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1. Introduction 

 Many modern machines, fixtures and structures are designed to maintain extremely 

accurate tolerances.  For example, machines that cut silicon wafers for the 

microelectronics industry have to be designed to maintain tolerances to within a few 

microns (10–6 m).  Consequently, even small temperature changes can cause thermal 

distortions which are unacceptably large.  Also, many microchips are layered structures 

manufactured using different materials for each layer.  Thus, residual stresses, thermal 

stresses, and stress concentrations can be formed either during the manufacturing process 

when materials shrink at different rates or during cooling and heating cycles associated 

with normal usage.  Such inhomogeneities in stress can lead to shortened fatigue life and 

premature failure. 

 The main objective of this course in applied thermoelasticity is to present the general 

theory of a thermoelastic material within the context of small strains and small 

temperature variations. Due to their general nature, the basic balance laws apply to a 

number of physical phenomena which include: purely mechanical response at constant 

temperature; purely thermal response at constant deformation; coupled thermomechanical 

response; and static and dynamic response. 

 The word applied in the title of this course is used to indicate that special emphasis 

will be placed on more practical aspects of the theoretical material.  Even though the 

theory presented here is a linear theory, solutions of the partial differential equations for 

realistic practical problems are often too complicated to obtain analytically.  Therefore, 

commercial computer numerical codes are usually used in industry to obtain numerical 

solutions.  However, it is well known that the computer will only solve the problem that 

the user formulates.  Consequently, special emphasis will be placed in this course on the 

proper formulation of thermoelastic boundary values problems.  In particular, a number 

of simple analytical examples will be solved and analyzed to expose the main physical 

phenomena that can occur in thermoelastic materials.  
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2. Indicial notation and basic tensor operations 

 When an engineer aligns a complicated machine with very high precision, or when an 

experimentalist attempts to make a precise measurement of some physical phenomena, or 

when a theoretician attempts to formulate and solve a complicated problem, it is 

extremely important to use the proper tools.  In mechanics, mathematical equations are 

developed to predict the response of materials to mechanical and thermal loads. It is well 

known from the study of statics and dynamics that there are a number of arbitrary choices 

made by the engineer to formulate a particular problem.  For example, the choice of the 

origin of the coordinate system and the type of coordinates used are arbitrary choices.  On 

the other hand, it is also well known that the physical response of a material cannot 

depend in any way on arbitrary mathematical choices.  For this reason, it is essential to 

use mathematical tools that automatically incorporate this physical fact.  In mechanics, 

these mathematical tools are called tensors.  For convenience, this section reviews 

indicial notation and some basic tensor operations which will be used throughout the 

course. 

 In this text, attention will be confined to Euclidean three-dimensional space.  In its 

printed form a vector will be denoted as a bold faced symbol like a, whereas in its written 

form on the board, the same vector will be denoted by a symbol with  a wavy line under 

the symbol like 
~

 
a.  Similarly, a second or higher order tensor will be denoted as a bold 

faced symbol like A, whereas in its written form on the board, the same tensor will be 

denoted by a symbol with  a wavy line under the symbol like 
~

 
A.  

 

BASE  VECTORS  OF  A  RECTANGULAR  CARTESIAN  COORDINATE  

SYSTEM 

 An arbitrary vector in three-dimensional space case be written as a linear combination 

of any three linearly independent vectors.  As a special simple case, the base vectors {e1, 

e2, e3} of a rectangular Cartesian coordinate system are taken to be constant orthonormal 

vectors which form a right-handed system.  The notions of linear independence and right-

handedness can be written in the mathematical form 
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  e1  e2 • e3 > 0  , (2.1) 

where • denotes the usual scalar dot product operation and  denotes the usual cross 

product operation between two vectors.  Also, the notion that these base vectors are 

orthonormal vectors indicates that they satisfy the restrictions 

  e1 • e1 = 1  ,   e1 • e2 = 0  ,   e1 • e3 = 0  ,  

  e2 • e1 = 0  ,   e2 • e2 = 1  ,   e2 • e3 = 0  ,  

  e3 • e1 = 0  ,   e3 • e2 = 0  ,   e3 • e3 = 1  . (2.2) 

Moreover, it follows that these base vectors satisfy the additional equations 

  e1  e2 = e3  ,   e3  e1 = e2  ,   e2  e3 = e1  . (2.3) 

 

COMPONENTS  OF  A  VECTOR 

 The components {a1, a2, a3} of a general vector a can be used together with the base 

vectors {e1, e2, e3} to express a in the form 

  a = a1 e1 + a2 e2 + a3 e3  . (2.4) 

Now, using the dot product it follows that the components {a1, a2, a3} of a are the 

projections of a in the directions of the base vectors 

  a1 = a • e1  ,   a2 = a • e2  ,   a3 = a • e3  . (2.5)  

 

INDICIAL  NOTATION 

 Often, it is convenient to use a short hand notation called indicial notation to write the 

components of vector quantities.  Quantities written in indicial notation will have a finite 

number of indices attached to them.  Since the number of indices can be zero a quantity 

with no index can also be considered to be written in index notation.  The language of 

indicial notation is quite simple because only two types of indices can appear in any term.  

The index is either a free index or it is a repeated index.  Also, a simple summation 

convention will be defined which applies only to repeated indices.  These two types of 

indices and the summation convention are defined as follows. 
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 Free Indices: Indices that appear only once in a given term are known as free indices.  

For our purposes, each of these free indices will take the values (1,2,3).  For example, i is 

a free index in each of the following expressions 

  (x1 , x2 , x3 ) = xi   (i=1,2,3)  , (2.6a) 

  (e1 , e2 , e3 ) = ei   (i=1,2,3)  .             (2.6b) 

Notice that the free index i in (2.6) refers to the group of three quantities defined by i 

taking the values 1,2,3. 

 Repeated Indices: Indices that appear twice in a given term are known as repeated 

indices.  For example i and j are repeated indices in the following expressions 

  xi ei  ,   aj ej  ,   ai bi  .      (2.7) 

It is important to emphasize that in the language of indicial notation an index can never 

appear more than twice in any term.   Also, the notion of a term is each group of symbols 

which are separated by a plus sign, a minus sign or an equals sign. 

 Einstein Summation Convention: When an index appears as a repeated index in a 

term, that index is understood to take on the values (1,2,3) and the resulting terms are 

summed.  Thus, for examples, the vectors x and a can be expressed in the forms 

  x = xi ei = x1 e1 + x2 e2 + x3 e3  , (2.8a) 

  a = aj ej = a1 e1 + a2 e2 + a3 e3  , (2.8b) 

Because of this summation convention, repeated indices are also known as dummy 

indices since their replacement by any other letter, not appearing as a free index and also 

not appearing as another repeated index, does not change the meaning of the term in 

which they occur.  For examples, 

  xi ei = xj ej  ,   ai bi = aj bj  . (2.9) 

It is important to emphasize that the same free indices must appear in each term in an 

equation so that, for example, the vector equation 

  c = a + b  , (2.10) 

can be written in index form in terms of the components of a,b,c as 

  ci = ai + bi  . (2.11) 

 Kronecker Delta: The Kronecker delta symbol ij is defined by 
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  ij = ei • ej = 


 1  if i = j

 0  if i ≠ j
  . (2.12) 

Since the Kronecker delta ij vanishes unless i=j it exhibits the following exchange 

property 

  ij xj = ( 1j xj , 2j xj , 3j xj ) = ( x1 , x2 , x3 ) = xi  . (2.13) 

Notice that the Kronecker symbol can be removed by replacing the repeated index j in 

(2.13) by the free index i.   

 Recalling that an arbitrary vector a in Euclidean 3-Space can be expressed as a linear 

combination of the base vectors ei such that 

  a = ai ei  , (2.14) 

it follows that the components ai of a can be calculated using the Kronecker delta 

  ai = ei • a = ei • (am em) = (ei • em) am = im am = ai   . (2.15) 

Notice that when the expression (2.14) for a was substituted into (2.15) it was necessary 

to change the repeated index i in (2.15) to another letter (m) because the letter i already 

appeared in (2.15) as a free index.  It also follows that the Kronecker delta can be used to 

calculate the dot product between two vectors a and b with components ai and bi, 

respectively, by 

  a • b = (ai ei) • (bj ej) = ai (ei • ej) bj = ai ij bj = ai bi  . (2.16) 

 Permutation symbol: The permutation symbol ijk is defined by 

ijk = ei  ej • ek = 




 

 1  if (i,j,k) are an even permutation of (1,2,3)

1  if (i,j,k) are an odd permutation of (1,2,3)

 0  if at least two of (i,j,k) have the same value
         (2.17) 

From the definition (2.17), it appears that the permutation symbol can be used in 

calculating the vector product between two vectors.  In particular, it can be shown that 

  ei  ej = ijk ek .  (2.18) 

Now, using (2.18) it follows that the vector product between the vectors a and b can be 

represented in the form 

  a  b = (ai ei)  (bj ej) = (ei  ej) ai bj = ijk ai bj ek  . (2.19) 
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 Contraction: Contraction is the process of identifying two free indices in a given 

expression together with the implied summation convention.  For example, it is possible 

to contract on the free indices i,j in ij to obtain 

  ii = 11 + 22 + 33 = 3  .    (2.20) 

Note that contraction on the set of 9=32 quantities Tij can be performed by multiplying 

Tij by ij to obtain 

  Tij ij = Tii  . (2.21) 

HIGHER  ORDER  TENSORS 

 A scalar is sometimes referred to as a zero order tensor and a vector is sometimes 

referred to as a first order tensor.  Here, higher order tensors are defined deductively 

starting with the notion of a first order tensor or vector. 

