b—ow b—w

Moreover, to solve the problem it is most convenient to use cylindrical polar
coordinates and to transform the boundary conditions at r=co from rectangular Cartesian
components to cylindrical polar coordinates. In particular, it follows from (18.2c-f) that

the stress tensor at infinity is given by

limit T =T (e,®e,) . (18.3)
I—o0

Consequently, using the definitions (16.4) for the base vectors e and ey it follows that

0

T4
1 1 = L] = 2 = - _
ilmgTrr =T{] (¢;®e) * (e, ®e,) =T cos“0 7 [1+cos(20)] ,

TH
limitTgg = T3 (e,®e,) * (€g®ey) = TS sin’0 = = [1-cos(20)],
I—0
T
limitT g = T77 (e;®e;) * (e,®ey) = — > sin(20) . (18.4)
I—>00

Now, with the help of the general solution of Michell and recognizing that the stresses

must be bounded at r=oo, it is reasonable to consider the following forms

T,.= r_z +2¢y—(2ay + r_4 + r—z) cos(20) ,
b, 6¢,
Tog=— r_z +2¢y+ (2a, + r_4) cos(20) ,
T.o=(a, - r_4 — r—z) sin(20) (18.5)

where {by, ¢, a,, ¢,} are constants to be determined. To make sure that no

typographical error in the Michell solution affects this stress field, it is necessary to check
that (18.5) satisfies the equilibrium equations (16.13)

1T

or * r Jrr 00 =0,
Ty 2T,y 1 0Ty
St T 0. (18.6)

111



and the compatibility equations (16.23)

2 _ 21 Q L i _
Next, substituting (18.5) into the boundary conditions (18.2a,b) and (18.4) yields the
conditions

bO 6(:2 4d,
2 >t 2¢)—(2ay + 2 ) cos(20)=0 ,
6c, 2d,
(2a, - a_ —) sin(20) =0 ,

TOO
2o~ 23 c0s(20) =5 [1 + cos(26)]

T(X)
2¢( + 2a, cos(20) = % [1 —cos(20)],

TOO

. 11 .
2a, sin(20) = - > sin(20) , (18.8)
which can be solved to deduce that
B a’T{ T TR a* T B a’TH
by =— 5 C= g M= T4 6= d,= > . (18.9)

Thus, the stress field (18.5) can be rewritten in the form

T a2 Th 3a4 4a’

=5 (-3 +5 (1475 ~~5) cos(26),

TH 2 TH
11 a 11 3at
> 1+ r_z) > - (1+ —) cos(20) ,

Too =

T 3a* 2a
To=-—5 (1 i+—)sm(2e) (18.10)

It is important to emphasize that this solution predicts a stress concentration at the

boundary of the hole [see Fig. 17.2]. Specifically, it follows from (18.10) that

Tgp(a,0) = T{] [1 -2 cos(20)] ,
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—= T,/(0x,)= Tfol

Fig. 18.2 Stress concentration at the boundary of a hole.
In order to determine the displacement field associated with the solution (18.10), use

is made of the constitutive equations (16.14) with the temperature set to the constant

value GT
T 2 TR 3a%  4(1-v)a2 ——
=0 [129) = 51+ 3 11425 — 55 cos(20) + (14908070

T® A 4 a2
o an, i 3at dvas ko
C00 = Zy, [(172V) + 315 1754 =7 57T cos(20) + (1+v)a(®;-6)

Tﬁ 3a%  2a?
erez—m [1 _r_4 +r—2] sin(20) . (18.12)

Next, integration of the strain-displacement relations (16.9) yields

TH 2 TH 4 2
.1 — ac 11 a”  4(d-v)a
u = m [(1I2v) r+ r] + m [r—r3 + " ] cos(20)

Sk s i
+ (1+v)ou(6,-0) r +%§2

2

T 4 2(1-2v)a?
. a +i—rvﬁ] sin(20) — f(0) + g(r) .

uOZ—E[rJr 3 (18.13)

T

where f(0) and g(r) are functions of integration. Moreover, substituting these results into

the expression (16.9) for the strain € 4 and use of (18.12) yields the equation

1 df(6 d 1
. [ﬁz—hf(e)ﬁ[—%% ~7 em]=0 . (18.14)
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Thus, in view of the expressions (16.8) for rigid body displacements it follows that the
solution of (18.14) can be expressed in the form
f(0) = ¢{ sin® — ¢, cosO , gr)=—Hy, 1, (18.15)
where ¢ and H;, are constants, which for the present purposes can be set equal to zero
so that
f0)=0, g(r)=0 . (18.16)

Then, the displacements reduce to

TH 2 TH 4 Va2
u, ——[(1 2V r+5] +l[r—a @] c0s(20) + (1+V)a(07—0)) r
T® 4
ue——l[r er‘ +M]s n(20) . (18.17)

LOADING IN THE e, DIRECTION

This previous solution can be used to obtain the solution for tension T35 in the e,

direction by making the replacements

0>0-5) . TH >T% . (18.18)
in (18.10) for the stresses
T55 2 T 2
22 a 22 32 4a
T,=— 2 [1- ] [1 +— _r2 ] cos(20) ,

Too="3 [1+a—1+ 2, ~Tlcos(20) ,

T 4 2
22 3a 2a .
To=" 5 [1- _r2 ] sin(20) , (18.19)

and in (18.17) for the displacements

T5 _ 2 Ty 44
ur:4_2:[(1—2v)r+aT] = [r_a i_L] c0s(26) + (1+v)a(01-0) 1
Tﬁ‘% a% 2(1 2v!a
ug = E [r+ r_3 + ]sin(26) . (18.20)
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SHEAR LOADING
In order to develop the solution for shear loading it is convenient to consider the axes

e; and e), which are rotated by n/4 relative to the axes e; and e,, such that
1 1
ei=$(e1+e2) , eé=$(—el+e2) . (18.21)
Now, pure shear relative to the e; axes can be expressed in the form
T =S (e;®e] —e,®e;5) =S (¢,Re, +e,Be,) , (18.22)
which corresponds to tensor (T{] = S) in the e; direction and compression (T55 = -S) in

the e, direction. Thus, the solution for pure shear relative to the e; and e, axes can be

obtained adding the previous two solutions after making the replacements
0>0-7) . TH >TH . TH > -Tp. (18.23)

in (18.10) and (18.19) for the stresses

32 4a% | 3a%
T,= THI1 +r—4 —r—z] sin(20), Tgye= —T{5[1 +r—4] sin(20)
3a%  2a2
To=THI1 -4 + r—z] cos(20) . (18.24)

and in (18.17) and (18.20) [with OTZGS] for the displacements

4(1-v)a? L
+ T 5in(20) + (149)a(0]-0p) 1

3

T35 4 Va2
12 a~  2(]-2v)a
ug = 2 [r+r3 + " ] cos(20) . (18.25)

Here, it is important to emphasize that the influence of temperature should only be
included in one of the two solutions that are being superposed.

GENERAL LOADING

o0
T
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Fig. 18.3 Sketch of a plate with a circular hole of radius a,
which is subjected to general loading far away from the hole.
The solution to the problem of general loading far away from the hole [Fig. 18.3] can
be obtained by superposing (18.10), (18.19) and (18.24) for the stresses
(TH*T5%) a2 (T1-T5)) 32t 4a
THZT [1 —r—z] Tt [1 +r—4 —r—z] cos(29)

3a% 422
T [1+ r_4 _r_z] sin(20) ,

(TY+T53) 22 (TH-T5) 3a4
Tog = — 5 [1+ r—z] - 5 [1+ r_4] cos(20)
4

3a
—T%[1+—]si
T5 11 " ] sin(20),

(Tii-T2)  3a* 242 3a% 242
To=——r [l ri4+—]sm(2e)+T12[1 i+—]cos(2e) (18.26)

and by superposing (18.17) [with 07=0;], (18.20) [with 0]=0,] and (18.25) for the

displacements

(TEATS) 2 (TE-TR) a4 4y
T (L) e Rl LB +4—VE] cos(26)

u A .
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(T71-T5%)

+—=

T
2p

4p

a!

r+
[ 3

2

4(1-v)
T

[r+

=] sin(20) + (1+V)a(0-07) T .

4 2(1-2v)a?
a +4—rvﬂ] sin(26)

)

_99)a2
M] cos(20) .

117

(18.27)



19. The second law of thermodynamics

The thermodynamic procedure proposed by Green and Naghdi (1977,1978)
introduces the balance of entropy (4.16) to determine the temperature field 6, and it
suggests that the balance of angular momentum (4.21) and the balance of energy (4.31)
place restrictions on constitutive equations which ensure that these balance laws are
satisfied for all thermomechanical processes. In particular, the reduced forms of the
balances of angular momentum and energy are given by (4.52a,b) and (4.52c,d),
respectively. Moreover, it was shown in section 5 that for a thermoelastic material these
equations require the entropy n and the stress T to be determined by derivatives of the
Helmholtz free energy v, (5.7a,b). Also, for a thermoelastic material it was shown that
the internal specific rate of entropy production &' associated with material dissipation
vanishes. This procedure has the advantage that restrictions on constitutive equations can
be obtained without making any statement of the second law of thermodynamics.

Various statements of the second law have been proposed which relate to purely
thermal processes and coupled thermomechanical processes. All of these statements
attempt to propose mathematical expressions for restrictions on constitutive equations
that ensure that theoretical predictions are consistent with observations.

For example, one thermal statement of the second law requires heat to flow from hot
to cold regions. Mathematically, this means that

—qeg>0 forg=00/0x#0 . (19.1)
Alternatively, since temperature remains positive, (4.41) can be used to rewrite the
restriction (19.1) in terms of the entropy flux p instead of the heat flux q to obtain
—-peg>0 forg=00/0x#0 . (19.2)
For either case, the constitutive equations (5.10) and (5.9b) will satisfy the restrictions
(19.1) and (19.2), respectively, provided that the heat conduction coefficient « is positive
k>0 . (19.3)
Thus, (5.10) and (5.9b), associated with Fourier's law, require the entropy flux p and the
heat flux q to be in the opposite direction to the temperature gradient g.

Another example is the notion that friction causes heat generation. It has been shown

in section 5 that &' vanishes for a thermoelastic material which is considered an ideal

material with no material dissipation [also see Rubin (1992)]. Therefore, within the
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context of continuum mechanics, a nonzero value of &' indicates that the material is non-
ideal or dissipative. However, using (4.46) it can be shown that the rate of heat expelled

from the body can be written in the form

— (pr—div q) =— pbn + pOE' (19.4)

Thus, if & remains positive then material dissipation causes a tendency for heat to be

expelled by the body (which is consistent with the notion of friction). Consequently,

another statement of the second law is that the rate of material dissipation must be non-

negative

poE' >0 . (19.5)

Although this restriction is trivially satisfied for a thermoelastic material, it places

important restrictions on the constitutive equations of more complicated materials like
viscous fluids and elastic-plastic or elastic-viscoplastic solids.

Finally, it is noted from (4.45) that the two restrictions (19.2) and (19.5) require the

internal rate of entropy production & to be non-negative

pOE=—peg+pOBE >0 . (19.6)

119



20. Uniqueness of the solution of the linearized theory of thermoelasticity

The objective of this section is to prove uniqueness of the solution of the linearized
theory of thermoelasticity. To this end, it is necessary to recall the formulation of the
initial value and boundary value problem in thermoelasticity.

Specifically, recall from section 6 that for the linear theory of thermoelasticity the

balances of linear momentum and energy are given by

poU=pyb+divT , pye=p,r—divq, (20.1a,b)

and the constitutive equations are specified by

T=K[esI-30(0-0y)]I+2ue',

00
q=-K5 » PoE~ poC, (0-0() +3Kab, (e 1) . (20.2)
Moreover, from (7.1) and (7.2) the initial conditions require

u(x,0) =u(x) , l.l(X,O) =v(x) ,0(x,0)=6(x) onP fort=0 , (20.3)
and the mixed boundary conditions (7.6) and (7.7) require

{(Wes))or(tes;), (Wesy)or(tssy),(u+n)or(ten),

Oorqen} specifiedon P forallt>0 , (20.4)
where {s{,s,} are orthogonal unit vectors tangent to 0P, n is the unit outward normal to
OP and the traction vector t is given by

t=Thn. (20.5)

In order to prove uniqueness of the solution of a problem in thermoelasticity, it is

assumed that two different solutions exit and then it is proved that the difference in these

two solutions must vanish. Specifically, let {u(1), 6D} and {u(®, 6 be two solutions

which satisfy the balance laws (20.1), the constitutive equations (20.2) for specified

initial conditions (20.3), boundary conditions (20.4) and specified values of the body
force b and rate of energy supply r. Next, form the difference solutions defined by

Au=u® —uD  Ap=0@_gl) (20.6)

Using superposition of the linear solution it follows that these difference quantities satisfy

the balance laws
po Al = div(AT) , p, Aé = —div(Aq) , (20.7)
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constitutive equations

AT = [K (Ae » I) - 30.A0] I + 2pAe’,

O(AD
Aq=—-x (6x ) ,» PpAe=pyC,AB +3Kab, (Ae 1) , (20.8)
initial conditions
Au(x,0)=0 , AI.I(X,O) =0 ,A0(x,0)=0 onP fort=0 , (20.9)

and mixed boundary
{(Au+s)=0or(Atss;)=0,(Au+s)=0or (Ates,) =0,
(Au*n)=0or(At+n)=0,

AB=0or(Aqen)=0} onOP forallt>0 , (20.10)

where the difference strain Ae and difference traction vector At are defined by

Ae = % [0(Au)/ox + {d(Au)/oxT] , At=ATn . (20.11)

Next, taking the dot product of (20.7a) with Al.l, multiplying (20.7b) by A0/6, and

adding the results yields the equation

4 (du - ad AQ - - 1 00
qt [ Po (Au = Au)] +p0(e—0) Ag + AT 'Ae:e_OAq'%
 div(Am - AT~ 5= A0 Aq) . (20.12)

60
where use has been made of the symmetry of the stress tensor. Now, with the help of the
constitutive equations (20.8) it can be shown that

PoC K
209 Y (A02 47 (Ae s P+ (A€ + AC)] . (20.13)
0

AD_ e e d
po(e—O)AerAT-Ae:a[

so that integration of (20.12) over the region P and use of the divergence theorem yields

PoCy 1 . + K
20, (A8)? +5 po (Au * Au) + 5 (Ae + )? + pu (Ae' » Ae)] dv

d
5JP[
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fpg [iA—G)-iA—ez] dv+ ] p (AL~ Au- Ae(Aq°n)] da.  (20.14)

Furthermore, with the help of the boundary conditions (20.10) it follows that the integral
over OP vanishes so that

d PoC 1 . « K
atlp Do, (A0 3 pg (AU+ Aw + 5 (Ae + D2 + 1 (A€ Ae)] dv

f K a(Ae) _9(40)

oy 14V (20.15)

Next, using the initial conditions (20.9) and integrating (20.15) over time yields

I PoCy 1 )
[ (A9)? +2pO(Au Au)+2(Ae~I) + 1 (Ae' * Ae")] dv

20,
AB AB
I I x 4—2 48—) dvdt . (20.16)
Now, assuming that
Pp>0,6,>0,C,>0,K>0,u>0,x>0, (20.17)

it can be seen that the left hand side of (20.16) is non-negative and the right hand side of
(20.16) 1s non-positive. This means that both sides must be zero which ensures that the

solution is unique with

. O(AO
AuZO,AuZO,AeZO,AOZO,ia?l:O onP forallt>0 . (20.18)
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21. Material dissipation

A thermoelastic material is an ideal material in the sense that the internal rate of
production of entropy &' due to material dissipation vanishes (5.7¢). The simplest model
which includes material dissipation can be developed by adding linear viscous damping
to the thermoelastic response. Specifically, it is assumed that the stress tensor T separates
additively into two parts

A \4
T=T+T. (21.1)
A
The first part T characterizes the thermoelastic response and takes the form (5.12)
A A\ A A\ A
T=-pI+T , p=—KJ[e*I-3a(0-0y)], T =2ne', (21.2a,b,c)

A N

VAN VAN A
Tii=-p &+ Tf , p=—Kleyy, —3a(6-0)], Tjj=2pe; , (21.2de,)
\%
and the second part T is due to viscous dissipation and takes the form

\% A \% v . \% o
T=-pI+T ,p=-dje-I, T'=2d,¢', (21.3a,b,c)

\ .

v A , v \4 , . ,
Tj=-p8;* Tj . p=—dyepy . Tjj=2dy ¢ . (21.3de,f
where d; controls the dissipation due to dilatational deformation and d, controls the

dissipation due to distortional deformation. Also, the values of the Helmholtz free energy
vy, the entropy 1, the internal energy ¢, and the entropy flux vector p, are the same as

those associated with a thermoelastic material
AN AN N N N N
Y=y, n=n, e=e=y+ton,p=p, (21.4)
AN AN AN N
where v is given by (5.9a), n is given by (5.7a), T is given by (5.7b), and p is given by
(5.9b), such that

U U (21.5)

Now, the reduced form of the energy equation (5.5) becomes

A 8/\ ° a/\ e
pode =—po[n+55 10+ [ T-pzt] e . (21.6)

Thus, with the help of (21.1) and (21.5), it follows that the rate of material dissipation is

given by
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\4 .
PE =T +e>0, (21.7)

which must be nonnegative by the second law of thermodynamics (19.5). Moreover,

substitution of (21.3) into (21.7) yields

PO =d, (6 + 1) +2d, (' ¢) >0, (21.8)
which is satisfied provided that both d; and d, are nonnegative
dy=0,dy=0 . (21.9)
In order to understand the connection of the internal rate of production of entropy
and dissipation, it is convenient to consider an idealized problem where the outer
boundary 0P of a body is free of surface tractions, and is insulated from heat flux (or
entropy flux)
t=0 and q*n=0 (p*n=0) onoP . (21.10)
Moreover, the body force b and external rate of heat supply r (or entropy supply s) are
taken to be zero in the entire region P occupied by the body
b=0 and r=0 (s=0) onP . (21.11)
Also, for simplicity, it is assumed that in its initial configuration the body has no strain,
the temperature is the reference temperature, but the velocity field is nonzero and is
inhomogeneous
e=0,0=0,, gradL#0 at t=0 . (21.12)
It then follows that the global form of the balance of entropy (4.16) reduces to

d
dat Ppndv=,[Pp§dV, (21.13)

and the global form of the balance of energy can be integrated to yield
1
,[PpstJr,[Psz-VdV:KO, (21.14)

where Ky, is the kinetic energy of the body in its initial configuration. This means that the

total energy (internal plus kinetic) remains constant.
Next, it is recalled from (19.6) that the internal rate of production of entropy separates

into a thermal part and a material part, such that

pOE=—p-g+pbE=0, (21.15)
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each of which is nonnegative due to the second law of thermodynamics (19.2) and (19.5)
—peg>0 forg=00/0x#0 , pOE >0 . (21.16)
Furthermore, for k, d; and d, positive

k>0 ,d;>0,dy>0, (21.17)

it can be seen that the internal production of entropy vanishes only when the temperature

1s uniform and the strain rate vanishes

£=0 = 90/0x=0 and e=0 . (21.18)

Now, it is observed from (21.13) that since & is nonnegative, the entropy continues to
increase as long as the temperature is not uniform and the strain rate does not vanish.
However, the entropy m and the internal energy € for a thermoelastic material are
functions of the strain e and the temperature 0 only

n=n(e0) , e=¢(e0) . (21.19)

Moreover, in view of (21.14), the total internal energy is bounded from above
[opedv<x, . (21.20)

Consequently, it is impossible for the entropy to increase without bound and for the
internal energy to remain bounded. This means that the thermomechanical process must
evolve so that eventually the temperature becomes uniform and the strain rate vanishes.
It is particularly interesting to note that even if the material dissipation vanishes (21.10),
the thermomechanical process will still evolve to a uniform temperature with vanishing
strain rate since thermal heat conduction causes entropy production.

In the remainder of this course attention will be confined to the case of a
nondissipative thermoelastic material with

d=dy=0 . (21.21)
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22. Wave propagation: Wave speeds in an infinite media, uniaxial strain waves, and
vibrations of a bar in uniaxial stress

Typical wave propagation speeds in metals are about 5 km/s. Therefore, the wave
travels so fast that there is essentially no time for heat transfer by heat conduction.
Consequently, in the absence of external heat supply r, it is reasonable to consider wave
propagation to be an adiabatic process.

For adiabatic processes the stress is determined by the constitutive equations (9.28)

T; =(K—%E) € O T 21 €5 (22.1)
where K is specified by (9.29)
_ 9K 020,
K=K|[Il+ e ] . (22.2)
Also, the temperature is given by (9.27)
3Kab,
0=0,— e €mm - (22.3)

It then follows that in the absence of body force (b=0), the strain-displacement relations
(6.1) can be used together with (22.1) to rewrite the balance of linear momentum (6.21d)

in the form

Po U; = (K +5) Wi + 1 Uiy - (22.4)

WAVE SPEEDS IN AN INFINITE MEDIA
In order to show that there are two types of waves in an infinite media it is convenient
to express the displacement field in terms of two potential functions ¢ and y, such that
u=Vo+Vxy , Vey=0,
u; = ¢, + Eiik Vioj » Vi = 0. (22.5)
Physically, the potential y is associated with pure distortional deformations, whereas the

potential ¢ includes both dilatational and distortional deformations since

1
eij - ¢’ij + 5 [gimn Wn’mj + 8jmn Wn’mi] >
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e*I=Veu=e =0, =V>0,

1 1
€ = [0 =3 Gomm O T 2 [Eimn Yiomj T Ejmn Viomil - (22.6)

Now, it follows from (22.5) that

Unsmi — (I)’mmi > Upmm — (I)’mmi + gijk Wk’mmj > (22.7)
so that the equations of motion (22.4) can be rewritten in the forms
oo _ iH oo
[Pp ¢ —(K+ 3 ) Qoo T &ijk [P Wi — 1 \Ifk,mm],j =0 . (22.8)
It then follows that the equations of motion will be satisfied if
oo _ 4 oo
Po ¢ =K+ —3H) o > PO Vi = M Viomm > (22.9a,b)

which are wave equations of standard form.
To derive the wave speeds from these equations consider plane waves traveling in the
k; direction (k;k; = 1) with speed C and let
d=0¢(x) , y;=vy;(x) , x=kx;-Ct . (22.10a,b,c)
Using this representation it follows that the dilatational wave equation (22.9a) will be
satisfied for an arbitrary functional form ¢(x) if the wave propagates with the dilatational

wave speed

(22.11)

Similarly, it follows that the distortional wave equation (22.9b) will be satisfied for an

arbitrary functional form y;(x) if the wave propagates with the distortional wave speed

el
C—CS—\/:O. (22.12)

In particular, it can be observed that the dilatational wave speed is faster than the
distortional wave speed. With regard to earthquakes, (22.11) is the speed of the P-wave
(primary wave) and (22.12) is the speed of the S-wave (secondary wave), so the P-wave

arrives before the S-wave.
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Also, it is noted that if the minus sign in front of C in (22.10c) is replaced by a plus

sign then the wave travels in the negative k; direction with the same speed as the wave

traveling in the positive k; direction.

UNIAXIAL STRAIN WAVES

In order to study the properties of materials at high strain rates it is most common to
use plate impact experiments where a cylindrical flyer plate is propelled to a high
velocity by a gas gun and impacts a cylindrical target plate. Since waves travel with a
finite speed, points at the center of the plate experience uniaxial strain until release waves
arrive from the plate's free lateral surfaces. Moreover, the time window for which the
strain remains uniaxial can be controlled by specifying the thickness and radius of the
plate.

Taking the e, direction to be the direction of motion, it follows that for uniaxial strain
u; =uy(x;—Ct) , uy=u3=0 . (22.13)

Thus, the only nontrivial equation of motion associated with (22.4) becomes
o0 p— 4
po Uy = (K+7)up.y (22.14)

which is satisfied provided that the uniaxial strain wave speed C is the same as the P-
wave speed (22.11). Moreover, it is important to note from (22.1) that the nonzero

stresses associated with uniaxial strain are given by

— 4 — 2 - 2
T11=(K+—;—L)u1,1 ) T22=(K——3H)u1,1 ) T33=(K—_3H)u1,1 . (22.15)

VIBRATIONS OF A BAR IN UNIAXIAL STRESS

Waves traveling along the axis of a thin bar are affected by the free lateral surfaces of
the bar because the time required for waves to travel through the thickness of the bar is
short. Consequently, the majority of the energy transmitted by the wave travels at a wave
velocity associated with uniaxial stress conditions. Specifically, with the help of (9.17),
and (9.18) with ¢ vanishing, it can be shown that

3Ka, (1-2v)Ty4
oCy+ 9Ka2eo) E ’

0-0, =— (
o p
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PoCy 9K(1290
pCy + 6K o0, (1+v)

T;;=Ee;;, E=E] 1. (22.15)

It is interesting to note that E > E since 0 < (1+v) < 3/2 and the material cools when it is
stretched adiabatically.
Now, in the absence of body force (b=0), the balance of linear momentum (6.21d) in

the e, direction becomes

pou;=Eup - (22.16)
Thus, taking u; in the form
u; =u(x;—Ct) , (22.17)

the equation of motion (22.16) is satisfied if the adiabatic wave speed is given by

E
C=Cx= - . 22.18
B » (22.18)
Then, equation (22.16) can be written in the alternative form
U =Cu, - (22.19)

Next, consider a bar of length L which in its reference configuration occupies the
region

0<x,<L . (22.20)

Free vibrations of the bar

For free vibrations of the bar, both the ends x;=0 and x;=L remain stress free.
Therefore, from (22.15) it follows that the free boundary conditions require
u;,1(0)=0, uy,(L)=0. (22.21)
Using separation of variables, the solution of equation (22.19) can be written in the form

u; = Assinwt f(x) , (22.22)

where A is the amplitude of the mode and o is its frequency. Next, substituting this

solution into the equation (22.19) yields

f,, +k2f=0, k= (22.23)

@
Cg’
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where k is called the wave number. Thus, the solution of (22.23) associated with

symmetric modes about the center of the bar is given by
u; = Asinet sin [k(x; - L2)] , (22.24)

with the boundary conditions (22.21) reducing to
coskL/2=0 . (22.25)

The solution of (22.25) predicts an infinite number of modes with wave number k, and

frequency o, characterized by

-1 (2n-1)nCpq
k, = %ﬂ Lo=— 1 for n=123... . (22.26)
In particular, notice that the higher modes (higher values of n) have shorter wavelengths

(2n/k,) and higher frequencies, and that the frequency increases with decreasing length
L. Moreover, the lowest free vibrational frequency of the symmetric mode corresponds
to n=1 and has the frequency ®; and the period T, of vibration given by

nCB 2n 2L

o= -Ti=g G, (22.27)

Thus, the period of vibration is equal to the time required for a wave to travel from one
end of the bar to the other end and back again (i.e. twice the length of the bar).
Similarly, the solution of (22.23) associated with anti-symmetric modes about the

center of the bar is given by
u; = Asinot cos [k(x; ~L/2)] , (22.28)

with the boundary conditions (22.21) reducing to
sinkL/2=0 . (22.29)

The solution of (22.28) predicts an infinite number of modes with wave number k  and

frequency o, characterized by

nn 2nnCB
k=L > =T

for n=1,2,3,... (22.30)

Thus, the lowest anti-symmetrical vibrational frequency corresponds to n=1 and has the

frequency w; and the period T, of vibration given by
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21ICB 2n L

o =T -Ti=5 =G, (22.31)

which equals twice the frequency of the lowest symmetric mode.