 A second order tensor:  The quantity T is called a second order tensor if it is a linear 

operator whose domain is the space of all vectors v and whose range Tv or vT is a vector.  

For example, if T is the stress tensor and n is the unit outward normal to a surface of a 

body, then the traction vector t is given by 

  t = T n  . (2.22) 

 A third order tensor:  The quantity T is called a third order tensor if it is a linear 

operator whose domain is the space of all vectors v and whose range Tv or vT is a second 

order tensor. 

 A fourth order tensor:  The quantity T is called a fourth order tensor if it is a linear 

operator whose domain is the space of all vectors v and whose range Tv or vT is a third 

order tensor. 

 Addition and Subtraction:  The usual rules of addition and subtraction of two tensors 

A and B apply when the two tensors have the same order.  It should be emphasized that 

tensors of different orders cannot be added or subtracted.   

TENSOR  PRODUCT 

 The tensor product operation is denoted by the symbol  and it is defined so that the 

tensor product a1a2 is a special second order tensor having the following properties 

  (a1a2) b1 = a1 (a2 • b1)  ,   b1 (a1a2) = (b1 • a1) a2  , (2.23)  
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where ai and bi are vectors.  The tensor product operation can be used to form a string of 

more than two vectors that also becomes a tensor.  For example, tensor product 

a1a2a3 is a special third order tensor having the following properties 

  (a1a2a3) b1 = (a1a2) (a3 • b1)  ,    

  b1 (a1a2a3) = (b1 • a1) (a2a3) . (2.24) 

 Dot Product (Special Case):  The dot product operation between two vectors can be 

generalized to an operation between any two tensors (including higher order tensors).  

For example the dot product of two second order tensors becomes a scalar 

  (a1a2) • (b1b2) = (a1 • b1) (a2 • b2)  ,  

  (b1b2) • (a1a2) = (b1 • a1) (b2 • a2)  , (2.25) 

the dot product of a third order tensor with a second order tensor becomes a vector 

  (a1a2a3) • (b1b2) = a1 (a2 • b1) (a3 • b2)  , 

  (b1b2) • (a1a2a3)  = (a1 • b1) (a2 • b2) a3  , (2.26) 

the dot product of a third order tensor with a third order tensor becomes a scalar 

  (a1a2a3) • (b1b2b3) = (a1 • b1) (a2 • b2) (a3 • b3)  , 

  (b1b2b3) • (a1a2a3)  = (a1 • b1) (a2 • b2) (a3 • b3)  , (2.27) 

the dot product of a fourth order tensor with a second order tensor becomes a second 

order tensor 

  (a1a2a3a4) • (b1b2) = (a1a2) (a3 • b1) (a4 • b2)  , 

  (b1b2) • (a1a2a3a4) = (a1 • b1) (a2 • b2) (a3a4)  , (2.28) 

and the dot product of a fourth order tensor with a fourth order tensor becomes a scalar 

  (a1a2a3a4) • (b1b2b3b4) = (a1 • b1) (a2 • b2) (a3 • b3) (a4 • b4)  , 

    (b1b2b3b4) • (a1a2a3a4) = (a1 • b1) (a2 • b2) (a3 • b3) (a4 • b4) . (2.29) 

In particular, notice from (2.25), (2.27) and (2.29), that the dot product of a tensor with 

another tensor of the same order is commutative, whereas from (2.26) and (2.28) it can be 

seen that the dot product of a tensor with another tensor of different order is not 

commutative. 
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 Cross Product (Special Case):  The cross product of a second order tensor with a 

vector becomes a second order tensor 

  (a1a2)  b1 = a1(a2b1)  , 

  b1  (a1a2) = (b1a1)a2  , (2.30) 

the cross product of a second order tensor with another second order tensor becomes a 

second order tensor 

  (a1a2)  (b1b2) = (a1b1)(a2b2)  , 

  (b1b2)  (a1a2) = (b1a1)(b2a2)  , (2.31) 

the cross product of a third order tensor with a second order tensor becomes a third order 

tensor 

  (a1a2a3)  (b1b2) = a1(a2b1)(a3b2)  , 

  (b1b2)  (a1a2a3) = (b1a1)(b2a2)a3  , (2.32) 

and the cross product of a third order tensor with another third order tensor becomes a 

third order tensor 

  (a1a2a3)  (b1b2b3) = (a1b1)(a2b2)(a3b3)  , 

  (b1b2b3)  (a1a2a3) = (b1a1)(b2a2)(b3a3)  . (2.33) 

  Juxtaposition (Special Case):  The operation of juxtaposition of a second order tensor 

with another second order tensor is a second order tensor (2=2+2–2) 

  (a1a2) (b1b2) = (a2 • b1) (a1b2)  , 

  (b1b2) (a1a2) = (b2 • a1) (b1a2)  , (2.34) 

and the juxtaposition of a third order tensor with a second order tensor is a third order 

tensor (3=3+2–2) 

  (a1a2a3) (b1b2) = (a3 • b1) (a1a2b2)  , 

  (b1b2) (a1a2a3) = (b2 • a1) (b1a2a3)  . (2.35) 

 Transpose (Special Case):  The left transpose operation is denoted by a superscript 

LT on the left-hand side of the tensor, such that the left transpose of a second order tensor 

is defined by 

  LT(a1a2) = (a2a1)  , (2.36) 
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the left transpose of a third order tensor is defined by 

  LT(a1a2a3) = (a2a1)a3  ,  (2.37) 

and the left transpose of a fourth order tensor is defined by 

  LT(a1a2a3a4) = (a2a1)(a3a4)  , (2.38) 

Similarly, the right transpose operation is denoted by a superscript T on the right-hand 

side of the tensor, such that the right transpose of a second order tensor is defined by 

  (a1a2)T = (a2a1)   , (2.39) 

the right transpose of a third order tensor is defined by 

  (a1a2a3)T = a1(a3a2)   , (2.40) 

and the right transpose of a fourth order tensor is defined by 

  (a1a2a3a4)T = (a1a2)(a4a3)   . (2.41) 

 In particular, notice that the transpose operations change the order of the two vectors 

closest to the side of operation of the operator.  In discussing the strain energy of an 

elastic material it is necessary to consider higher order symmetry of the elastic moduli. 

Specifically, it is convenient to introduce higher order transpose operators like LT(2) and 

T(2) which interchange groups of two vectors, such that the second order left transpose 

LT(2) of a fourth order tensor is defined by 

  LT(2)(a1a2a3a4) = (a3a4)(a1a2)  , (2.42) 

and the second order left transpose LT(2) of a fifth order tensor is defined by 

  LT(2)(a1a2a3a4a5) = (a3a4)(a1a2)a5  . (2.43) 

Similarly, the second order right transpose T(2) of a fourth order tensor is defined by 

  (a1a2a3a4)T(2) = (a3a4)(a1a2)  , (2.44) 

and the second order right transpose T(2) of a fifth order tensor is defined by 

  (a1a2a3a4a5)T(2) = a1(a4a5)(a2a3)  . (2.45) 

From these examples, it can be seen that the second order left transpose operator LT(2) 

considers the first four vectors in the tensor string on the left-hand side of the tensor as 

two groups of two vectors.  The order of the two vectors in each of these groups remains 

unchanged but the order of the groups is reversed.  Similarly, the second order right 
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transpose operator T(2) considers the first four vectors in the tensor string on the right-

hand side of the tensor as two groups of two vectors.  Again, the order of the two vectors 

in each of these groups remains unchanged but the order of the groups is reversed.  Since 

these operators are applied to tensor products of at least four vectors, they can be applied 

only to tensors which are fourth order or higher. 

BASE  TENSORS  AND  COMPONENTS  OF  HIGHER  ORDER  TENSORS 

 The space of second order tensors is spanned by the 9 (=32) base tensors (eiej), such 

that an arbitrary second order tensor T can be expressed in the form 

  T = Tij (eiej)  , (2.46) 

where Tij are the 9 (=32) components of T with respect to the rectangular Cartesian base 

vectors ei.  This equation is a natural generalization of the representation (2.14) for a 

vector.  Similarly, the equation (2.15) for calculating the components of a vector can be 

generalized to a second order tensor, such that 

  Tij = T • (eiej)  . (2.47) 

It then follows by deduction, that (eiejem) are the 21 (=33) base tensors of an arbitrary 

third order tensor T which has 21 (=33) components Tijm, such that 

  T = Tijm (eiejem)   ,   Tijm = T • (eiejem)  . (2.48) 

Also, (eiejemen) are the 81 (=34) base tensors of an arbitrary fourth order tensor T 

which has 81 (=34) components Tijmn, such that 

  T = Tijmn (eiejemen)   ,   Tijmn = T • (eiejemen)  . (2.49) 

 From the representation (2.46), it can be seen that a general second order tensor has 9 

independent components. Consequently, the second order tensor ab, which is 

determined by the tensor product of two vectors a and b, is only a special case of a 

second order tensor.  Specifically, since each of the vectors a and b has only three 

independent components, the tensor ab has only 6 independent components  

  T = ab  ,   Tij = T • (eiej) = ai bj  , (2.50) 

instead of nine components of a general tensor 
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 Given the definitions (2.46)-(2.49), it should be emphasized that when the tensor is 

written in direct notion T it can describe a physical quantity, which by definition, should 

be independent of the arbitrary choice of coordinates.  However, the components Tij, Tijm 

and Tijmn are explicitly dependent on the orientation of the chosen base vectors ei.  For 

this reason, tensors are the proper mathematical entities to formulate mathematical 

equations for physical laws. 