Fixed-Free vibrations of the bar

As another example, consider the case when the end (x;=0) is fixed and the end
(x;=L) is free. Therefore, from (22.15) it follows that the boundary conditions require
u(0)=0, u,(L)=0. (22.32a,b)
Again, using separation of variables, the solution can be written in the form (22.22) with
the function f satisfying the equation (22.23). Now, the solution of (22.23) which
satisfies the boundary condition (22.32a) becomes

u; = A sinot sin (kx,) , (22.33)

where k is determined by the boundary condition (22.32b)
cos (kL)=0 . (22.34)

The solution of (22.34) predicts an infinite number of modes with wave number k , and

frequency w, characterized by

In-1 (2n-1)nCpq
k;%ﬂ o= for n=123... . (22.35)

Therefore, it follows that the lowest vibrational frequency corresponds to n=1 and has the
frequency w, and the period T, of vibration given by

nCp 2n 4L

=L - Timg ~Cy (22.36)

This period of vibration corresponds to the wave traveling four lengths of the bar.
It is of interest to note that this result can be obtained from the symmetrical free

vibrational mode, since the middle of the bar (x;=L/2) remains stationary in the

symmetric mode (22.24). This means that the effective fixed-free length of the free
vibrational bar is L/2. In other words, if the free bar has length 2L then its effective
fixed-free length with L. Consequently, the results (22.35) can be obtained by replacing
L in (22.26) by 2L.
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23. Bending of a rectangular plate due to mechanical and thermal loads
Consider a rectangular plate with length L, height H, and width W, which in its
reference configuration occupies the region characterized by

L L H H \Y

\

The top (x,=H/2) and bottom (x,=-H/2) surfaces of the plate are taken to be traction free
so that

t(x,£H/2,x5;4€,) =0, Tph(x1,£H/2,x5) =0 . (23.2)
Also, the boundary conditions on the edges of the plate are specified in a Saint Venant

sense (7.11) such that the resultant forces are zero, but the resultant moments are not.

Specifically, the boundary conditions on the edges are specified by

W2 [H2 ' -
w2 d_un t(L/2,x5,x5;€) dx, dx3 =0,

2 [H2 L
Mye;=) wpndpyn - 7 e)) x t(L/2,x,,x5;e1) dx, dx5 ,

/2 [H/2
-W/2 *-H/2

t(-L/2,x5,x5;-€) dx, dx3 =0 ,
W/2  [H/2 L
-M;ey= le/z JLH/z (x+ 5 e) x t(-L/2,x5,x5;-€)) dx, dx5 ,

H2 (L2 _ B
un doin t(xl,xz,W/2,e3) dxl dxz =0,

J'H/Z J'L/Z W
M e = un doin (x— ) e3) X t(x1,X,,W/2;e5) dx, dx,

H2 (L2 . B
_np dpp XXy ~W/2ies) dxdx, =0,

B J'H/Z J'L/Z w .
My e =) pyply, 7 5 €3) X t(x1,X,,~W/2;—€5) dx, dx, , (23.3)

where M| and M are the moments applied to the edges. It then follows from (23.2) and

(23.3) that the total resultant force and total resultant moment (about any fixed point)
applied to the entire plate both vanish. Consequently, the plate will be in equilibrium if
the body force also vanishes (b=0). Moreover, the boundary conditions (23.3) can be

expanded to yield
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W/2 [H/2
T, (£L/2,x5,%5) dx, dx3 =0

-W/2 Y-H/2
W/2  [H/2
w2 d_un X2 T3 (FL/2,x5,X3) — X5 Tzl(iL/2,x2,x3)] dx, dx3 =0,
/2 (H2
Wi donn X3 Tll(iL/2,x2,X3) dX2 dx3 =0,
(w2 [H2
H2 (L2 .
un dpn TisXXxAW/2) dx; dx, =0,
H/2 (L2
1= mn i n X Taa(X X0, E2W/2) dx dx,
H/2 (L2
1 rp X Ta3(xxp#W/2) dx dx, =0,
H/2 (L2

i A [X Tas(exp2WI2) = x) Ti5(x %0 2W/2) | dx dx, =0 . (23.4)

Examination of the boundary conditions (23.3) and (23.4) suggests that the stresses be
specified by

12M, 12M,
T, =~ [W] Xy » Ty3= [m] X, , all other T;; =0 . (23.5)

These stresses also satisfy the equilibrium equations

In addition to the mechanical loads associated with the moments M, and M, it is of

interest to specify a thermal load by taking the temperature gradient through the thickness
H of the plate to be nonzero. Specifically, the temperature field is specified by
0=0,+G,x, , (23.7)
where G, is a constant. It then follows from the constitutive equation (6.22g) that the
heat flux q is given by
q=-xG, e, , (23.8)
so that heat flows in the negative e, direction. This physically corresponds to a plate

which is heated on its top surface (x,=H/2) and cooled on its bottom surface (x,=—H/2).
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In this regard, it is recalled that the case of a uniform thermal expansion was solved in
section 8.
Next, using the constitutive equations (9.9) it follows that the strains associated with
the stresses (23.5) and the temperature field (23.7) become
€1=AXy) , €9 =Bx,,e537Cx, , €p,=€37€3=0, (23.9)

where the constants A, B, C are specified by

12M;  12vM, 12vM;  12vM,
A= Ewie B %% BT Rwm TR 92
12vM;  12M,
C=—ws toim +9G; - (23.10)

Since the strains (23.9) are linear functions of the coordinate x, it follows that they

satisfy the compatibility equations (6.3) so that a displacement field exists.
Moreover, the constitutive equation (6.22j) indicates that the internal energy
P = PC, Gy X5 +3Kabj €1 - (23.11)

is independent of time so that in the absence of external heat supply (r=0) the balance of

energy (6.211)

PoE=—qj - (23.12)
1s satisfied.

In order to complete the solution it is necessary to integrate the strain-displacement
relations (6.1) to determine expressions for the displacement field. Specifically, it
follows from (23.9) that

UL, =AXy , Uy = BXy , Uu3,3=Cx,y , (23.13a,b,c)
U,y Uy =0, up3tug,; =0, uy3+us3,,=0. (23.13d,e,1)

Thus, integration of the first three of these equations yields
B,
U = A XXy H(X0,X3) , Uy, = PR H(x1.X3) S

uy = C xyx3 + f3(X,X,) (23.14)
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where f}, f, and f; are functions of integration. These functions are determined by

substituting (23.14) into the remaining three equations of (23.13). Specifically, (23.13d)
requires

Ax +f,,+5,,=0. (23.15)

Now, from (23.14) it can be seen that since f, does not depend on x,, then fj,, also
cannot depend on X, so it must be a function g;(x3) of x5 only

f1.,=g1(x3) , f1(X2.X3) = g1(X3) X, + hy(x3) , (23.16a,b)

where h;(x3) is a function of x5 only. Substituting this result back into (23.15) yields

A
Axy+tg(x3)+1, =0, GHxx3)=~— 5 X% —g1(x3) Xy Thy(x3) , (23.17a,b)
where h,(x5) is another function of x5 only. Thus, with the help of (2.14), (2.16) and
(2.17), the displacements u; and u, become
u; = A XXy +g1(X3) Xy T hy(x3) (23.18a)

A B
Uy = _Ex% + Ex% - g1(x3) x; T hy(x3) . (23.18b)

Next, (2.14) and (23.18a) are substituted into (23.13¢) to deduce that
813X thy3+f5,,=0. (23.19)
Now, since f; does not depend on x5, and g; and h; depend only on x5, it follows that
g3 and hy 3 are constants, and f3,; is a function of x, only
g13=D, g =Dx3+H), ,
hjs=Hy3 , hy=Hj3x3+¢|,
3,y =-Dx, -Hy3 , f5=-Dx;x, —Hy3x; + h3(x,), (23.20)
where D, H{,, H,3, ¢ are constants and h; is a function of x, only. Thus, with the help
of (23.14), (23.18b) and (23.20) the displacements u, and u; become

A B
Uy =—5 X7+ 75 x5~ Dxyx3— Hyp xp +hy(xy) (23.21a)

u; = C x,%3 — D xyxy —Hy3 x; T h3(x,) . (23.21b)

To determine the remaining functions, (23.21) are substituted into (23.13f) to obtain

—Dx +hy;+Cx3-Dx; +hs,, =0 . (23.22)
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Since h, depends on x5 only, and h; depends only on x,, it follows that D vanishes and

h;,, is constant
D=0,

hy,=—Hp; , hy=—Hy3x,+c¢5,
€.

where H,5, ¢,, ¢5 are constants.
Thus, collecting the results (23.18a), (23.20), (23.21) and (23.23), the displacement

field becomes

__ AL, B, C,
Uy ==X 15X 5 x5 ~Hpxy tHyzxs+0,,

uy; = Cxyx3—Hyj3 x; —Hyy x5 +¢5 (23.24)
where A, B and C are given by (23.10). Moreover, it can be observed that c; represent
rigid body translations and H,, Hy3, H,5 represent rigid body rotations.

As special cases consider:

PURE BENDING IN THE e;—e, PLANE (M,=G,=0)

12M,
U =~ (gl X% THip X THi3xg +ep
6M; 2 2 2
U= Ewl [XT T vxa—vxs] —Hpxp +Hyzxst 0y,

12VM3

uy = [m] X5X3 (23.25)

—Hyj3x; —Hy3xy ¢35 .

PURE BENDING IN THE e,-e; PLANE (M;=G,=0)

12vM,
oM 2 2.2
Uy == [l VXt vxg+x3] —Hpp Xy FHyz x5+ ¢y,
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12M,
Uy = [l X2%3 —Hiz X —Hyz xp ey

FREE THERMAL BENDING (M;=M;=0)
up = [aGyl XXy + Hyp % +Hyz x5+ ¢y,

oG, 2.2 2
uzz[ P ][—Xl+X2_X3]_H12X1+H23X3+CZ’

uy = [OLG2] XoX3 —Hy3 X; —Hy3 X5 +¢5 .
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24. Composite plates

The objective of this section is to consider simple deformations of composite plates
which are loaded by both mechanical and thermal loads. Specifically, consider a
composite rectangular plate which is made of two different materials (see Fig. 24.1). The
plate has length L, and width W. The heights of the bottom and top portions of the plate

are H; and H,, respectively. The bottom portion of the plate occupies the region

L L W W
-5 =X3=75, (24.1)

and has the material properties

{ p()l ’ El 9 Vl 9 al 9 CV] } s (242)
whereas the top portion of the plate occupies the region
L L W W
_ESXISE’OSXZSHZ’_7 §X3§7, (24.3)
and has the material properties
{PpsErsvy,0,,C ) . (24.4)
A €
W

¥ e

H, 7
| H,
» A

€3

Fig. 24.1 Sketch of a composite plate.
For simplicity, attention will be focused only on simple problems of equilibrium with
no body force
b=0 . (24.5)
Also, it will be assumed that heat is supplied (r#0) only during the process of heating the
body uniformly to a uniform temperature

0 = constant (24.6)
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so that the heat flux vector q vanishes. In general, it is necessary to specify boundary
conditions which are valid at each point of the exterior boundary of the composite plate.
Also, it is necessary to specify conditions at the interface (x,=0) which characterize the
bonding between the top and bottom portions of the plate.

For definiteness, let the displacement, strain and stress fields be {uq) , e%), T(ilj)} in
the bottom portion of the plate and be {u(%) , e(%), T(%)} in its top portion. Assuming that
the two portions of the plate are bonded perfectly at the interface (x,=0), it follows that
material points that were in contact before loading remain in contact. This means that the
displacement field must be continuous at the contact surface

uD(x,,0,x5) = u®(x,,0,x5) . (24.7)

In addition, it is necessary to specify kinetic conditions at this surface. Specifically, it is

necessary to require the traction vector t applied by the top portion of the plate on its
bottom portion to be equal and opposite to the traction vector applied by the bottom

portion of the plate on its top portion

t(x;,0,x5;e,) = t applied to the bottom portion of the plate ,

t(x;,0,x5;-€,) =— t applied to the top portion of the plate . (24.8)
Now, using the relationship between the stress vector and the stress tensor it follows that
T(x[,0.x5) &, =t , TO(x;,0,x3) (—e))=—T ,
T(l)(Xl,O,X3) e = T(2)(X1,O,X3) e ,
TW(x,,0,x5) = TR(x,,0,x5) , (24.9)

which require continuity of three components of stress.

Since the two materials are different, they respond differently to thermal and
mechanical loads so the solution of boundary value problems of contact problems such as
the one under consideration usually are quite complicated and lead to inhomogeneous
deformation fields in each portion of the plate. However, it is possible to develop
intuition about the potential deformation field associated with this incompatibility of the
materials by considering a very special case where surface tractions are applied in such a

way that the deformation fields in each of the portions of the plate remain homogeneous.
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To this end, consider the following boundary value problem. Let the top (x,=H,) and

bottom (x,=—H;) surfaces of the plate be traction free so that
t(Xl,Hz,X3;e2) = O N T(iQZ)(Xl’HZ’X3) = 0 .
t(x—Hpx3-e) =0, TH(x;,—H;x3) =0 . (24.10)

Also, specify the boundary conditions on the edges of the plate in a Saint Venant sense
(7.11), such that the resultant forces and moments on the edges are specified by
w2 [H,
Pe, = t(L/2 ;1) dx, d
€ Lw/z -H, (L/2,x5.x35e1) dx, dx3

w2 (H, L (Hy,-H,)
M; ey = -[—W/z H, [x —5e - 5 €] x t(L/2,x,,x5;e1) dx, dx5 ,

w2 (H,
—P el :I—W/Z _H1 t(—L/2,X2,X3;—e1) dX2 dX3 ,

/2 J'Hz L (HZ_Hl)

-M;ey= w2 JH, [x + S - 5 e, x t(-L/2,x,,x5;-€) dx, dx5 ,
H
2 [L/2
I_Hl L2 t(x1.X,,W/2;e5) dx; dx, =0 ,

H (H,—H,)
2 [LR2 2t W
M, e = _[Hl 1n [x T, &5 e3] x t(x(,X,,W/2;e5) dx; dx,

J‘Hz L2
Hl L2 t(Xl’X2’_W/2,e3) XmdXZ = 0 R

J‘Hz L2 (Hy-H)  w
-M; e = H, YL [X—T et e3] X t(x.,X,,~W/2;—e5) dx, dx, . (24.11)

Here, P is a specified resultant force, and M, and M; are the resultant moments applied to

the edges that are determined by the solution of the problem. It then follows from (24.10)
and (24.11) that the total resultant force and total resultant moment (about any fixed
point) applied to the entire plate both vanish. Moreover, the boundary conditions (24.11)
can be expanded to yield

w2 (H,

P=)wpn don, TnEL2.xx35) dxy dx;
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w2 (H,
“wi o, T EL2x0.%3) dxg dxg =0

w2 (H,
I W2 I—H1T31(ﬂ:L/2,X2,X3) dx, dx; =0,
(H2 “H,)

—W/2 J. [ {x,-

} T3 (£L/2,%5,X3) — X3 TH(£L/2, X2,X3)] dx, dx3 =0,

/2

H
2
~W/2 IHIXS T (*L/2,x5,%3) dx, dx3 =0,

w2 (H, (Hz—Hl)
~W/2 H, {x— 3T (£L/2,X,,X5) dx, dx5

IHQ L2

1n Ti5(x1,%0,2W/2) dx; dx, =0,

H (H,-H,)
2 (L2 2 1

JHz L2

1 X1 Ty3(x.%,#W/2) dx; dx, =0 ,

J'Hz L2

1 X Tos(Xpxp, 2 W/2) = x5 T 5(x X0, #W/2)] dx; dx, =0 . (24.12)

Here, simple solutions are considered of the forms

e(lll) = 6(121) =€, = constant , 692 = constant , e@ = constant ,
693) = e%) = €33 = constant , e(llg = 6(122 =0,
ey=c@=0, Y=eF=0, (24.13)

where the constants {e,, 692), e@, €33} must be determined by the solution. In then

follows from the constitutive equations (6.22) that the stress fields are constant in each

portion of the plate so the balance laws (6.21) are satisfied pointwise. Also, it follows

that

TH=TF=0, T=TF=0, TH=TF =0 . (24.14)

Moreover, the contact conditions (24.9) and the boundary conditions (24.10) can be used

to deduce the additional result that

141



TV =T¢ =0 . (24.15)

Then, the constitutive equations in the forms (9.9) can be used to obtain

T v T vlTﬁ? vlT%?

1=, ", + 014 (6-6) , gg__ E, + 014 (6-6) ,
vl T4
e33=— IEI g, (00 (24.16)

in the bottom portion of the plate, and

TR Wy VzT(fP T

=T, B, %00, ey =-—% E, %000,
TR T
e3=="g, ', t%00) . (24.17)

in its top portion.

Next, equating the expressions for 1 and €55 in (24.16) and (24.17) yields

T oviTd TR vTH

E, E  E ' E =—(0;—a)(6-) ,
viT TR vT@ T
- IE1 ! E| i 2E2 E, =~ (a1-0p)(0-0) , (24.18)

which are two equations for the four unknowns {T(lll), Tg}), T(Izl), T%)}. The remaining

two equations are obtained from (24.12), and (24.12),
W [H, T()+H, T@] =P, L[H, T +H, TY]=0 . (24.19)

Alternatively, these equations yield

TR =~ Ez T(111)+H2W TY) =- Hz 119, (24.20)

so that (24.18) can be written in the matrix form

NI R
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P v, P
Bl = Hz\A]E2 - (0'1_0“2)(9_90) ’ BZ = H2WE2 — (al_az)(e—eo) , (2421)

which has the solution

A, B, —A,,B A,B,—A,,B
1 1 128> 1182 — AypBy
T = 5, T = 3 3 . (24.22)
A-Ab Af1—Ap

Now, the equations (24.12) will be satisfied provided that M and M are specified by

M, T%1£+ TS? L[ > SE0

My=—W —T(111)+ —T(IZI) Jp=H W[ ]T(fl) 1]P, (24.23)

where use has been made of the equations (24.20).

In summary, once the force P and the temperature 6 have been specified, the stresses
are given by (24.14, (24.15), (24.20) and (24.22), and the strains are given by (24.13),
(24.16) and (24.17). Also, the moments M; and M5 are given by (24.23). It is important

to emphasize that since M; and M are not zero, the plate would bend if these moments

were not supplied.

In order to analyze the physical meaning of this solution, it is convenient to consider
simpler problems. Specifically, consider the case when the top and bottom portions of
the plate have the same geometry and the same Young's modulus

H,=H,=H , E;=E,=E . (24.24)
It then follows from (24.20), (24.21) and (24.22) that

2 (V1+V2)
An=g.> An=—"g
P v,P
Bi=TwE —(1=)(0-6)) . By=— g —(0-a)(0-8y) ,  (24.25)

and that

P
{27v2(v V) F iy — @FviHvy) (e —an)(0-0y)
T = Vitya, 2

4f1-1—75711
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P
{2—v1(v1+v2)}—HW + (24 +v,)(0~0,)(0-0,)
T = :

4af1-{—=-1

P
(Vi—V,) aw (2Hvtvy)(oy—0,)(0-0,)
- T TR,
4f1-{—"} ]

HLP
ViV W~ H2L(2+v,+v,)(a,—0,,)(6-6,)

M, =-—
Vitvy 2

41-{—75741

2
V1—V2

{ FHP — H2W(2+v +v,)(0,~01, )(0-0 )
M; = . (24.26)

a2

First of all, notice that if the materials are the same then

V1:V2:V , (11:(12:(1

(111) T(lzl) 2HW (39 (323> =0, M;=M3=0, (24.27)
which is consistent with uniaxial stress in the e, direction.

Next, consider the case of mechanical loading only, such that

9290 .

P P
{2—v2(v1+v2)}ﬁ {2—v1(v1+v2)}ﬁ
i) = TR,

4f1-1—75741 4l1-1—5741

P
Vi-V9) owr
=y TR=-TH
- 757
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HLP V%_V%

ViV W {—"inp

M, =— — , M;= v (24.28)

al- 53] s[- 52

Now, for v greater than v,, it is necessary to apply a tension Tglg to the bottom portion

of the plate and a compression T%) to its top portion in order to prevent the Poisson effect

of contracting the bottom portion of the plate more than its top portion. Also, the tension

T(lll) in the top portion of the plate is greater than the tension T(IZP in its bottom portion.

Moreover, notice that even if the dimensions L and W are equal, the magnitudes of the

bending moments M, and M; are not equal.

Finally, consider the case of thermal loading only, such that

P=0,
(2+v+v,) (0 —0,)(0-0,)
T =T = - T TR =TT,
4[1- 15

M, =

3

4l1-1—75711

H2W(Q2+v +v,)(0—0,)(0-0) W
_ M. (24.29)

M, =
3
v1+v2

al- 52

Now, for a; greater than o, and 0 greater than 0, it is necessary to apply a compression

T(lll) = Tglf to the bottom portion of the plate and a tension T(lzl) = T%) to its top portion in

order to prevent the temperature expanding the bottom portion of the plate more than its

top portion.
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25. Flamant's problem: A concentrated line force on a two-dimensional half space

Fig. 25.1 Sketch of a concentrated line force P applied to a two-dimensional half space.
Flamant's problem considers a concentrated line force applied to a two-dimensional
half space [see Fig. 25.1]. The body force vanishes
b.=bg=0, (25.1)
and the temperature 0" is taken to be uniform but not necessarily equal to 6;. Also, the
surface (x,=0) of the half space is free of surface tractions except at the point (x;=x,=0)
where the concentrated force is applied
t="T(r,0) [-e4(0)] =0 forr>0
T.9(r,0) =0 and Tgy(r,0)=0 for r>0 , (25.2a,b)
t=T(r,m) [eg(m)] =0 forr>0 ,
T o(r,r) =0 and Tyy(r,m) =0 for r>0 . (25.2¢,d)

Figure 25.2 shows a semi-circle of radius a centered at the concentrated line force P

(per unit length in the e5 direction). Since this semi-circle must be in equilibrium, the

surface traction t applied to the curved part of the semi-circle must balance the applied

force
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Fig. 25.2 Sketch of a semi-circle of radius a centered at the concentrated line force.

,[g t(a,0;e)ado+Pe, =0,
| z [T,.(2,0) e(0) + T o(a,0) e(0)] 2 d0 + P e, =0,

,[ z [{T,(a,0) cosO — T 4(a,0) sinO} e, + {T (a,0) sinO + T y(a,0) cosO} e,] a dod

+Pe,=0,
jg [T,(a,0) cos® — T g(a,0) sinb] ad6 =0 , (25.3a)
T
| [T,(2.0) sind + T,o(a,0) cos0] ad + P=0 . (25.3b)

Moreover, since these equations must be valid for any value of the radius a, they suggest
that the stress field should depend on (1/r). Thus, examination of the Michell solution
indicates that the simplest stress field which satisfies this condition as well as the
boundary conditions (25.2) is given by
2A,
T,=- [T] sind , Tgg=0, T,g=0, (25.4)

where A is a constant. It can easily be seen that this stress field satisfies the equations of

equilibrium (18.6) and the compatibility equations (18.7). Moreover, it can be seen that
this stress field satisfies the boundary conditions (25.3) provided that A is given by
A= o (25.5)

so the stress field becomes

147



2P
Tp=—[2;]sin0 , Tog=0, T;s=0 . (25.6)

1T

In order to determine the displacement field associated with the solution (25.6), use is

made of the constitutive equations (16.14) with the temperature set to the constant value

0]

v)P o
] sin® + (1+v)o(07-0;)

ﬂ . — = nFk Ak
€99 = [y ] 5100 + (14+V)0U61-6p) , €9 =0 . (25.7)
Next, integration of the strain-displacement relations (16.9) yields

(=P . RO
ur:—[ M\T/E ] In(r) sin® + (1+V)Ot(91—90)r +Jde_2 ’

ug=-— i [ V+ (1) In() ] cosb — f(0) + g(r) , (25.8)

where f(0) and g(r) are functions of integration. Moreover, substituting these results into

the expression (16.9) for the strain € 4 and use of (25.7) yields the equation

1 - d2f(e 1-2v)P d 1
;[éz—hrf(e)—%L cose]+[%9—; gr) ]=0. (25.9)

Thus, in view of the expressions (16.8) for rigid body displacements it follows that the

solution of (25.9) can be expressed in the form

1-2v)P
f(0) = ¢, sinb — ¢, cosO +£2—u:tL [ cosO+0sind |, gr)=—H,r, (25.10)

where ¢, and H,, are constants. Then, the displacements become

w4

. u In(r) sin® + (1+V)&(9T—98) r + ¢ cosb +c, sind

(1-2v)P
+ > 0 cosO ,
2um

1-2v)P
(d-2v)P [cosO + 0 sin0O]

P _ — )
Ug=-— un [ v+ (1-v) In(r)] cosO — ¢, sinO + ¢, cosO — 2un
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~Hy,r . (25.11)

Now, using the relations

X1 X2 )
r=\/x%+x2 , cosO = > sinf = > , 9=tan‘1[x—] ,  (25.12)

the rectangular Cartesian components of the stress tensor associated with the results

(25.6) and (25.11) become
T=T, (e®e)=T, [cos20 (e,®e;) + sin@ (e,®e,)

+5in6 cosO (e, e, + e,®e,)],

2 3
2P X1%p 2P %)
Ty =—-— Tyy=—— 25.13a,b
11 - [(x%-#x%)z] > 122 - [(x%-l-x%)z] > ( a,b)
2
2P X1%5
T,=— - 1, (25.13¢)

T (X%—i-x%)z
and those of the displacement vector become

u=u_ e +uyey=[u. cosO—ugsinO] e; + [u.sin0 + uy cosd] e, ,

T S

U= g Dang P20 @ CON (I)a® -6 xyt e +Hyp xp o (25.140)
X2

27 oun [X%JFX% (1=v) In(xyx)] + (1+V)a(0;-0) x5 T ¢ —Hyp xp . (25.14b)
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26. Hertz contact: Contact of an elastic cylinder with a smooth rigid half space

Rigid half space

Fig. 26.1 Sketch of an elastic cylinder in contact with a smooth rigid half space .