 Moreover, in the expressions (2.46)-(2.49), the components of a tensor are treated as 

scalars and the base tensors are strings of vectors.  Therefore, all of the tensor operations 

defined above for the special case of a string of tensor products of vectors, apply to the 

base tensors and thus also apply to the general tensors.  For example, the transpose of the 

second order tensor T takes the form 

  T = Tij eiej  ,   T
T = Tij (eiej)

T =  Tij  ejei  . (2.51a,b) 

Also, it can be shown that for a general second order tensor T and a general vector v, that 

  T v = v TT  ,    Tij vj = vj Tij   . (2.52a,b) 

Furthermore, given the vectors a and b and the second order tensors A and B, it can be 

shown that 

  Aa • Bb = a • ATBb = ATB • (ab)  = Aim am Bin bn  . (2.53) 

ADDITIONAL  DEFINITIONS  AND  RESULTS 

 In order to better understand the definition of juxtaposition and in order to connect 

this definition with the usual rules for matrix multiplication, let A, B, C be second order 

tensors with components Aij, Bij, Cij, respectively, and define C by 

  C = AB  .           (2.54) 

Using the representation (2.46) for each of these tensors, it follows that 

 C = Aij eiej Bmn emen = Aij Bmn (ej • em) eien = Aim Bmn eien  ,    (2.55a) 

  Cij = C • eiej = Arm Bmn (eren) • (eiej) = Aim Bmj  . (2.55b) 

Examination of the result (2.55b) indicates that the second index of A is summed with the 

first index of B, which is consistent with the usual operation of row times column 

inherent in the definition of matrix multiplication. 
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 Symmetric  Tensor:  The second order tensor T, with the 9=32 components Tij 

referred to the base vectors ei, is said to be symmetric if 

  T = TT  ,  Tij = Tji  .            (2.56a,b) 

Since this equations imposes three restrictions on T, it follows that there are only six 

independent components of a symmetric tensor.  Moreover, using (2.52) it can be shown 

that if T is symmetric and v is an arbitrary vector with components vi, then  

  T v =  v T  ,   Tij vj =  vj Tji  . (2.57a,b) 

 Skew-Symmetric Tensor:  The second order tensor T, with the 9=32 components Tij 

referred to the base vectors ei, is said to be skew-symmetric if 

  T = – TT  ,   Tij =  – Tji  . (2.58a,b) 

Since this equations imposes six restrictions on T, it follows that there are only three 

independent components of a skew-symmetric tensor. In particular, the diagonal 

components of T vanish. Moreover, using (2.52) it can be shown that if T is skew-

symmetric and v is an arbitrary vector with components vi, then 

  T v = – v T  ,   Tij vj = – vj Tji  .           (2.59a,b) 

 Using these definitions, it can be observed that an arbitrary second order tensor T, 

with components Tij, can be separated uniquely into its symmetric part denoted by Tsym, 

with components T(ij), and its skew-symmetric part denoted by Tskew, with components 

T[ij], such that 

  T = Tsym + Tskew  ,  Tij = T(ij) + T[ij]  , (2.60a,b) 

  Tsym = 
1

2
 (T + TT)  = Tsym

T    ,  T(ij) = 
1

2
 (Tij + Tji)  = T(ji)  ,  (2.60c,d) 

  Tskew = 
1

2
 (T  – TT)  = – Tskew

T    ,    T[ij] = 
1

2
 (Tij – Tji)  = – T[ji]  . (2.60e,f) 

 Trace:  The trace operation is defined as the dot product of an arbitrary second order 

tensor T with the second order identity tensor I.  Letting Tij be the components of T it 

follows that 

  T • I = Tij (ei  ej) • (em  em) = Tij (ei • em)(ej • em) = Tij im jm  , (2.61a) 
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  T • I = Tij ij = Tjj  .     (2.61b) 

 Deviatoric Tensor:  The second order tensor T, with the 9=32 components Tij referred 

to the base vectors ei, is said to be deviatoric if 

  T • I = 0  ,  Tmm = 0   .            (2.62a,b) 

 Spherical and Deviatoric Parts:  Using these definitions it can be observed that an 

arbitrary second order tensor T, with components Tij, can be separated uniquely into its 

spherical part denoted by T I, with components T ij, and its deviatoric part denoted by 

T', with components Tij' , such that 

  T = T I + T'  ,   Tij = T ij + Tij'  , (2.63a,b) 

  T' • I = 0  ,   Tmm'  = 0  .          (2.63c,d) 

Taking the dot product of (2.63a) with the second order identity I, it can be shown that T 

is the mean value of the diagonal terms of T 

  T = 
1

3
  T • I = 

1

3
  Tmm  . (2.64) 

When T is the stress tensor, this spherical part is related to the pressure p in the body, 

such that  

   p = – 
1

3
  T • I  . (2.65) 

Also, the von Mises stress e, which is a measure of elastic distortion of the material, is 

defined in terms of the deviatoric stress T', such that 

  e
2 = 

3

2
 T' • T'  . (2.66) 

For the simplest model of plasticity of metals, plastic deformation is possible only when 

e attains the value Y of yield strength (in uniaxial stress).  Consequently, the material 

remains elastic whenever 

  e < Y  . (2.67) 

 For later convenience, it is useful to consider properties of the dot product between 

strings of second order tensors and vectors.  To this end, Let a, b  be vectors with 
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components ai abd bi, and let A, B, C, D be second order tensors, with components Aij, 

Bij, Cij, Dij, respectively.  Then, it can be shown that 

  A a • B b = a • ATB b = ATB • ab = AimamBinbn  , (2.68a) 

  A • (BCD) = AijBimCmnDnj  ,   A • (BCD) = (BTA) • (CD)  , (2.68b,c) 

  A • (BCD) = (ADT) • (BC) ,   A • (BCD) = (BTADT) • C  . (2.68d,e) 

 Gradient: Let xi be the components of the position vector x associated with the 

rectangular Cartesian base vectors ei.  The gradient of a scalar function f with respect to 

the position x is a vector denoted by grad f and represented by 

  grad f =  f = ∂f/∂x = ∂f/∂xm em = f,m em  , (2.69) 

where for convenience a comma is used to denote partial differentiation.  Also, the 

gradient of a tensor function T is denoted by grad T and is represented by 

  grad T = ∂T/∂x = ∂T/∂xm  em = T,m  em  . (2.70) 

Note that the derivative ∂T/∂x is written on the same line to indicate the order of the 

quantities.  To see the importance of this, let T be a second order tensor with components 

Tij so that 

  grad T = ∂T/∂x = ∂[Tij eiej]/∂xmem = Tij,m eiejem  .   (2.71) 

 Divergence:   The divergence of a tensor T is a  vector denoted by div T which is 

represented by 

  div T = 
∂T

∂xk
  • ek  = T,k • ek  . (2.72) 

For example, if T is a second order tensor, then from (2.46) and (2.72) it follows that 

  div T =  Tij,j ei  . (2.73) 

 Curl:  The curl of a vector v with components vi is a vector denoted by curl v which is 

represented by 

  curl v =  – 
∂v

∂xj
   ej =  – vi,j ijk ek = vi,j jik ek  .   (2.74) 

Also, the curl of a tensor T is a tensor denoted by curl T which is represented by 

  curl T = –  
∂T 

∂xk
   ek  .   (2.75) 
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For example, if T is a second order tensor with components Tij, then 

  curl T = – Tij,k jkm eiem .   (2.76) 

 Laplacian:  The Laplacian of a tensor T is a tensor denoted by 2T which is 

represented by 

  2T = div(grad T) = (T,iei),j • ej = T,mm   .   (2.77) 

 Biharmonic Operator:  The biharmonic operator of a tensor T is a tensor denoted by    

22T which is represented by 

  22T = T,mmnn   .   (2.78) 

 Divergence  Theorem:  Let n be the unit outward normal to a surface ∂P of a region 

P, da be the element of area of ∂P, dv be the element of volume of P, and T be an 

arbitrary tensor of any order.  Then, the divergence theorem states that 

  ∂P T n da =P div T dv  . (2.79) 

HIERARCHY  OF  TENSOR  OPERATIONS  

 To simplify the notation and reduce the need for using parentheses to clarify 

mathematical equations, it is convenient to define the hierarchy of the tensor operations 

according to Table 2.1, with level 1 operations being performed before level 2 operations 

and so forth.  Also, as is usual, the order in which operations in the same level are 

performed is determined by which operation appears in the most left-hand position in the 

equation. 

Level Tensor Operation 

1 Left Transpose (LT) and Right Transpose (T) 

2 Cross product () 

3 Juxtaposition and Tensor product () 

4 Dot product (•) 

5 Addition and Subtraction 

 

Table 2.1  Hierarchy of tensor operations 
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3. Kinematics: position vector, displacement vector, strain tensor, strain-

displacement relations, rotation tensor, homogeneous deformations, rigid body 

motion, compatibility conditions.  

  

 

 

  

 

 

 

 

 

 

 

 

Fig. 3.1  Reference and present configurations, showing the position and displacement 

vectors. 