The objective of this section is to develop an approximate solution for contact of an
elastic cylinder with a smooth rigid half space [see section 12.2 in Barber, 1996]. The
undeformed radius of the cylinder is R and the half length of the deformed contact region

is ¢. Also, P is the magnitude of the line force (per unit length in the e5 direction) applied

by the half space on the cylinder over the contact region.

Deformed Undeformed Displacement
Cylinder Cylinder + Field u,(x;,0)

™~

Fig. 26.2 Sketch of the displacement field u,(x;,0) that must be applied to the cylinder.

Within the context of the linear theory of elasticity, the exact formulation of this problem
is as follows. Since the rigid half space is smooth, it can only apply a contact stress in the

positive e, direction. The distribution p(x;) of this stress must be determined so that the

displacement u, (in the e, direction) of cylinder causes the cylinder to remain in contact
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with the half space. Figure 26.2 shows a sketch of the displacement field u, that must be

applied to the cylinder to cause the contact region to become flat.

Moreover, even within the context of the linear theory of elasticity, the solution
becomes nonlinear because the extent of the contact region also needs to be determined.
For more general contact problems it is possible that the solution will predict that the
contact stress becomes negative over portions of the presumed contact region. For this
case, the actual solution must be reformulated to allow portions of the presumed contact

region to separate from the half space with no contact stress being applied there.

—

e A

-
€
P(Xl)

Fig. 26.3 Sketch of the line pressure distribution p(x;) applied to the contact region.

One of the major assumptions in the Hertz solution of this problem is that the contact
region is very small relative to the radius of the cylinder (c/R<<1). This means that the
curvature of the surface of the cylinder is negligible. Consequently, it is possible to

generalize Flamant's solution of section 25 to model the line pressure distribution p(x)
(per unit length in the e; direction) and the displacement field u,(x;,0) that must be

applied to the cylinder [see Fig. 26.3]. To this end, it is first recalled that the delta
function 6(x,—x) has the property that

pex) =1 peo) 30¢, %) dx (26.1)

for any continuous function p(x;) defined to be nonzero over the domain (—c < x; < ¢).

Therefore, it is possible to use the solutions (25.13) and (25.14) as the Green's function

for the solution of a distributed line load p(x;) applied to the surface x,=0 to obtain the

stress field
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(x 1—)()2x2

2 rc¢
T =-3 1 [peo { g 0
2 J'c X%
Typ(xyXp) == . p(x) [ {(XI_X)2+X%}2]dX ,
7 ¢ (x —x)x2
T =—5 [ peo [T, (262)

{003} ?

and the displacement field
(X;=X)X,

(o Ped)

X9

(x 1 —X)

(1-2v) tan~ 1 { } ] dx

ul(xl,xz) = 2—

= el

+(1+v)a(0,-8y) x;+ ¢ +Hyp x5

(x 1—X)2

Uy(XpXp) = =5 — " po [ +(1-v) In{(xx)>x3} ] dx

M —c {(x;%)%+x3}

+ (1+v)a(0]-0) Xy + ¢y — Hyp X; - (26.3)

Now, in the limit that x, approaches zero, it can be shown that

1 c 1—v c
U,(x1,0) = “un _[_c p(x) dx _%H;? j_c p(x) ln{(xl—x)z} dx +¢cy —Hyp xy . (264)

umn

If the contact pressure p(x) is a symmetric function

p(x)) =p(=xy) , (26.5)

then it can be shown that

ffc p(x) fx) dx = | ; p(x) f(x) dx + IOC p(x) f(x) dx |

Ifc p(x) fx) dx = | ; p(x) {f(x) + f(=x)} dx . (26.6)
Thus,

ffc p(x) In{(x; %)% dx= | (C) p(x) In{(x3-x2)2} dx . (26.7)
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Next, it is convenient to express the constant ¢, in terms of another constant C, and to

rewrite the expression for u,, such that

1 c !1—52 c
= oun P& dx + o J o P In{(c®>x?)?} dx +C,,

2~ oun
1= (X2—X2)2
uz(x1,0)=—£271?f p(x)ln{(; g Ot Hp X, (26.8)

It then can be seen that the displacement u, will correspond to symmetric deformation
provided that the constant H, associated with rigid body rotation vanishes

uy(—¢,0) =u,(c,0) = H{,=0. (26.9)
Then, the displacement u, reduces to

(2 2)2

uy(x,,0) = d-v) e p()ln{(é 2P} B Gy e 0) =Gy (26.10)

2un
where C, is the value of u, at the edges x;=+c of the contact region.

Given the displacement field u,(x;,0), equation (26.10) represents an integral
equation for determining the contact pressure p(x;). In order to solve this integral

equation it is convenient to differentiate it once with respect to x; to obtain

du,(x4,0) (1_\,) 2x4
e Jpeo T 3 dx (26.11)
However,
2X; 1 L1
X%_XZ XX Xytx
_ (% px)
IO X, +x .[_c XX dx , (26.12)
so that (26.11) can be written in the alternative form
du,(x;,0) 1-v) ¢ ¢

Xm MTC —C leX
Taking C, to be zero in (26.9b), the displacement u,(x,0) which is required to flatten

the portion of the cylinder is given by
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u2(X1,0):\/R2—X%—\/R2—C2 for-c<x;<c,

A=u,(0,0)=R — VR2-c2 |

(26.14)

where A is the displacement of the center of the cylinder if the cylinder is considered to

be rigid. Now, since the contact region is assumed to be small (c/R << 1), the

expressions (26.14) can be approximated by
1L 5 5 c?
u2(X190) = 2R (C - Xl) ’ A= UZ(O,O) = 2R °

so that the integral equation (26.13) simplifies to

It will now be shown that the solution of this equation takes the form

2P
p(xl) ZE\/cz—x% , for |X1\<c ,

where the coefficient was determined by satisfying the expression
C
P= J p(x) dx .
—C
In particular, with the help of (26.17) and the change of variables
X =ccosa, X;=ccosp ,
the integral equation (26.16) can be rewritten in the form

2P(1-v) I n  sinZa
unsc 0 cosP—cosa

c
R cosP} = a .

Moreover, it can be shown that

)
sinfo. d . B oa. .
—cosB—cosoc =~ o Re [ cosP + ln{sm(2 — 2)}smB

B

- ln{sin(2 + %)}sin[} + sina] ,

where Re[x] denotes the real part of x. Thus, using this result it follows that

j n sinZa

0 cosp—cosa do=m cosp ,
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(26.18)

(26.19)

(26.20)

(26.21)



2 2
c 2P X op
jo e, 2P dx==5 x, (26.22)
—C Xl_X TtC —C Xl_X C

and the equation (26.16) is satisfied provided that

, —
po—MTE oA ROV (26.23a,b)
2R(1-v) HT

In particular, note that the extent of the contact region c is a nonlinear function of the
force.

From a practical point of view, it is of interest to determine the relationship between
the total line force P applied in the contact region to the displacement A of the center of
the cylinder. To this end, (26.15) is used to rewrite (26.23a) in the form

p=—T A, (26.24)

(1-v)
which indicates that the line force P and the displacement A are linearly related.
Furthermore, it is of interest to note that in contrast with the result of this two-
dimensional problem, the three-dimensional problem of indentation of a sphere into a

half-space yields a nonlinear relationship between the applied force and the displacement.

P
R,
Ml D ;1
uz(xl)
<
€ — + RN
e
My .\ Vs
P

Fig. 26.4 Sketch of the two-dimensional Hertz problem.
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Next, consider the two-dimensional Hertz problem shown in Fig. 26.4 where two

elastic cylinders are pressed into contact by a line force P. One cylinder has material

constants p; and ;1 and undeformed radius R, whereas the other cylinder has material

constants p, and ;2 and undeformed radius R,. In general, the line of contact between
the two cylinders in the x;=0 plane is curved. Using the approximations of the previous

analysis, the cylindrical surfaces are approximated as parabolas and the pressure
distribution applied to the contact region is determined by the solution for a pressure
distribution on a flat half-space.

Specifically, the pressure distribution is taken in the form (26.17) which satisfies the
equation (26.18) and ensures that each of the cylinders is in equilibrium. Next, using the

approximation that the contact line is described by a parabola f(x)

b
flx))=5 (?—x9) , (26.25)
it follows that the magnitude of the displacement u, compressing the cylinder of radius

R, is given by

11
u=\/R%—X%—\/R%—cz+f(xl) <3[R+l (-x3) . (26.26)

Thus, replacing u, in (26.13) by the expression (26.26), replacing p, v by u, ;1,

respectively, and using (26.22), the kinematic contact condition reduces to

1 P(1-v,)) ;¢ \Jc2x2 2P(1-v))
R *Dx = ——>75 | dx=——5" x, . (26.27)
1 pymec - X=X pyme
which is satisfied provided that
M 1 2P
R tb=—. (26.28)
(1-v) me

Similarly, the magnitude of the displacement u, compressing the cylinder of radius

R, is given by

11
u=1/R3-x} -~ [R3 -~ f(x)) 3G b (-x3) . (26.29)
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Thus, replacing u, in (26.13) by the expression (26.29), replacing , v by L, ;2,

respectively, and using (26.22), the kinematic contact condition reduces to

1 2P(1-vy) ¢ ¢ A /cz—x% 2P(1-v,)
(—R -b)x; = 55 X dx = RS (26.30)
2 Hzﬂ: C —C 1 ].J,21IC

which is satisfied provided that

) 1 2P
— ({ -b=5. (26.31)
(1—V2) 2 TtC

The equations (26.28) and (26.31) represent two equations to determine the extent 2¢

and the shape b of the contact region. In particular, the solutions of these equations

yields the results that
29} g
L (1-v,)R,  (1-v))R,
Hq N Ho ’

(1-vp)  (1-vy)

2P M4 Ho
T (v (1-vy)

c= . (26.32)
Hp Ho 1 1

_l_
(19 (1-v,) N R,

Also, letting A, be the displacement (towards the contact surface) of the center of the
cylinder of radius Ry, and A, be the displacement (towards the contact surface) of the

center of the cylinder of radius R,, it can be shown that
[R2_ 2 c?
A =R;-1/Rf-c¢ zz—RI,
2
- [p2 2 .-
Ay =R, —[R5—c” ~ 2R, (26.33)
Thus, the relationship between the line force P and the total displacement A of the centers

of the cylinders
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A=A +A=F (5 +t35), 26.34
18 =7 (R1 R, (26.34)
can be written in the form
Hq Ho
n _ —
P vy vy A 26.35

— + —
(I-v)  (A-vy)

which again is a linear relationship.
It is interesting to note that if the two materials are identical then the expression b in

(26.32) reduces to

11 1
b=3G; "R - (26.36)

This means that the contact surface is such that the smaller cylinder penetrates the larger

cylinder. Moreover, if the cylinder of radius R, is rigid then p,=o and the expression

(26.32) reduces to
b= R (26.37)

as expected. Also, the contact surface will be flat (b=0) if

ot )

(26.38)
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27. Two-dimensional climb dislocation solution

Fig. 27.1 Sketch of the compressive stresses on the surfaces of a two-dimensional climb
dislocation.

Following the development in section 13.2 of Barber (1992), it is convenient to
consider the solution for a two-dimensional climb dislocation to develop the Green's
function for the solution of a two-dimensional crack considered in the next section.
Fig. 27.1 shows a sketch of the compressive stresses on the surfaces of a two-dimensional
climb dislocation which is modeled as a slit of constant thickness B. For this problem the
body force vanishes

b.=bg=0, (27.1)
and the temperature 0" is taken to be uniform but not necessarily equal to OS.

The solution of this problem is not only singular at the origin but it is not single
valued, since the stresses and displacements of the surface 6=0 are different from those of

the surface 0=2n. Specifically, consider the Michell solution of the form

bl bl bl
T ZTCOSG , TOGZTCOSB , TreszinO , (27.2)

IT
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where by is a constant to be determined. It can easily be seen that this stress field

satisfies the equations of equilibrium (18.6) and the compatibility equations (18.7).
In order to determine the displacement field associated with the solution (27.2), use is

made of the constitutive equations (16.14) with the temperature set to the constant value
k
91

(1-2v)b,
e [—] cosO + (1+v)a(91 90)

1T

(1 2v)b b

con = [ cosO + (14V)a(0°-0]) , e =5 sin0 . (27.3)

r@ 2u

Next, integration of the strain-displacement relations (16.9) yields

1-2v)b,
u, = [&] In(r) cosO + (1+\/)0L(61 60) r + %6@ ,
(1 2\/)b1
ug =[5 1[1—In(r)] sin® - f(0) + g(r) , (27.4)

where f(0) and g(r) are functions of integration. Moreover, substituting these results into

the expression (16.9) for the strain € 4 and using of (27.3) yields the equation

1 df0 2(1-v)b; d |
éz—) f(0) ~——— sin0] +[—%rQ —— g®]=0 . (27.5)

Thus, in view of the expressions (16.8) for rigid body displacements, it follows that the

solution of (27.4) can be expressed in the form

(1-v)b,

f(0) = ¢, sinO — ¢, cosO + (sin® — 0 cosB) , g(r)=—-H,r, (27.6)
where ¢, and Hy, are constants. Then, the displacements become

(1-2v)b, e
u = [T] In(r) cosO + (1+v)a(0;-0,) r +¢; cosO + ¢, sind

(1-v)b,

+[ 10 sin0 ,
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(1-2v)b, (1-v)b,
ug = [T] [1—In(r)] sin — ¢, sind + ¢, cosO —

(sin® — O cos0)

~Hppr . (27.7)
Next, the value of b; is determined by using this expression for ug to determine the

value B of the gap caused by the dislocation

2m(1-v)b,
d=e, * [u(r,0) —u(r,2m)] = uy(0) + ug(2m) = - T . (27.8)
Thus, a dislocation of strength d = B can be defined by taking
B
by=- ——, (27.9)
2n(1-v)

so that the displacement field becomes

1-2
u.=— [(—VL] In(r) cosO + (1+V)0L(91—90) r +¢q cosO + ¢, sind
4n(1-v)
B
— (%) 0 sin0 ,
1-2v)B
Ug=-— [L—VL] [1—In(r)] sin — ¢ sinO + ¢, cosO + (2—) (sin® — 0 cosO)
4m(1-v)
-Hpyr, (27.10)
and the stress field becomes
B B
T, =- [—H—_] cosO , Tyg=— [—”—_] cosO ,
2n(1-v)r 2n(1-v)r
B
Tyo=—[———]sin0 , 27.11)
2n(1-v)r

Now, using the relations

Xz
\/x +x2 , cosO = , sin@ = 0 = tan~! , 27.12
12 X%‘FX A / 2+X2 X1 ] ( )

the rectangular Cartesian components of the displacement vector associated with the
results (25.11) and (25.12) become

u=u e +ugey=(u. cosb—uqsinb) e, + (u. sinb +uy cosb) e, ,
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2

(1-2v)B B X2
u =- — ] In X%"'X%)—[ _](2+ 2)
4n(1-v) 4n(l-v) X17%2
+(1+v)a(0,-0y) x| +¢; + Hj, X, , (27.13a)
B 12 B X2
uy = —)( 2 2)‘%“111—1()(—)
4n(l-v) X17%2 1
+ (1+v)a(0]-0) X, + ¢y — Hyp X - (27.13b)

and those of the stress tensor become

T =T, (e®e)+ Tyqy (eg®ey) + T 4 (e,Beyte,Xe))
T =T, [cos?0 (e,®e,) + sin’0 (e,®e,) + sind cosd (e;®e, + e,®e,)]
+ T [sinZ0 (e,®e) + c0s20 (e,®e,) —sind cosO (e;®e, + €,&e,)]

+ T,p [2 sinO cosO (— e, ®e,+e,Be,) + (cos20 — sinze)(e1®e2+e2®el)] ,
B
T = [——7] cos0 [(1-2sin20)(e,®e,) + (1+2sin20)(e,®e,)
2n(1-v)r

+ (cos20-sin20)sind (e, ®e,te,®e)] ,

uB X| (x%—x%) uB X| (x%+3x%)

_ , Tor=— , 27.14
2n(1—V)] odagpl T2 [2n(1—v) (3P | (2714

T =

B ][Xz(X%—Xﬁ)]
om(l-v)  x{tx3)?

T, = (27.14b)

In particular, notice that the stress field is self equilibrating since the stresses vanish far

way from the dislocation.
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28. Two-dimensional crack in a tensile field

AARERARRY

)
a

SUMBLIE

———p

Tearant]

Fig. 28.1 Sketch of a two-dimensional crack subjected to far field tension T.

Following the development in section 13.3 of Barber (1992), it is convenient to use
the solution of section 27 as the Green's function for a two-dimensional crack subjected
to far field tension (Fig. 28.1). For this problem the body force vanishes

b.=bg=0, (28.1)

and the temperature 0" is taken to be uniform but not necessarily equal to 98.

The main idea is to consider the simple solution of uniaxial stress T in the e, direction

T =T;,=0, Ty=T,

_ VT T _
€1=-F -2 ~EF - 270,
vT T
U =—f X, W=gX, (28.2)

and to use superposition of the solution of section 27 to eliminate the tensions on the
crack surfaces.

Specifically, consider a distribution of dislocations B(x;) which model the crack

opening in the region —a < x; < a. Then, using (27.14) with x; replaced by (x;—x) and
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superposition of (28.2), the stress field associated with this distribution can be written in

the form

_ —x)2_
= _[—L]Ia B(x (Xl X)[(Xl x) x| dx , (28.3a)

(x=x)[(x l—x)2+3x%]

-1 - ——[" d 3b

T =T =[] I B0 = g s @83
N (i

Tt = - B e e, a8

2n(1-v)

where x denotes the location of the root of the dislocation of strength B(x). Similarly, the
displacement field associated with this distribution of dislocations can be obtained using

(27.13) and superposition of (28.2) to deduce that

_ 2
1-2 a _ X5
uy(x),x) = - [fn(—l_%] I_a B(x) [(1-2V) In(r | (x;=x)?+x3 } + (o oznal 1 &
VT e o
- E X1 +(1+v)a(0;-0p) x; + ¢ + Hyp X, , (28.4a)
1 a (X1=X)%, _ X
) = ] BT ) 2079 i ST s
+ % Xy + (1+V)o(0]-0p) X5 + ¢y —Hpp X (28.4b)

where the effects of temperature and rigid body displacements have been included.

Moreover, the solution (28.3) will correspond to a crack with stress-free surfaces if

u a B(x)
—a Xl_X

Ty (x1,0)=T —[ dx =0 for-a<x;<a. (28.5)

2n(1-v)
It will now be shown that the solution of this integral equation becomes

2n(1-v)TC X1
B(Xl) = [ TC( HV) ] = for —a< Xl <a, (286)
a —X1

where C is a constant to be determined. To this end, (28.6) is substituted into (28.5) to

obtain the equation
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a X
CI 0 dx=1 for —a<x,<a . (28.7

Next, it can be shown that

of(x,x)

X
— == = Re ,
(Xl_x)« , a2_x2 [ 0x ]
A fa2—x2 Xy PAY a2—x2A | az—x% + 2(aZ—X1X)
2

a
f(x,x;) =—tan1 { + In , (28.8
! a’—x : N az—x% { X (X1—X) az—x% b (385)

where Re[x] denote the real part of x and f(x,x,) is an auxiliary function. Then, the

integral in (28.7) can be written in the form

a X
I ——— dx=Re[f(a,x;) - f(-a,x;)] . 28.9
. (xl—x)\/m [f(a,x)) — f(-a,x))] (28.9)
To evaluate this expression, it is convenient to define an additional auxiliary function
g(Xaxl) = f(Xaxl) - f(_Xaxl) 5
X [ 22 x2 X 2\/a2—x2\ /az—x% + 2(a2—x1x)
gxx))=—-2tan "{— 5 5 }* > In{ > > }
a—Xx A\ /a X7 X (X=X /a"—X]
X 2\/a2—x2\ /az—x% + 2(a2+x1x)

— In . 28.10
A\ /az—x% { X (X Tx) az—x% } ( )

Now, it can easily be seen that in the limit as x approaches a from below

limit g(x,x;) =—m+h(x;) ,

X—a

X a

a
h = In{— —In{——F/—=}] . .
(xq) \/azfx%[n{ Xl@} ln{xl\/azfx%}] (28.11)

Thus, the integral (28.9) can be expressed in the form

» (x x))\(/az_xz o Re bl (28.12)
N~

Moreover, recalling that

In(x) =In(jx|) forx>0 , In(x)=1in+In(jx|) forx <0 ,

| .
=1, 7=, ln(i)z% ,1n(—i)=—% : (28.13)
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it can be shown that

F0r0<x1<a

lTEXI

h(x)) = \/ﬁ[anrln{ \/Tz —In{ \/TZ \/Tz’ (28.14a)

For—a<x1<0

X ITCXI

a
h(x)) = 1 {— ==} —-in]=- 28.14b
e e i

Fora<x1

IXI 1 i TCXl

1T a o a
h(x,)=— ~+tIn{—F/—}!+5 —1n = s 28.14c
= ez T T T e T e B3

Forxl <-—a

(s, = e [T Iy = - — (28.140)
X)== 55 -5 th{i——==}-5 -In =— . :
\/X%—az 2 |x | xl—a2 2 |x1|\/x%—a2 \/x%—az

It then follows that the integral (28.12) becomes

a X
[ —2— dx=—1n for x,| <a . 28.15a
—-a (Xl—x)\/az—x2 | 1| ( )
a |X |

J‘ia (Xl—x) ! __X dx=m [_ 1 +\/?2] for |X1| >q . (2815b)

Consequently, the constant C in (28.7) can be determined using the result (28.15a) to

obtain
C=——. (28.16)

Next, with the help of (28.3b), (28.6) and (28.16), the stress T,, ahead of the crack tip

can be expressed in the form
Ty 0) = T[1 45 | —2—— 4x] for [x,|> (28.17)
x1,0) = = x] for [x,|>a . :
22(X1, T a (x,-x) [:2-x2 1

Consequently, using (28.15b) this expression becomes
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T x|

1
Tyxp0) =—T5—
22331 X%_az

for [xq|>a . (28.18)
This solution is the basis for linear elastic fracture mechanics. In particular, it
indicates that the stress field is square root singular at the crack tip. Moreover, it is

convenient to define the stress intensity factor K; for this mode I crack by the expression

T [x;\x-a
K;= limit [T22(x1,0) Vx—a]= limit [—F/——— > ],
x;—a’ x;—>a" \/Xl_al

a
KI=T\[§ . (28.19)

Linear elastic fracture mechanics assumes that brittle materials have a material constant

K|, called the fracture toughness, which limits the value of K; for which the crack
remains stationary. In other words, when K| attains the critical value K;, then crack

propagation is initiated. Thus, when the far field tension T attains the critical value T,

2
T, =Ky, \/% : (28.20)

crack propagation begins. It is important to emphasize that larger cracks (larger values of
a) require less tension to propagate than smaller cracks.
Physically, it is also of interest to determine the crack opening displacement d defined

by (27.8). Specifically, using (28.4b) it follows that

d(x;) = uy(x1,07) —uy(x,07) ,

_1 2 . . . _1 XZ
doep=-l5 | B(X) [xl;fé tan”! (5 xlzlfétan (G oH dx

for x| <a . (28.21)

In order to determine the correct values of the inverse tangent function it is necessary to

separate the integral into two parts

d(x,) = f(z—)f 1B(x)[ limit tan~ 1{%} limit tan~!{ 1] dx

x2—>0 X,—>0" (er)
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)J B(x) [ limit tan™ 1{( )} — limit tanl{(xxix)}] dx
%1 x2—>0 X,—>0" 1

_(2

)= ) I By (0~ 2m) ax - ) [ B () dx

dxp) =] 2 B(x) dx = [ - dx. (28.22)

2

(1-W)T. (%,
. ]I_a —

Thus, evaluation of this integral yields the crack opening displacement

d(x,) = 2(1HV)T«/a <2 . (28.23)
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Appendix A: Eigenvalues, Eigenvectors, and Principal Invariants of a Tensor

In this appendix we briefly review some basic properties of eigenvalues and
eigenvectors. The vector v is said to be an eigenvector of a real second order symmetric
tensor T with the associated eigenvalue o if

Tv=cv, T.

iivi=ov; . (Alab)

J
It follows that the characteristic equation for determining the three values of the
eigenvalue o is given by

det(T-ol)=-c’+c?l;-c L, +1;=0, (A2)

where I;,1,,15 are the principal invariants of an arbitrary real tensor T

L(M=TI=trT=T, . (A3a)
1 1
LT =3 [(T* 2= (T T =5 (T~ Ty o] (A3b)
1

It can be shown that since T is a real symmetric tensor the three roots of the cubic
equation (A2) are real. Also, it can be shown that the three independent eigenvectors v
obtained by solving (A1) can be chosen to form an orthonormal set of vectors.
Recalling that T can be separated into its spherical part T I and its deviatoric part T'
such that
T=TI+T , T;=T Sij + Tij' , (Ada,b)

1
T=3(T+D) =3 (Tyy) » ToI=T, '=0, (Adc,d)

W | —

it follows that when v is an eigenvector of T it is also an eigenvector of T'
Tv=(T-TDv=(c-T)v=0c'v, (AS)
with the associated eigenvalue o' related to o by
c=0c+T. (A6)
However since the first principal invariant of T' vanishes we may write the characteristic

equation for ¢' in the form
62
[S
det (T'— ') =—(c")> + G'(? )+J3=0, (A7)
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where we have defined the alternative invariants 6, and J; by

3
o= ST T =-31(T), J;=det T'= (T . (A8a,b)

Note that if 6, vanishes then T' vanishes so that from (A7) ' vanishes and from (A6) it
follows that there is only one distinct eigenvalue

c=T. (A9)
On the other hand, if 6, does not vanish we may divide (A7) by (cse/3)3 to obtain

30')3 3¢ A
(G] —3((5)—2]3—0, (A10)

€ (S

where the invariant ?3 is defined by
A 2704
Jy= 5 02 . (A11)
Since (A10) is in the standard form for a cubic, the solution can be obtained easily using

the trigonometric form

sin3p=-1y , % <<y . (A12a)
ol Z%cos G +B) . (A12b)
GiZ%sin ®) . (A12¢)
052—%005 G P . (A12d)

where the eigenvalues 61,565,063 are ordered so that
G| =05)>03 . (A13)
Once these values have been determined the three values of ¢ may be calculated using
(A6).
A
Furthermore, we note that the value of B or J; may be used to identify three states of

deviatoric stress denoted by: triaxial compression (TXC); torsion (TOR); and triaxial

extension (TXE); and defined by
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B=7,1
6 Jy=—1, (TXC) ,

) (Alda)
B=0, J3=0, (TOR) , (
Al4b)
_ oA
B=—¢ . 3= 1, (TXE) .
(Aldc)
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HOMEWORK PROBLEM SETS
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PROBLEM SET 1
Problem 1.1 Expand the following equations for an index range of three:
(a) I=Cij XX (b) ¢=Ajj By » (© C=Aij Bij . (P1.1)
Problem 1.2 Verify the identities

Problem 1.3 Expand the relationship
t=T.n . (P1.3)

where t, are the components of the stress vector, Tij are the components of the stress

tensor and n; are the components of the unit outward normal.