 

POSITION  VECTOR 

 In order to describe the motion of a body it is convenient to first identify the location 

of a material point in the body in a fixed reference configuration by the position vector X, 

relative to a fixed origin O.  In the present (deformed) configuration at time t, the same 

material point is located by the position vector x.  Consequently, a motion of the body is 

characterized by the vector function 

  x = x(X,t)  . (3.1) 

This vector function is presumed to be one-to-one and invertible at any point in the body 

and at any time. 
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DISPLACEMENT  VECTOR 

 The displacement vector u(X,t) is a vector field that represents the location of a 

material point in the present configuration relative to its location in the reference 

configuration.  Consequently, u is defined by (see Fig. 3.1) 

  x = X + u(X,t)  . (3.2) 

 

STRAIN  TENSOR 

 Figure 3.1 shows a material line element dX in the reference configuration which is 

deformed into the material line element dx in the present configuration.  The simple 

notion of the strain of this line element can be used to motivate the definition of the strain 

tensor.  Specifically, let dX have length dS and direction S, and let dx have length ds and 

direction s, such that 

  dX = S dS  ,   S • S = 1  ,  

  dx = s ds  ,  s • s = 1  , (3.3) 

where S and s are unit vectors.  Now, the stretch  of the line element dX is defined as 

the ratio of the lengths ds and dS, such that 

   = 
ds

dS
  . (3.4) 

Consequently, the strain E of this line element is defined by 

  E = 
ds – dS

dS
  =   – 1  . (3.5) 

 Next, using the chain rule of differentiation, it follows that the deformation gradient F 

characterizes the deformation of the line element dX into dx, such that 

  dx = F dX  ,   F = ∂x/∂X  ,   s = F S  . (3.6) 

The deformation gradient F is a local quantity that is defined at the material point X at 

time t.  Moreover, F characterizes both the extension and the rotation of the material line 

element.  In order to determine the stretch  it is most convenient to first calculate the 

length squared ds2 of the line element dx, 

  ds2 = dx • dx = F dX • F dX = dX • FTF dX = dX • C dX  , 

  C = FTF = CT (3.7) 
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where the symmetric tensor C is called the right Cauchy-Green deformation tensor.  

Now, with the help of the definitions (3.3), it follows that 

  2 = S • C S = C • (SS)  . (3.8) 

Also, the Lagrangian strain E is defined in terms of C by 

  E = 
1

2
 (C – I)  ,   C = I + 2E  . (3.9) 

To see that E is a strain measure, this definition is substituted into (3.8) to obtain 

  2 = 1 + 2 E • (SS)  . (3.10) 

Moreover, the strain (3.5) becomes 

  E = 1 + 2 E • (SS)  – 1  . (3.11) 

In particular, for small values of the strain tensor E, this expression can be expanded in a 

Taylor series to obtain 

  E  E • (SS)  . (3.12) 

 

STRAIN-DISPLACEMENT  RELATIONS 

 The strain-displacement relations can be obtained by substituting (3.3) into the 

definitions (3.6) for the deformation gradient F and (3.9) for the strain E to obtain 

  F = I + ∂u/∂X  , 

  C = [I + ∂u/∂X]T [I + ∂u/∂X] = I + ∂u/∂X + (∂u/∂X)T +  (∂u/∂X)T(∂u/∂X) 

  E = e + 
1

2
 (∂u/∂X)T(∂u/∂X)  , (3.13) 

where the symmetric tensor e is the strain tensor associated with small displacements.  In 

particular, if the quadratic terms in the displacements are neglected then 

  E  e  ,   e = 
1

2
 [∂u/∂X + (∂u/∂X)T] = eT . (3.14) 

Moreover, for small displacements there is no distinction between differentiation of the 

displacement u with respect to X or x, so that 

  ∂u/∂X  ∂u/∂x  , 

  e = 
1

2
 [∂u/∂x + (∂u/∂x)T] = eT ,    eij = 

1

2
 (ui,j + uj,i) = eji  . (3.15) 

Also, using this approximation the expression (3.12) reduces to 
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  E = e • (SS) = eij Si Sj  . (3.16) 

In particular, notice that the six components eij of the strain tensor e are defined at a 

material point.  The formula (3.16) indicates that at the same material point, different line 

elements (specified by different direction S) have different strains. 

 Physical interpretation of the diagonal components of strain: Using (3.16) and 

considering line elements that were directed in the ei directions in the reference 

configuration, it follows that  

  E = e11 = u1,1   for S = e1  ,   

  E = e22 = u2,2   for S = e2  ,   

  E = e33 = u3,3   for S = e3  . (3.17) 

This means that the diagonal components of the strain tensor characterize the strains of 

the line elements that were directed in the ei directions in the reference configuration.  

Also, it can be seen from (3.17) that factor (1/2) in the definition (3.9) causes the 

linearized strain e to be consistent with the simple definition of the strain of a line 

element (e11 = u1,1) which is the differential form of the definition (3.9).  However, for a 

material line element in a general direction S, both the diagonal and off-diagonal 

components of e contribute to the strain E. 

 Physical interpretation of the off-diagonal components of strain:  In order to discuss 

the physical interpretation of the off-diagonal components of strain it is convenient to 

consider two different line elements which are characterized by the directions S(1), S(2) in 

the reference configuration; the directions s(1), s(2) in the present configuration, and the 

strains E(1), E(2), respectively.  Specifically, using (3.3)-(3.9) it follows that 

  [1 + E(1)] s(1) = F S(1)   ,   [1 + E(2)] s(2) = F S(2)  . (3.18) 

Thus, 

  s(1) • s(2) =   
(I + 2E) • {S(1)S(2)}

{1 + E(1)}{1 + E(2)}
   . (3.19) 

Next, for small displacements, quadratic terms in the strains can be neglected and (3.19) 

can be approximated by 

  s(1) • s(2) = [1 – E(1) – E(2)] S(1) • S(2) + 2e • {S(1)S(2)}  , 
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  cos = [1 – E(1) – E(2)] cos + 2e • {S(1)S(2)}  , (3.20) 

where  is the angle between S(1) and S(2), and  is the angle between s(1) and s(2).  As a 

special case, if S(1) and S(2) are orthogonal (=/2), =/2–, and  is small, then 

  cos = cos(/2–) = sin   =  2e • {S(1)S(2)}  , 

   = 2e • {S(1)S(2)}   for S(1) • S(2) = 0  . (3.21) 

More specifically, if S(1) and S(2) are in the directions e1 and e2, respectively, then 

   = 2 e12   for S(1) = e1 and S(2) = e2  . (3.22) 

This means that the reduction  in the angle between the two line elements which were in 

the directions e1 and e2 in the reference configuration is related directly to the off-

diagonal component e12 of the strain tensor.  Similar results can be derived for the other 

off-diagonal components of strain.  Moreover,  is often called the engineering shear 

strain and e12 is the tensorial shear strain.  As a specific example, consider the case of 

simple shear (Fig. 3.2) which is characterized by 

  u1 =  x2  ,   u2 = 0  ,  u3 = 0  . (3.23) 

Notice that the line element that was in the e1 direction remains in the e1 direction.  

Whereas, the line element that was in the e2 direction is rotated clockwise about the e3 

axis through the angle .  

 

 

 

 

 

 

 

 

Fig. 3.2  Simple shear.  The square ABCD represents the reference configuration and the 

parallelogram abcd represents the deformed present configuration. 
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 A pure measure of dilatation (volume change):  In order to derive a pure measure of 

dilatation, consider a set of right-handed line elements {dX(1), dX(2), dX(3)} in the 

reference configuration, which form a parallelepiped that is deformed to the 

parallelepiped associated with the set of line elements {dx(1), dx(2), dx(3)} in the present 

configuration.  The volumes dV and dv of these parallelepipeds are given, respectively, 

by 

  dV = dX(1)  dX(2) • dX(3)  ,   dv = dx(1)  dx(2) • dx(3)  . (3.24) 

Next, using (3.6) it follows that 

  dv  = {F dX(1)}  {F dX(2)} • {F dX(3)}  . (3.25) 

Moreover, it can be shown that for an arbitrary nonsingular tensor F (detF≠0), and 

arbitrary vectors a,b,c, that 

  F a  F b = J F–T (a b)   ,   J = det F  , (3.26) 

where F–T is the inverse of the transpose of F, and J is the determinant of F.  Thus, using 

this result, (3.25) can be reduced to 

  dv = J F–T {dX(1)  dX(2)} • {F dX(3)} = J {dX(1)  dX(2)} • F–1 {F dX(3)}  , 

  dv = J dX(1)  dX(2) • dX(3) = J dV  . (3.27) 

This means that J is a pure measure of dilatation since it is a pure measure of volume 

change.  Next, using the definition of the determinant, it follows that 

  J = F e1  F e2 • F e3  . (3.28) 

Therefore, for small deformations, (3.13) and (3.15) can be used and quadratic terms in 

the displacement can be neglected to obtain 

  J = {e1 + ∂u/∂x e1}  {e2 + ∂u/∂x e2} • {e3 + ∂u/∂x e3}  , 

 J = 1 + {∂u/∂x e1} • (e2e3) + {∂u/∂x e2} • (e3e1) + {∂u/∂x e3} • (e1e2), 

  J = 1 + {∂u/∂x e1} • e1 + {∂u/∂x e2} • e2 + {∂u/∂x e3} • e3   , 

  J = 1+ ∂u/∂x • (e1e1 + e2e2 + e3e3) = 1 + ∂u/∂x • I = 1 + e • I  . (3.29) 