Problem 1.4 Expand the equations of the balance of linear momentum

pui:pbi+Tij’j , (P1.4)

where u; are the components of the displacement vector, p is the mass density, b, are the
components of the body force, a superposed dot denotes partial differentiation with
respect to time t, and a comma denotes partial differentiation with respect to the position
Xi'
Problem 1.5

(a) Verify that

Xop: = O

b= (P1.5)

(b) Using the result of part (b), write a simplified indicial expression for (x; xi),j .

(c) Using the result of part (a), write a simplified indicial expression for (x; Xi)’jj .

Problem 1.6: Consider the equations

ij ij>mm mm’ij ¢

0. (P1.6a)

immj ejm,im -

For the special case when
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S =S >

613 =0 . eij,3 =0 , (P16b)
expand and simplify the expressions for R;; and R,, and show that the equation for R,

is automatically satisfied.

Problem 1.7 Leta; = (1,2,3) and b; = (3,2,1) be the components of the vectors a and b,

respectively. Also, let T be a second order tensor defined by
T=a®b . (P1.7)

Determine the components Tij of T.

Problem 1.8 Starting with the representations A = Aij ei®ej and B = Bij ei®ej, prove that

Problem 1.9 The magnitude of |T| of the second order tensor T is defined by
2 = [ =
T=T-*T T, Ty (P1.9)
Using the results of (P1.1¢) and (P1.8), show that this expression is positive definite (i.e.

it is positive whenever T is nonzero).

Problem 1.10 Let A be a second order tensor with components Aij which is represented
by

Show that the components Ag of AT are given by

A§ =AT. (e®e) =Aj; . (P1.10b)

Problem 1.11 Let T be the second order stress tensor with components Tij- Use indicial

notation and the result (2.18) to show that restriction associated with the balance of
angular momentum

e xTe=0, (P1.11a)

requires the stress tensor T to be symmetric.
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T — -
T =T, T;=T; . (P1.11b)
Problem 1.12 Let A and B be second order tensors with components Aij and Bij,
respectively. Using the representation

AB=A._B

im-mj

ei®ej , (P112a)
Prove that

(AB)T =BTAT | (P1.12b)

Problem 1.13 Let A and B be second order tensors with components Aij and Bij=
respectively, and let a and b be vectors with components a; and b;, respectively. Prove
that

Aa*Bb=a+ATBb . (P1.13)

Problem 1.14 Let T be a second order tensor with components Tij

123
T..:[4 5 6} , (P1.14)

T \73809
(a) Calculate the symmetric part T(ij) of Tij~

(b) Calculate the skew-symmetric part T[ij] of Tij-
(c) Calculate the spherical part T Bij of Tij-

(d) Calculate the deviatoric part Ti'j of Tij-

Problem 1.15 Let A be a symmetric second order tensor and B be a skew-symmetric
second order tensor

AT=A, BT=-B . (P1.15a,b)
Prove that a symmetric tensor is orthogonal to a skew-symmetric tensor

A*B=0 . (P.1.15¢)
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PROBLEM SET 2

\l\\\l

Lok

Fig. P.2.1 Sketch of a cantilever beam

L

Problem 2.1 Consider a rectangular cantilever beam of length L, height H, and depth W
which occupies the region of space such that

How_ W
2_X_2 .

H
OSXISL,—ESXZ_E,— (P2.1a)

Next, consider the displacement field u; associated with two-dimensional plane strain

deformation of the beam which is given by

\4 ¢ VvV — 3V
u == [{;,LHW} + V{4MHW}] Xy — (l_v){uH3W} {2LX1 - X%} X

—¢ VvV
{HH3W} { XZ - X%} + V{HH3W}X% 5 (P21b)

¢V \Y . V
L) __\/{4'41_[\)&/}’[‘+ [{MHW +V{4MHW}] X

+v{ H3W}(L x) x5 +(1-v){ H3W} {3Lx7 x3} , (P2.1c)

u; =0, (P2.1d)
where V is the shear force applied to the end x;=L, and p and v are constants. Show that

the strains €;; associated with this displacement field are given by

=—(1-v){ H3W} {L-x} %y, ey =v{ H3W}(L X)X, ,  (P2.1e)

e =1 H3W}{4 —x3} , ep3=ey=ey =0 . (P2.1g,h)
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Problem 2.2 The displacement field given in problem 2.1 approximates built-in end

conditions at x;=0 but it is not exact. In particular, the displacements u; and u, do not
vanish at x;=0. However, specific averages of these displacements do vanish at x;=0.

To see this, define the average displacement field w by the formula
1 J‘H/Z

WD =)

udx, . (P2.2a)

Calculate the value of w associated with the displacement field in Problem 2.1 and show

that it vanishes at the end x1=0

w(0)=0 . (P2.2b)

Problem 2.3  Similarly, define the director displacement & as the average gradient
through the thickness by

1 JH/Z 8u

1
H2ox, %27 H [u(x;,H/2) - u(x;~H/2)] . (P2.3a)

3(x)) =

Calculate the value of 8 associated with the displacement field in Problem 2.1 and show

that it vanishes at the end x,=0

5(0)=0 . (P2.3b)

Problem 2.4 Determine the terms in the displacement field in Problem 2.1 which are
associated with homogeneous deformation and explain the physical meaning of these

terms.

Problem 2.5: Recall from (3.16) that the strain E of a material fiber that was in the
direction S in the reference configuration is given by the formula

E=e*(S®S)= ;i S; Sj . (P2.5)
Consider material fibers which are in the direction S = e, along the axis of the beam, and

take V to be positive and v to be less than 1/2.
(a) Show that these fibers are contracted at the top surface of the beam (x,=H/2).
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(b) Show that these fibers are extended at the bottom surface of the beam (x,=—H/2).

(c) Show that these fibers are unstretched along the middle line of the beam (x,=0).

Problem 2.6 Recall from (3.21) that the reduction y in the angle between the two line

elements which were in the directions S(1) and S(?) in the reference configuration is given

by the formula
y=2e+ {SHRS@Y forsM 8@ =0 . (P2.6)
As a special case take
SD=¢e, ,S@=e, . (P2.6b)
(a) Show that the fibers located at the middle line of the beam (x,=0) are sheared relative
to each other since y is nonzero.

(b) Show that the value of y vanishes for fibers located at the top (x,=H/2) and bottom

(x,=—H/2) of the beam.

Problem 2.7 Consider material fibers located at the center line of the beam (x,=0).

(a) Show that the fiber in the

1
S= % (e; +e) , (P2.7a)
is extended.
(b) Also, show that the fiber
1
S = @ (—e e, (P2.7a)

1s contracted.

Problem 2.8: Calculate the volume change at points along the top of the beam (x,=H/2).
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PROBLEM SET 3

Problem 3.1 Starting with the constitutive equation (5.9a) for the Helmholtz free energy

rederive the expression (5.11) for its derivative.

Problem 3.2 Use the constitutive equations (6.22) for the stress Tij and the strain-

displacement relations (6.1), and show that balance of linear momentum (6.21d) can be

rewritten in terms of the displacements in the form

—3Kah,; . (P3.2)

Po Ui~ Po b + [K+ 3 ] Unpmi T H Wmm
Problem 3.3 Consider a rectangular cantilever beam of length L, height H, and depth W

which occupies the region of space such that

H_ _H W_ W
0<x;<L,-5< S <x3<5

SSXS5 - (P3.3a)

Let the beam be subjected to a body force g per unit mass in the negative e, direction and

consider the stress field

6
—{= Q}Xl Xy + {H3}x2, T, = {H(g}{ 4 —Xz}Xl , (P3.3b,¢)
6 8 H
Ty, = %[2 + g% - {E}x% 1+ poglx, +31-Q, (P3.3d)
T;3=Ty;=Ty3=0, Q= Q+Q—pygH, (P3.3e,f)

VAN —_
where p, is the mass density and {Q, Q} are constants.

(a) Show that this stress field satisfies the equilibrium equations.

(b) Show that the traction vector applied to the top surface (x,=H/2) of the beam is given

by

AN
=Qe, . (P3.3g)
(c) Show that the traction vector applied to the bottom surface (x,= —H/2) of the beam is

given by
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t=t=Qe, . (P3.3h)
(d) The resultant force F; applied to the end (x;=L) of the beam has a normal component
N; and a shear component Vy, such that
F; =N; e + Ve, , (P3.31)
Derive expressions for N; and V; .
(€) The resultant moment My applied to the end (x;=L) of the beam about the centroid of
the cross-section takes the form
M; =M e; . (P3.3))

Derive an expression for M; .

Problem 3.4

V|-

/Tl T, Vy

Fig. P3.4 Uniform loads on a rectangular parallelepiped.
The rectangular parallelepiped shown in Fig. P3.4 is subjected to uniform tractions in

the e;—e, plane on each of its faces AB, BC, CD, DA, which are characterized by the

constants
{ T, Ty, T3, Ty, V{, V,, V3, V). (P3.4)
(a) Determine expressions for the traction vectors t applied to each of these faces.

(b) Determine the values of the stress tensor TocB associated with these boundary

conditions on each of the faces.
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(c) Determine restrictions on the constants (P3.4) which ensure that the stress field is

uniform in the body.

Problem 3.5

For isothermal conditions (6=0), the constitutive equations for isotropic elastic

materials can be written in terms of Lame's constants A and p, such that

(a) Invert the constitutive equations (10.4) [with 6=0] to derive an expression for stress

as a function of strain.
(b) Compare your result in (a) with the expression (P3.5) to determine an expression for

Lame's constants A and p in terms of E and v.
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PROBLEM SET 4
Problem 4.1 For two dimensional deformations the displacements are given by
U = uy(X,Xy) 5 Uy T Uy(X,Xy) , u3=0 . (P4.1a)
Specifically, consider the strain field
e;1=AX5 , e =AX], €,=2Bx; X, , €3=0, (P4.1b)
where A and B are constants.
(a) Use the strain-displacement relations and integrate the strain e;; to derive an
expression for u;.
(b) Use the strain-displacement relations and integrate the strain e,, to derive an
expression for u,.
(c) Show that the expression for the strain e;, is incompatible with the strain-

displacement relations unless B=A.
(d) Show that the compatibility relations (3.58) will not be satisfied unless B=A.
(e) Set B=A and derive expressions for the functions of integration associated with parts

(a) and (b).

Problem 4.2
(a) Use the results in Table 9.1 and show that the constitutive equations (9.9) can be

written in the tensorial forms
1 v
(b) Invert these constitutive equations and use the results in Table 9.1 to show that

% I+v
Tij =2p [ Cij + {I—ZV} Cmm Bij ] —2u [1_2V]a(e_eo) 8ij ) (P4.2b)

E v E
Ty = [m] [ &+ {172\/} €mm Ojj 1- [172\,]0‘(9*9()) O - (P4.2¢)

Problem 4.3
Use superposition of the solutions (I) and (II) in sec. 14, and consider a cantilever

beam which is fixed at x;=0 and is loaded by a shear force V{ only at its end x;=L. Also,

neglect body forces. Determine expressions for:
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(a) the constants { Ny, Vi, My, ¢4, ¢y, 0}
(b) the stresses TaB and check that they satisfy the equilibrium equations

(c) the average displacement w,

Problem 4.4
For the Bernouilli-Euler beam theory, the equilibrium equations are given by (14.9),
(14.10), (14.12) and (14.13). In these equations Vv is a constraint-response (an arbitrary

function of x; which is determined by the equilibrium equations and the boundary

conditions and is the response to the constraint that shear deformation vanishes) and the

moment m is determined by the constitutive equation

dw, I_H3W
dx% 12

m = EI (P4.4a,b)

where I is the second moment of area for a rectangular cross-section, and w, is the

transverse displacement.

(a) Use the Bernouilli-Euler theory to calculate the displacement w,(x;) for the
cantilever beam described in Prob. 4.3.

(b) The solution in Prob. 4.3 does not restrict shear deformation and therefore is more
accurate than the solution obtained in part (a). Denote the solution in Prob. 4.3 by

wz(xl) and show that the relative error in the displacement associated with the

solution in part (a) at x,;=L and for plane stress is given by
(I+v )HZ
*
B wo(L)-wy(L) B 212

E - .
w W;(L) 1+ (I+v )Hz
212

(P4.4c)

It follows that the actual beam is more flexible than the constrained Bernouilli-Euler
beam. However, the error diminishes very rapidly as the beam becomes thin

(H/L<<1).
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Problem 4.5
Consider the problem of a cantilever rectangular beam in plane stress which is
subjected to a uniform normal load Q on its top surface, no load on its bottom surface,

and a shear force V; and moment M; at its end x;=L. Neglect body forces. Using

superposition of the solutions in sec. 14 determine expressions for:

(a) values of the constants {Ny;, Vi, My, ¢4, ¢y, i}
(b) the stresses TaB and check that they satisfy the equilibrium equations

(c) the average displacement w,

Problem 4.6
Consider a microbeam made of silicon which has length L=200um, height H=5um,
and depth W=20um. Also, using Table 6.1 the material properties become
E=70.1x 103 pN/um? , v=0.251,
p=2.5x10" ng/um? , op=72.0x 103 uN/pm? . (P4.62)
where o7 is the tensile strength.