Thus, the trace of the strain tensor is a pure measure of dilatation 

  e • I = eii = J – 1 = 
dv–dV

dV
   . (3.30) 
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 A pure measure of distortion:  The strain tensor e describes the dilatation and 

distortion of the material at each material point.  It has been shown (3.30) that the trace of 

e is a pure measure of dilatation.  It therefore, follows that the deviatoric part e' of e is a 

pure measure of distortion since its trace vanishes 

  e' = e – 
1

3
 (e • I) I  ,   e' • I = 0  , 

  eij'  = eij – 
1

3
 emm ij  ,    em' m  = 0  . (3.31) 

   

 

 

ROTATION  TENSOR 

 The displacement gradient ∂u/∂x is a general tensor that can be separated into its 

symmetric part e and its skew-symmetric part , such that 

  ∂u/∂x = e +   , 

  e = 
1

2
 [∂u/∂x + (∂u/∂x)T] = eT  ,  eij = 

1

2
 (ui,j + uj,i) = eji ,

   = 
1

2
 [∂u/∂x – (∂u/∂x)T] = – T  ,   ij = 

1

2
 (ui,j – uj,i) = – ji . (3.32) 

The symmetric part e has already been identified as the strain tensor and its physical 

meaning has been discussed.  Here, it will be shown that the skew-symmetric part  has 

the physical meaning of a rotation tensor.  To this end, it is recalled from (3.13) and 

(3.15) that for small deformations, the deformation gradient becomes 

   F = I + e +   . (3.33)  

Moreover, with the help of (3.3), (3.4), (3.5) and (3.12), it follows that for small 

deformations 

  (1 + E) s = (I + e + ) S  ,   E = (e • SS)  , 

  s – S =  S + [e – (e • SS) I] S  , 

  si = Si + ij Sj + [eij – emn Sm Sn ij] Sj  . (3.34) 

Since both S and s are unit vectors, the vector s can only rotate relative to the vector S.  

Mathematically, it can be shown that since  is a skew-symmetric tensor, that 
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   • (SS) = 0 , (3.35) 

so that neglecting second order quantities in the displacements yields 

  (s – S) • S = 0  . (3.36) 

Physically, this means that the change in S is perpendicular to S, which is consistent with 

a small rotation.   

 Next, it is observed from (3.34) that, for a general line element S, the rotation of the 

line element depends on both the rotation tensor  and the strain tensor e.  However, for 

the special case, when S is chosen in the direction of an eigenvector of the strain e, the 

rotation is totally controlled by the rotation tensor  

  s – S =  S   for e S = E S  ,  E = e • (SS)   . (3.37) 

Appendix A provides details of the determination of the eigenvalues and eigenvectors of 

a real second order symmetric tensor. 

 

HOMOGENEOUS  DEFORMATIONS 

 A deformation is said to be homogeneous if the deformation gradient F is 

independent of the position X.  Within the context of the small deformation theory this 

means that the displacement gradient ∂u/∂x is independent of the position x.  

Specifically, take 

  ∂u/∂x = H(t)  ,   ui,j = Hij(t)  , (3.38) 

where H is a general tensor function of time t only.  Integrating (3.38) with respect to 

space, it follows that the displacement field u for homogeneous deformation becomes 

  u = c(t) + H(t) x  , (3.39) 

where c(t) is a vector function of time only.  It also follows that the strain and rotation 

tensors associated with this homogeneous become 

  e = 
1

2
 (H + HT)  ,   = 

1

2
 (H – HT)  . (3.40) 

Notice that there are twelve degrees of freedom associated with a homogeneous 

deformation: three associated with translation vector c; three associated with the rotation 

tensor ; and six associated with the strain tensor e. 
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RIGID  BODY  MOTION 

 A rigid body is a body for which the length between any two material points remains 

constant.  It then follows that rigid body motion is a special case of homogeneous 

deformation for which the strain of any material line element vanishes.  Consequently, 

since the strain E in (3.16) must vanish for any material point x and any material 

direction N, it can be shown that for rigid body motion the strain tensor e must vanish at 

all points 

  e = 0   for rigid body motion.   (3.41) 

Thus, the tensor H in (3.39) must be a skew-symmetric tensor 

  HT = – H  ,    = H  , (3.42) 

so that (3.39) reduces to 

  u = c(t) + (t) x   for rigid body motion. (3.43) 

Physically, this means that a rigid body has six degrees of freedom: three associated with 

translation c; and three associated with rotation  (with  being skew-symmetric).   

 

COMPATIBILITY  CONDITIONS 

 In order to understand the notion of compatibility from a physical point of view, it is 

convenient to consider a body that has been divided into a finite number of tetrahedrons 

which just fit together in its stress-free undeformed reference configuration.  Now, mark 

each tetrahedron so that when these parts are separated they can be put back together with 

the same topology (i.e. the same neighbors).  Next, separate the parts and deform each 

tetrahedron in an arbitrary manner. Obviously, it is not reasonable to expect that these 

deformed parts will fit together without gaps between the parts.  This is an example when 

the strain field is not compatible.  However, if the strains in each of these tetrahedrons is 

suitably restricted, then the parts will fit together to form a deformed intact body.   

 Mathematically, this means that the strain field eij must satisfy certain restrictions for 

a displacement field to exist.  More specifically, it is noted that the strain-displacement 

equations (3.15) indicate that the six independent components eij of the strain are derived 

from only three components ui of the displacement vector.  To derive these restrictions, 
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consider integration of the displacement gradient over an arbitrary curve C in space 

(Sokolnikoff, 1956) 

  ui = 
C

  ui,m dxm = 
C

  (eim + im) dxm  , (3.44) 

where (3.32) had been used to express ui,m in terms of the strain and rotation tensors.  

However, the rotation tensor can be rewritten in the form 

  im = [(xn– xn
0) in],m – (xn– xn

0) in,m  , (3.45) 

and the gradient in,m of im can be expressed in terms of derivatives of the strain tensor 

using the expressions 

  in,m = 
1

2
 (ui,nm – un,im) + 

1

2
 (um,in – um,in)  , 

  in,m =  
1

2
 (ui,nm + um,in) – 

1

2
 (un,im + um,in) = eim,n – emn,i  . (3.46) 

Thus, with the help of (3.45) and (3.46), it follows that (3.44) can be integrated to obtain 

  ui = u i
0 + (xn– xn

0) in(xm) +  
C

  Uim dxm  

  Uim = eim – (xn– xn
0) (eim,n – emn,i)  , (3.47) 

where u i
0 are the components of the displacement and in(xm

0 ) are the components of the 

rotation tensor in at the location xn
0.  Also, Uim has been introduced for convenience. 

 The displacement field ui will be single valued if the integral in (3.47) is zero for all 

closed curves C.  The necessary and sufficient condition for ui to be a single valued 

function of xi, is that Uim is the derivative of a vector potential function i and that its 

curl vanishes,  

  Uim = i,m , i,mj = i,jm   Uim,j = Uij,m  . (3.48) 

Thus, substitution of (3.47) into (3.48) yields the condition that 

  eim,j – (eim,j – emj,i) – (xn– xn
0) (eim,nj – emn,ij) = 

   eij,m – (eij,m – ejm,i) – (xn– xn
0) (eij,nm – ejn,im)  , (3.49) 

which simplifies to 

  (xn– xn
0) (eij,nm + emn,ij – eim,nj – ejn,im) = 0  . (3.50) 
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However, since this equation must be valid for all values of xn
0, it follows that the 

linearized Riemann curvature tensor Rijmn must vanish 

  Rijmn = eij,mn + emn,ij – eim,nj – ejn,im = 0  , (3.51) 

at each point in the body.  It is obvious, from this definition that Rijmn as the following 

symmetries 

  Rmnij = Rijmn , Rimjn = – Rijmn , Rnjmi = – Rijmn ,  (3.52a,b,c) 

  Riimn = Riinm  (no sum on i) (3.52d) 

Applying (3.52a) reduces Rijmn to 45  independent components given by 

  {R1111, R1112, R1113, R1121, R1122, R1123, R1131, R1132, R1133} , 

  {R1212, R1213, R1221, R1222, R1223, R1231, R1232, R1233} , 

  {R1313, R1321, R1322, R1323, R1331, R1332, R1333} ,  

 {R2121, R2122, R2123, R2131, R2132, R2133} , {R2222, R2223, R2231, R2232, R2233}, 

  {R2323, R2331, R2332, R2333} , {R3131, R3132, R3133} , {R3232, R3233}, {R3333} . (3.53) 

Next, applying (3.52b) reduces Rijmn to 9  independent components  

  {R1122, R1123, R1132, R1133, R1232, R1233, R2123, R2133, R2233}  .  (3.54) 

Further application of (3.52c) reduces Rijmn to 7  independent componentsy 

  {R1122, R1123, R1132, R1133, R1233, R2123, R2233}  .  (3.55) 

Finally, application of (3.52d) reduces Rijmn to 6  independent components given by 

  {R1122, R2233, R1133, R1123, R2213, R3312}  ,  (3.56) 

where use has been made of the conditions R1233 = R3312  and  R2123 = – R2213.  More 

specifically, these 6 conditions can be written in the forms 

   R1122 =  
∂2e11

∂x2
2   + 

∂2e22

∂x1
2   – 2 

∂2e12

∂x1∂x2
  = 0  ,  

  R2233 = 
∂2e22

∂x3
2   + 

∂2e33

∂x2
2   – 2 

∂2e23

∂x2∂x3
  = 0 ,  

  R1133 = 
∂2e33

∂x1
2   + 

∂2e11

∂x3
2   – 2 

∂2e13

∂x1∂x3
  = 0  ,  
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    R1123 = 
∂2e11