The default dimensions and material properties in the Matlab program beam are those
associated with this microbeam and the default conditions are those of plane stress. Also,
the default loading is associated with traction free top and bottom surfaces and a shear
force

V(L)=20.0 uN , (P4.6b)
applied to the end of the beam, and the units are taken to be [um, uN, ng, ps].

(a) Determine the values of the components of the traction vectors applied to the top and
bottom surfaces of the beam which will cause the beam to be in a state of simple
homogeneous shear.

(b) Apply these loads to the beam and check your results by plotting various stress
components at various locations.

(c) Explain why the centerline of the beam is not horizontal.
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Problem 4.7

Consider the same microbeam as in Prob. 4.6 with the same shear force V| (P4.6b).
(a) Determine the value of the uniform normal surface traction t,(X,H/2) which must be

applied to the top surface of the beam in order for the moment diagram to be that
associated with pined-pined boundary conditions. Hint: Use notions of global
equilibrium.

(b) Apply this surface traction and check your results by plotting the moment and shear
diagrams of the beam.

(c) Plot the value of the normalized maximum tensile stress Smax/SigT (=c,,./01)
versus X and X, to determine approximately where the most critical point (X,X,) is

for tensile failure for this loading and its value there. Notice that this load is very far
from the failure load.

(d) Use the analytical solution of Prob. 4.4 with the value of V| given by (P4.6b) and the
value of t,(X;,H/2) determined in part (a) to determine the value of the moment M(L)
which must be applied to the beam in order for the end X ;=L to be clamped. Ignore
displacement of this end in the e; direction.

(e) Apply this moment to the beam and test your result by plotting the moment diagram.
Also, increase the scale factor Scale u to 50 to exaggerate the displacements of the

beam.
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PROBLEM SET 5
Problem 5.1
Using the solution of section 17 for Lame's problem, consider a semi-infinite region
with a cylindrical tunnel of radius a. The surface of this tunnel is taken to be stress-free
and the stress field at infinity is taken to be a hydrostatic pressure of magnitude P.
(a) Derive an expression for the magnitude of P (in terms of the yield strength Y) which

first causes yielding at the surface of the tunnel. Assume plane strain conditions and

reference temperature 9*=60.

(b) Determine the amount of collapse of radius of this tunnel for this value of pressure P.

Problem 5.2
For two dimensional problems in cylindrical polar coordinates the stress tensor T is

expressed in the form
T=T, (e®e) + T, (eReytes®e,) + Ty (eg®ey) + T35 (e3®e3) . (P5.2a)

Given the components of stress {T ., T,g, Tgg, T35} and using the fact that

show that
T +T T -T
00 00
Ty == + 5 cos(20)— T,y sin(20)
T -T
00
Tjy=—5  sin(20) + T, cos(20) .
T +T T -T
06 00 .
Ty, = = - rr2 cos(20) + T, sin(20) . (P5.2¢)
Problem 5.3

The solution in section 18 is valid for stresses applied at infinity. In order to estimate

the stress concentration associated with a circular hole of radius a in a plate of finite

thickness 2H (with HZa\/E), consider the case when the stresses T{7 and T55 are applied

(with T{7>0 and T{5=0).
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Fig. P.5.3 Uniaxial stress applied to a plate of finite thickness.

(a) Determine the value of T35 which will cause the traction vector to vanish on the
surfaces x,=+H at the point x,=0.

(b) Determine an expression for the maximum stress concentration factor (relative to the
magnitude of T{7) at the surface of the hole associated with this loading.

(c) Determine the numerical value of this maximum stress concentration factor for

H=a\/2.
It is important to emphasize that this solution is only approximate because the traction

vectors on the surfaces X,=%H do not vanish for all values of X1.

Problem 5.4
Use the Matlab program "kirsch" for the following problems:

(a) Determine the form for the stress tensor at infinity (T{7, T55, T{5) which cause

circular line elements to remain circular. Note that you can use Scale u to amplify

the effect of the displacements.
(b) Determine two sets of values of the far field stresses (T{7#0, T55#0, T{5=0) which
cause the same stress intensity factor as far field pure shear (T{7=0, T55=0, T 5=5>0).

(c) Check the results of your calculations in Problem 5.1.

(d) Check the results of your calculations in Problem 5.3c.
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PROBLEM SET 6

Problem 6.1
(a) Use the constitutive equations (6.22) for the heat flux vector and the internal energy,

and show that the balance of energy (6.21f) can be rewritten in the form

poC, 0+ 3Kaby e+ I=pyr+k V20 . (P6.1a)

In order to estimate the magnitude of each of the terms in this equation it is

convenient to consider the following special cases.

1

(b) For Hopkinson bar experiments the strain rate éll is about 1.0x10° s~!. Assuming

uniaxial strain (all other eij=0), calculate the magnitude of the temperature rate 0
associated with a pointwise adiabatic process (=0, q=0) with constant internal energy
for aluminum (see Table 6.1 for the material constants).

(c) If the time At of application of the strain rate in (b) is limited to 1.0x1070 s then the
strain will remain less that 0.1% which would ensure that the material remains elastic.
Show that the temperature change A0 associated with the solution in (b) is quite
small.

(d) Calculate the value of V20 assuming that the term associated with heat conduction in
(P6.1a) has the same magnitude as that associated with the strain rate.

(e) An estimate of the characteristic length A for wave propagation is the wave speed C
times the duration At. Consequently, the temperature change A6 associated with the

result in (d) is about A® = A2 V20. Using the formula

(P6.1b)

show that the value of AO associated with heat conduction is unrealistically large.

This means that during wave propagation there is not enough time for heat

conduction to be important so that the term « V20 is negligible in (P6.1a)
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Problem 6.2
An experimentalist is using uniaxial stress waves to measure Young's modulus in
steel. He measures the bar wave speed Cg to within 0.1% error. He asks you if it is
accurate enough to use the standard formula
E=p, C]% , (P6.2)
for isothermal response to determine E. You know that it is more accurate to assume that

wave propagation is an adiabatic process instead of an isothermal process. To answer his

question, use the material properties given in Table 6.1 to calculate the percentage error

in the isothermal value of E relative to the adiabatic value E given by (22.5).

Problem 6.3
Consider a rectangular parallelepiped which occupies the region of space defined by
L L L L W w

In the absence of body force (b;=0), free shearing vibration of the parallelepiped is
characterized by the displacement field
u; = A sin(ot) sin(kx;) cos(kx,) ,
u, =— A sin(wt) cos(kx,) sin(kx,) ,

u; =0, (P6.3b)
where A, ® and k are constants.
(a) Calculate the strain field €;j associated with this displacement field.
(b) Calculate the stress field Tij associated with this displacement field.

(c) Assuming an adiabatic process, determine the temperature field.
(d) Show that the stress field will satisfy the stress-free boundary conditions provided

that the wave number k is determined by the equation
2n—1
k=k = %ﬁ for n=1,23,... (P6.3¢)

(e) Show that the balance of linear momentum

Po U= Tij,j ) (P6.3d)
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is satisfied provided that the frequency ® of vibration is given by
— o =2C 2-c2=4
0 =0, k,, C-=Cg o’ (P6.3¢)
0

where C is the secondary (shear) wave speed Cq.

Problem 6.4

A cylindrical disk of radius R = 1 cm and thickness H = 1 cm is loaded in a dynamic
plate impact experiment. The particle velocity at the center (r=0) of one face of the disk
is measured using a velocity interferometer system. The data is analyzed assuming
uniaxial strain conditions exist along the symmetry axis of the cylindrical sample. This
assumption is valid only until stress relief waves propagate from the lateral surface of the
disk to its center. The time associated with this wave propagation process determines the
time window At for analyzing the data. Assuming that the disk is made of aluminum

(see Table 6.1), determine the value of At.
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PROBLEM SET 7
Problem 7.1
(a) Using the solution in section 23 for the bending moments M; and M; and taking

0=0,, determine the value of the bending moment M; which must be applied to the
edges x3=+W/2 in order for deformation of the plate due to the bending moment M5
to be independent of the x5 coordinate. This means that in order to bend the plate into
a right cylindrical surface (like a beam) it is necessary to apply both the moments M5
and M. This result is contrary to that associated with beam theory and it is due to the

Poisson effect.

(b) Show that for this case, the strain e is related to the stress T;; by the formula

(1-vHT,
ey="pFf - (P7.1a)
which is different from the expression for uniaxial stress
Ty
¢ =g > (P7.1b)
used in standard beam theory.
Problem 7.2
(a) Calculate the average displacements w; and rotations 9,
1 J‘H/Z
wi(X(,X3) = H' 1n U;(X(,Xy,X3) dXx,
1
8i(x1X3) = [u(xq,H/2,x5) — ui(x,-H/2,x5) ] (P7.2a)

associated with the pure bending solution (23.25).

(b) Within the context of plate theory, an approximate three-dimensional displacement

field u; can be defined using w; and J;, such that
(X [,X9,X3) = Wi(X1,X3) + X, 8i(X(,X3) . (P7.2b)

Derive expressions for the associated approximate strain field Eij
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S
elj = 5 (ui,j + uj’i) . (P720)
In particular, note that the shear strains ¢,, €3, €,3 vanish.
(c) Substitute these strains into the constitutive equation (P4.2¢) (with 6=0,)) to derive
explicit expressions for the approximate stresses Tij
T. = [i] [e. + {L} e 8 | (P7.2d)
y M+ 1 -2y’ “mm 7y 4> '
in terms of the moment M5. Specifically, show that

(1-v—v?) 12M;

Ti=- [(1+v)(1—2v) WH3] 2 (#7.2¢)
which is different from the exact result (23.5)
12M
3
1 - [WH3] Xy - (P72f)

This means that the kinematic approximation (P7.2b) is not consistent with the exact

solution. In particular, it is observed that e,, is nonzero in the exact solution but not

in the approximate solution.

Problem 7.3
A €
viD_ oD
L E.v®, o)
W | !
E. v(D, o
LY~ .
-~ H

Consider a composite plate made of three layers with a symmetrical arrangement. The

top and bottom layers are made of the same material with the material constants
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{E,v(D aDy (P7.32)
and the middle layer is made of a different material with material constants

{E,v@ ., a@3 (P7.3b)
Each layer has length L in the e, direction, thickness H in the e, direction, and depth W

in the e; direction. Also, the origin of the axes is taken in the center of the middle plate.

Assume that the plates are bonded perfectly, that all three plates are heated to the same

uniform temperature 6 > 0, and that the top and bottom surfaces (x,=+3H/2) are stress
free and the edges (x;=tL/2, and x;=tW/2) are free from resultant forces and moments.

(a) Write expressions for the pointwise boundary conditions on the top and bottom
surfaces of the composite plate.

(b) Write expressions for the pointwise boundary conditions at the interfaces of the
middle plate.

For the following two questions assume that the deformation in each plate is

homogeneous and that the top and bottom plates have the same state of stress.

(c) Write expressions for the integral boundary conditions on the edges of the composite
plate.

(d) Consider a simple solution where all shear stresses and strains vanish, and determine
the stress T(1) and strain e(!) fields in the top and bottom plates and the stress T(2) and

strain e(2) fields in the middle plate.
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PROBLEM SET 8

lP
OHONO©)

1

Fig. 8.1 Sketch of two plates separated by cylindrical roller bearings.

Problem 8.1

Figure 8.1 shows a sketch of two rigid plates that are separated by five elastic

cylindrical roller bearings. Each of the cylinders has undeformed radius R. Assume plane

strain conditions and reference temperature 9*290.

(a) Assuming that a line force P (force per unit depth of the plate) is applied, determine
the total contact region (area per unit depth) of all five cylinders associated with the

top plate.
(b) Also, determine the gap between the plates in their loaded state.

Problem 8.2

One technique used to stimulate the production of oil from an oil well is called
hydrofracture. This technique pumps fluid into the borehole at high pressure to cause a
fracture to propagate from the borehole into the oil saturated rock. The simplest model
for this process considers the in-situ stresses at a particular depth of the borehole to be
equivalent to a hydrostatic pressure p;,. Assume plane strain conditions and reference
temperature 6*260.

(a) Using superposition of a uniform stress field (T,,#0, T,,#0, T,,=0) and the solution

in section 27, determine the values of these uniform stresses which cause the

combined solution to correspond to a hydrofracture with internal fluid pressure p at

the depth with far field in-situ hydrostatic stress p;,.
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(b) Determine the value of the stress intensity factor for a fracture of half length a in this
situation.

(c) Assuming that the rock has a fracture toughness K; ., determine the minimum value of
the borehole pressure p which will cause the fracture to begin to propagate.

(d) Sometimes during the hydrofracture process, small particles (called proppants) are
mixed with the fluid to attempt to keep the fracture propped open when the pressure
is released. In order to estimate the maximum allowable size of particles, determine

the maximum value of the fracture opening during this hydrofracture process.
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