∂x2∂x3
  + 

∂2e23

∂x1
2   – 

∂2e12

∂x1∂x3
  – 

∂2e13

∂x1∂x2
  = 0  ,  

    R2213 = 
∂2e22

∂x1∂x3
  + 

∂2e13

∂x2
2   – 

∂2e12

∂x2∂x3
  – 

∂2e23

∂x1∂x2
  = 0 ,  

   R3312 =  
∂2e33

∂x1∂x2
  + 

∂2e12

∂x3
2   – 

∂2e13

∂x2∂x3
  – 

∂2e23

∂x1∂x3
  = 0  . (3.57)  

Alternatively, by contracting on m and n in the expression (3.51) for Rijmn, it can be 

shown that 

  Rij = Rijmm = eij,mm + emm,ij – eim,mj – ejm,im = 0  . (3.58) 

To see that these 6 equations are equivalent to the 6 equations (3.57), use is made of the 

symmetry conditions (3.52) to deduce that 

  R11 = R1111 + R1122 + R1133 = R1122 + R1133 = 0 , 

  R22 = R2211 + R2222 + R2233 = R1122 + R2233 = 0 , 

  R33 = R3311 + R3322 + R3333 = R1133 + R2233 = 0 , 

  R12 = R1211 + R1222 + R1233 = R3312 = 0 , 

  R13 = R1311 + R1322 + R1333 = R2213 = 0 , 

  R23 = R2311 + R2322 + R2333 = R1123 = 0  . (3.59) 

Thus, when the compatibility conditions (3.57) or (3.58) are satisfied, the existence of the 

displacement field is guaranteed. 
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4. Basic balance laws: Conservation of mass; the balances of linear momentum, 

entropy, angular momentum and energy (first law of thermodynamics); and the 

reduced energy equation.  

  This section presents the basic balance laws controlling the thermomechanical 

response of simple continua.  It is important to emphasize that these balance laws are 

valid for all simple continuum so they are valid for a wide class of materials which 

include: inviscid fluids, viscous fluids, Non-Newtonian fluids, thermoelastic solids, 

elastic-plastic solids, elastic-viscoplastic solids, etc.  The equations that characterize the 

response of a particular material are called constitutive equations.  In this course, 

attention will be focused on thermoelastic solids  and the constitutive equations for these 

materials will be discussed in a later section. 

 Following the work of Green and Naghdi (1977,1978), the balance laws will be 

separated into two groups.  One group includes: the conservation of mass, the balance of 

linear momentum and the balance of entropy, which are used to determine the mass 

density  (mass per unit volume), the position x (or displacement u) of a material point, 

and the absolute temperature .  The second group includes: the balance of angular 

momentum and the balance of energy, which are assumed to be satisfied identically and 

are used to impose restrictions on constitutive assumptions. 

 In the following, P denotes a material region which can be any part of the body under 

consideration.  Also, ∂P denotes the smooth closed boundary of P, and n denotes the unit 

outward normal vector to ∂P. 

CONSERVATION  OF  MASS 

 The conservation of mass requires the total mass of the material region P to remain 

constant 

  P  dv = P
0
 0 dV  , (4.1) 

where P0 is the region in the reference configuration associated with P, and 0 is the mass 

density in the reference configuration.  Next, using the result (3.27), it follows that the 

integral over P0 can be converted to an integral over P to obtain 

  P [ – 0 J–1] dv = 0  . (4.2) 
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Assuming that this expression is valid for arbitrary parts P and that the integrand is 

continuous, the local form of the conservation of mass becomes 

   = 0 J–1  , (4.3) 

which must be satisfied at each point of P.  Moreover, using the result (3.29) associated 

with the small deformation theory, it follows that (4.3) can be rewritten in the form 

    = 0 (1 + e • I)–1 = 0 (1 – e • I)  . (4.4) 

This means that the density  decreases when the volume increases (e • I > 0), which is 

consistent with simple physical experience. 

BALANCE  OF  LINEAR  MOMENTUM 

 The balance of linear momentum is a direct generalization of Newton's second law 

for a particle.  In words, it states that the rate of change of linear momentum is equal to 

the total force applied to the body.  This physical concept is translated into the 

mathematical expression 

  
d

dt
 P  v dv = P  b dv + ∂P t da  , (4.5) 

where v is the absolute velocity of a material point, 

  v = 
•
x = 

•
u  , (4.6) 

a superposed dot (•) denote material time differentiation holding X fixed, b is the external 

specific (per unit mass) body force (e.g. gravity), and t is the stress vector (force per unit 

area da) applied to the boundary ∂P of the body.  In order to develop the local form of 

this equation, it is first recalled that the element of mass dm can be expressed as 

  dm =  dv  . (4.7) 

Therefore, the first integral in (4.5) can be written in the form 

  P  v dv =  v dm  . (4.8) 

However, since the mass is constant, the time differentiation can be interchanged with the 

integration over mass to deduce that 

  
d

dt
 P  v dv = 

d

dt
  v dm =  

•
v dm = P  

•
v dv =  P  

••
u dv  . (4.9) 

 Next, it is recalled that the stress vector t is related to the stress tensor T by the 

expression 
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  t(x,t;n) = T(x,t) n  , (4.10) 

where it is important to emphasize that the stress vector t depends linearly on the unit 

outward normal n, but the stress tensor T only depends on position and time.  This means 

that the stress tensor T characterizes the state of stress at a point in the body, whereas the 

stress vector characterizes the state of stress applied to a specific surface through a point 

in the body.  Now, using the divergence theorem (2.79) it follows that 

  ∂P T n da =P div T dv  . (4.11) 

Thus, with the help of (4.9) and (4.11), the balance of linear momentum (4.5) can be 

written in the form 

   P [ 
•
v –  b – div T ] dv = 0  . (4.12) 

Again, assuming that the integrand is continuous and that this equation is valid for 

arbitrary parts P, it can be shown that the local form of the balance of linear momentum 

becomes 

   
•
v =  b + div T  , (4.13) 

which must be satisfied at each point of P.  Moreover, for the small deformation theory it 

is assumed that u, b and T are small, so that the density  can be replaced by its reference 

value 0 and (4.13) reduces to 

  0 
••
u = 0 b + div T  ,    0 

••
u i = 0 bi + Tij,j  . (4.14) 

Also, for the small deformation theory, material differentiation reduces to partial 

differentiation with respect to time 

  
•
u = 

∂u

∂t
  . (4.15) 

BALANCE  OF  ENTROPY 

 It is well known that many thermomechanical processes proceed in a specific 

direction.   For example, it is known that heat flows from hot regions to cold regions and 

not the reverse.  This means that if a hot body is put into thermal contact with a cold body 

and the two bodies are insulated from their surroundings, then the hot body will get 

colder and the cold body will get hotter until they reach an equilibrium state where both 

bodies are at the same temperature.  One of the main reasons for introducing the notion of 
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entropy is to develop mathematical equations which can be used to quantify this type of 

irreversible process. 

 From the point of view of continuum mechanics, it is assumed that the specific 

entropy  is defined at each material point.  In words, the balance of entropy states that 

the rate of change of entropy is equal to the external rate of supply of entropy plus the 

internal rate of production of entropy.  This physical concept is translated into the 

mathematical expression 

  
d

dt
 P   dv = [ P  s dv – ∂P p • n da] + P   dv  , (4.16) 

where s denotes the specific external rate of supply of entropy at a point in the body, p 

denotes the external rate of entropy flux vector through the boundary ∂P, and  denotes 

the internal rate of entropy production (Green and Naghdi, 1977,1978).  The minus sign 

is used here because p • n denotes the entropy flux in the direction of n, which indicates 

that the entropy is expelled from the body instead of supplied to the body.  

 Following similar arguments to those used to develop the local form of the balance of 

linear momentum, it can be shown that 

  
d

dt
 P   dv = P  

•
 dv  ,    ∂P p • n da = P div p dv  , (4.17) 

so that (4.16) reduces to 

  P [ 
•
 –  s + div p –   ] dv = 0  . (4.18) 

Again, assuming that the integrand is continuous and that this equation is valid for 

arbitrary parts P, it can be shown that the local form of the balance of entropy becomes 

   
•
 =  s – div p +    , (4.19) 

which must be satisfied at each point of P.  Furthermore, if , s,  are small quantities, 

then  can be replaced by 0, and (4.19) reduces to 

  0 
•
 = 0 s – div p + 0   ,   0 

•
 = 0 s – pj,j + 0   , (4.20) 

where pj are the components of the entropy flux p relative to the base vectors ej. 
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BALANCE  OF  ANGULAR  MOMENTUM 

 The balance of angular momentum is also a direct generalization of the balance of 

angular momentum for a rigid body.  In words, it states that the rate of change of angular 

momentum about a fixed point is equal to the total moment applied to the body about the 

same fixed point.  Taking the fixed point as the fixed origin O, this physical concept is 

translated into the mathematical expression 

  
d

dt
 P x   v dv = P x   b dv + ∂P x  t da  . (4.21) 

Next, using the fact that 

     div (x  T) = (x  T),j • ej = x  T,j • ej + x,j  T ej = x  div T + ej  T ej  , (4.22) 

and following similar arguments to those used to develop the local form of the balance of 

linear momentum, it can be shown that 

  
d

dt
 P x   v dv = P  

______•

x  v  dv = P  v  v + x  
•
v  dv =  P x  

•
v  dv  , 

   ∂P x  t da =  P [x  div T + ej  T ej ] dv  . (4.23) 

Then, (4.21) can be rewritten in the form 

   P [ x  { 
•
v –  b – div T} –  ej  T ej ] dv = 0  . (4.24) 

Again, assuming that the integrand is continuous, that this equation is valid for arbitrary 

parts P, and using the local form (4.13) of the balance of linear momentum, it follows that 

the local form of the balance of angular momentum becomes 

  ej  T ej = 0  . (4.25) 

Moreover, it can be shown that this restriction requires the stress tensor to be symmetric 

  TT = T  ,    Tij = Tji  . (4.26) 

BALANCE  OF  ENERGY (FIRST  LAW  OF  THERMODYNAMICS) 

 The balance of energy is usually called the first law of thermodynamics.  In words, it 

states that the rate of change of internal energy and kinetic energy equals the total rate of 

external work supplied to the body plus the total rate of external heat supplied to the 

body.  It is important to emphasize that the first law of thermodynamics expresses the 

equivalence of the rates of work and heat. 
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 In order to express this physical law in mathematical terms it is necessary to introduce 

a few more variables that characterize the state of the material.  To this end, let  be the 

specific internal energy and let E be the total internal energy in the part P 

  E =  P   dv  ; (4.27) 

let K be the total kinetic energy in the part P 

  K =  P 
1

2
  v • v dv  ; (4.28) 

let W be the total external rate of work done on the part P of the body due to body forces 

and surface tractions 

  W =  P  b • v dv + ∂P t • v da  ; (4.29) 

and let H be the total external rate of heat supplied to the part P of the body due to the 

specific external rate of heat supply r (e.g. radiation) and due to the heat flux q vector per 

unit area of ∂P 

  H =  P  r dv – ∂P q • n da  . (4.30) 

The minus sign is used here because q • n denotes the heat flux in the direction of n, 

which indicates that the heat is expelled from the body instead of supplied to the body. 

 Using these definitions, the balance of energy becomes 

  
•
E + 

•
K = W + H  . (4.31) 

Also, using the divergence theorem it can be shown that 

   ∂P t • v da =  ∂P v • T n da = P div (v • T) dv  . (4.32) 

However,  

  div (v • T) = (v • T),j • ej = v • T,j • ej + v,j • T ej  , 

  div (v • T) = v • div T + T • L  , (4.33) 

where L is the velocity gradient 

  L = ∂v/∂x  . (4.34) 

Moreover, since T is symmetric  

  T • L = T • D  , (4.35) 

where D is the symmetric part of the velocity gradient 
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  D = 
1

2
 (L + LT) = DT  . (4.36) 

 Thus, following similar arguments to those used to develop the local form of the 

balance of linear momentum and using the results (4.33) and (4.36), it can be shown that 

  
•
E  = P  

•
 dv  ,   

•
K =  P v •  

•
v dv  , 

   ∂P t • v da = P [v • div T + T • D] dv  ,   ∂P q • n da = P div q dv  , (4.37) 

so that the balance of energy (4.31) can be written in the form 

   P [ v •{ 
•
v –  b – div T} + { 

•
 –  r + div q – T • D} ] dv = 0  . (4.38) 

Again, assuming that the integrand is continuous, that this equation is valid for arbitrary 

parts P, and using the local form (4.13) of the balance of linear momentum, it can be 

shown that the local form of the balance of energy becomes 

   
•
 =  r – div q + T • D  , (4.39) 

which must be satisfied at each point of P.  Furthermore, if , r, T are small quantities, 

then  can be replaced by 0, D  can be replaced by the strain rate 
•
e, and (4.39) reduces to 

  0 
•
 = 0 r – div q + T • 

•
e  ,   0 

•
 = 0 r – qj,j + Tij 

•
eij  ,   (4.40) 

where qj are the components of q relative to the base vectors ej. 

THE  REDUCED  ENERGY  EQUATION  

 Next, the absolute temperature  is introduced and the external rate of entropy supply 

s and entropy flux p are related to the external rate of heat supply r and heat flux q by the 

relations 

  s = 
r


  ,    p = 

q


  . (4.41) 

It then follows that  

  div p = p,j • ej =   
q,j • ej


  –  

q

2  • ,j ej =   
div q


  –  

p • g


  , (4.42) 

where g is the temperature gradient 

  g = ∂/∂x = ,j ej . (4.43) 
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Now, using the balance of entropy (4.19) and the expressions (4.41) and (4.43), it can be 

shown that 

   r – div q = 
•
 – p • g –   , (4.44) 

Moreover, it is convenient to separate the internal rate of production of entropy  into two 

parts (Rubin, 1992) 

   = – p • g + '  , (4.45) 

where the first term (– p • g) is a thermal part related to entropy (or heat) flux and the 

second term is related to material dissipation.  Then, (4.44) simplifies to 

   r – div q = 
•
  – '  . (4.46) 

Also, with the help of this expression, the energy equation (4.39) can be rewritten in the 

form 

  ' = 
•
  –  

•
 + T • D  , (4.47) 

 Since the derivative of the entropy appears in this equation, it is most appropriate to 

use this equation when entropy  is considered to be an independent variable.  

Alternatively, it is possible to introduce the definition of the Helmholtz free energy  

   =  –   , (4.48) 

to rewrite (4.47) in the form 

  ' = – 
•
  – 

•
 + T • D  , (4.49) 

which is called the reduced energy equation.  Specifically, the definition (4.48) 

transforms the equation (4.47) into one in which temperature  is considered to be an 

independent variable. Furthermore, if ', , , and T are considered to be small 

quantities, then  can be replaced by 0 and D in (4.36) can be replaced by the strain rate 

•
e to obtain the simplified form 

  0' = – 0
•
  – 0

•
 + T • 

•
e  ,   0' = – 0

•
  – 0

•
 + Tij 

•
eij . (4.50) 

 In the remainder of this course attention will be focused on the forms of the equations 

which consider the strain e and the absolute temperature  to be the independent 

variables.  Moreover, it is noted that although the equation (4.50) has been developed 

using simplifications associated with small deformations, no assumptions have been used 



 

 

40 

yet about the magnitude of the temperature changes.  It will be seen later, that for the 

complete linearized theory, additional simplifications will be introduced which assume 

that the temperature  remains close to its reference value 0. 

 For later convenience, the small deformation forms of the conservation of mass (4.4), 

the balance of linear momentum (4.14), and the balance of entropy are summarized here 

    = 0 (1 – e • I)  ,    = 0 (1 – emm)  , (4.51a,b) 

  0 
••
u = 0 b + div T  ,    0 

••
u i = 0 bi + Tij,j  . (4.51c,d) 

  0 
•
 = 0 s – div p + 0   ,   0 

•
 = 0 s – pj,j + 0   . (4.51e,f) 

Also, the reduced forms of the balance of angular momentum (4.26) and the balance of 

energy (4.50) are summarized here 

  TT = T  ,    Tij = Tji  . (4.52a,b) 

  0' = – 0
•
  – 0

•
 + T • 

•
e  ,   0' = – 0

•
  – 0

•
 + Tij 

•
eij . (4.52c,d) 

Moreover, the quantities in these equations are related by the expressions (4.41), (4.43), 

(4.45) and (4.48), which are collected here 

  s = 
r


  ,    p = 

q


  ,    g = ∂/∂x = ,j ej  , (4.53a,b,c) 

   = – p • g + '  ,    =  –   . (4.53d,e) 

 In the thermodynamic procedures proposed by Green and Naghdi (1977,1978), the 

balance laws (4.51) are used to determine the density , the displacement vector u and 

the temperature , and the balance laws (4.52) are used to place restrictions on 

constitutive equations which will be described later.  Alternatively, the energy equation 

(4.40) 

  0 
•
 = 0 r – div q + T • 

•
e  ,   0 

•
 = 0 r – qj,j + Tij 

•
eij  ,   (4.54a,b) 

can be used instead of the balance of entropy to determine the temperature field. 
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5. Constitutive equations for an isotropic thermoelastic material within the context 

of the small deformation theory. 

 A thermoelastic material is considered to be an ideal material because it exhibits no 

material dissipation.  Moreover, a material is said to be anisotropic if different samples, 

which are taken from different orientations relative to the material microstructure, exhibit 

different material responses.  Single crystals of metal, silicon and composite materials are 

examples of such anisotropic materials.  However, if all such different samples exhibit 

the same material response, then the material is said to be isotropic.  For simplicity, 

attention will be confined in this course to the simplest case of isotropic thermoelastic 

materials within the context of the small deformation theory. 

 The constitutive equations for such materials can be developed by making the 

following assumptions: 

(A1)   The response functions  

   { , , , ' , T }  , (5.1) 

  depend only on the variables 

   { e ,  }  . (5.2) 

(A2) The response function  

   p  , (5.3) 

  depends only on the variables (5.2) and on the temperature gradient  

   g = 
∂

∂x
  . (5.4) 

Using the assumption (A1), the reduced form of the energy equation (4.52c) becomes 

  0' = – 0[  + 
∂

∂
 ] 

•
 + [ T – 0

∂

∂e
 ] • 

•
e  . (5.5) 

Now, the assumption (A2) requires ' and the coefficients in square brackets to be 

explicitly independent of the rates  

   { 
•
e , 

•
 }  . (5.6) 

Thus, since the reduced energy equation (5.5) must be valid for all thermomechanical 

processes, it follows that the constitutive equations for a thermoelastic material must 

satisfy the restrictions that 
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   = – 
∂

∂
  ,  T = 0

∂

∂e
  ,  ' = 0  . (5.7a,b,c) 

Thus, once a functional form for the Helmholtz free energy  is specified, the 

constitutive equations for the entropy  and the stress T are determined by mere 

differentiation.  Also, since e is a symmetric tensor, the stress T given by (5.7b) is 

symmetric and thus automatically satisfies the restriction (4.52a) associated with the 

reduced form of angular momentum.  Furthermore, the result (5.7c) proves that a 

thermoelastic material is nondissipative. 

 For an isotropic material,   must be an isotropic function of the strain e, and p must 

be an isotropic function of the strain e and the temperature gradient g.  In particular,  

can depend on e only through its invariants (see Appendix A), which can be taken to be 

  e • I  ,  e' • e'  ,  det e  . (5.8a,b,c) 

For the simplest case,  is taken to be a quadratic function strain so the invariant (5.8c) is 

omitted.  Also, p is taken to be independent of strain e.  Specifically,  and p are 

proposed in the forms 

    0 = 0Cv [(–0) –  ln(/0)] + 
1

2
 K (e • I)2 +  e' • e' – 3 K (–0) (e • I) , 

  p = – 



  g  , (5.9a,b) 

where Cv is the constant specific heat at constant deformation, 0 is the reference 

temperature, K is the constant bulk modulus,  is the constant shear modulus,  is the 

constant coefficient of linear thermal expansion, and  is the constant heat conduction 

coefficient. Notice that the term associated with Cv is purely thermal, the term associated 

with K is the strain energy of dilatational deformation, the term associated with  is the 

strain energy of distortional deformation, and the term associated with  characterizes the 

coupled thermomechanical  response to temperature and dilatation.  Also, using  (4.53b), 

the assumption (5.9b) leads to the usual form for Fourier heat conduction with 

  q = –  g , (5.10) 

which indicates that heat flows in the direction parallel to the temperature gradient. 

 Now, using the definition (3.31) of the deviatoric strain tensor e', it can be shown that 
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   0

•
 = – [0Cv ln(/0) + 3K (e • I)] 

•
  

                         + [ K{e • I – 3(–0)}I + 2 e' ] • 
•
e  . (5.11) 

Thus, the entropy and stress associated with the constitutive assumptions (5.9) become 

  0 = 0Cv ln(/0) + 3K (e • I)  , (5.12a) 

  T = – p I + T'  ,   p = – K{e • I – 3(–0)} ,  T' = 2 e'  , (5.12b,c,d) 

where p is the pressure and T' is the deviatoric stress.  Moreover, using the definition 

(4.53e) it can be shown that the internal energy  associated with the constitutive 

assumption (5.9a) becomes 

  0 = 0Cv (–0) + 3K0 (e • I) + 
1

2
 K (e • I)2 +  e' • e' . (5.13) 

It is clear from this functional form that Cv is the specific heat at constant deformation 

since when the strain remains constant 
•
 = Cv 

•
. 

 Often, an engineering approach is taken which generalizes the purely mechanical 

theory by defining the thermal strain e by 

  e = (–0) I  , (5.14) 

and replacing the total strain e in the constitutive equation for stress by the quantity 

  e – e  . (5.15) 

However, if this is done in the (5.9a) for the Helmholtz free energy, then  is proposed in 

the form 

  0 = 0

–
= 0Cv [ (–0) –  ln(/0)]  

                 + 
1

2
 K{e • I – 3(–0)}

2
 +  e' • e' , (5.16) 

instead of the form (5.9a).  Next, using this expression it can be shown that  

   0

–
•

 = – [0Cv ln(/0) + 3K{(e • I) – 3(–0)} ] 
•
  

                         + [ K{e • I – 3(–0)}I + 2 e' ] • 
•
e  , (5.17) 

so that the constitutive equations for the entropy becomes 
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  0 = 0

–
= [0Cv ln(/0) + 3K{(e • I) – 3(–0)}]  , (5.18) 

the stress is again given by (5.12b,c,d), and the internal energy becomes 

  0 = 0

–
 = 0Cv(–0) + 

1

2
 K{e • I – 3(–0)}{e • I + 3(+0)} 

  +  e' • e' . (5.19) 

However, since the expression (5.19) is more complicated than (5.13) and since the 

interpretation of Cv in (5.19) is not clear, the constitutive assumption (5.9a) is preferred 

over (5.16). 

 In addition, it is noted that for the purely mechanical theory of an anisotropic elastic 

material, the strain energy function (or Helmholtz free energy) is given by 

  0 = 
1

2
 K • (ee)  , (5.20) 

where K is a fourth order tensor having the following symmetries 

  K = KT = LTK = KT(2) ,  Kijkl = Kijlk = Kjikl = Kklij  . (5.21) 

Also, it can be shown that (5.7b) holds so that the stress is given by 

  T = 0 
∂

∂e
  = K • e  ,  Tij = Kijkl ekl  . (5.22) 

Thus, the material properties of the this anisotropic material are determined by the 

stiffness tensor K.  In general, since K is a fourth order tensor it has 34=81 independent 

components.  However, the symmetry conditions (5.21) impose restrictions that reduce 

the number of independent components to 21 

  









K1111 K1112 K1113 K1122 K1123 K1133 K1212

K1213 K1222 K1223 K1233 K1313 K1322 K1323

K1333 K2222 K2223 K2233 K2323 K2333 K3333

    (5.23) 
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6. Summary of the basic equations 

 For convenience, the basic equations associated with the small deformation theory of 

a thermoelastic material are summarized as follows: 

 

KINEMATICS 

Strain-displacement relations  (3.15) 

  e = 
1

2
 [∂u/∂x + (∂u/∂x)T] = eT ,    eij = 

1

2
 (ui,j + uj,i) = eji  . (6.1a,b) 

Deviatoric strain  (3.31) 

  e' = e – 
1

3
 (e • I) I  ,     eij'  = eij – 

1

3
  emm ij  . (6.2c,d) 

Compatibility  (3.58) 

  eij,mm + emm,ij – eim,mj – ejm,im = 0  . (6.3) 

 

BALANCE  LAWS 

Conservation of mass  (4.51a,b) 

    = 0 (1 – e • I)  ,    = 0 (1 – emm)  , (6.4a,b) 

Balance of linear momentum  (4.51c,d) 

  0 
••
u = 0 b + div T  ,    0 

••
u i = 0 bi + Tij,j  . (6.5a,b) 

Balance of entropy  (4.51e,f) 

  0 
•
 = 0 s – div p + 0   ,   0 

•
 = 0 s – pj,j + 0   . (6.6a,b) 

Balance of angular momentum  (4.52a,b) 

  TT = T  ,    Tij = Tji  . (6.7a,b) 

Balance of energy  (4.40) 

  0 
•
 = 0 r – div q + T • 

•
e  ,   0 

•
 = 0 r – qj,j + Tij 

•
eij  ,   (6.8a,b) 

 

CONSTITUTIVE  EQUATIONS 

Helmholtz free energy  (5.9a) 
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  0 = 0Cv [ (–0) –  ln(/0)] + 
1

2
 K (e • I)2 +  e' • e'  

  – 3 K (–0) (e • I)  ,  (6.9a) 

  0 = 0Cv [ (–0) –  ln(/0)] + 
1

2
 K emm enn +  eij'  eij'   

  – 3 K (–0) emm  ,  (6.9b) 

Entropy flux vector  (5.9b) 

  p = – 



  g  ,   g = ∂/∂x  ,   pi = – 




  gi  ,   gi = ,i  . (6.10a,b,c,d) 

Heat flux vector  (5.10) 

  q = –  g ,    g = ∂/∂x  ,   qi = –   gi  ,   gi = ,i  . (6.11a,b,c,d) 

Entropy  (5.12a) 

  0 = 0Cv ln(/0) + 3K (e • I)  , (6.12a) 

  0 = 0Cv ln(/0) + 3K emm  , (6.12b) 

Internal rate of production of entropy (4.45), (5.7c) 

  0 = – p • g  , (6.13) 

Stress  (5.12b,c,d) 

  T = – p I + T'  ,   p = – K{e • I – 3(–0)} ,   T' = 2 e'  ,  (6.14a,b,c) 

  Tij = – p ij + Tij'   ,   p = – K{emm – 3(–0)} ,   Tij'  = 2 eij'    . (6.14d,e,f) 

Internal energy  (5.13) 

  0 = 0Cv (–0) + 3K0 (e • I) + 
1

2
 K (e • I)2 +  e' • e' . (6.15) 

 

 

SMALL  TEMPERATURE  VARIATIONS  AND  SMALL  STRAINS 

 For small temperature variations and small strains it is possible to neglect quadratic 

terms in e and (–0) to obtain the following simplified constitutive equations 

Entropy flux vector 
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  p = – 


0
  ∂/∂x  ,      pi = – 



0
   ,i  . (6.16a,b) 

Entropy 

  00 = 0Cv (–0) + 3K0 (e • I)  , (6.17a) 

  00 = 0Cv (–0) + 3K0 emm  , (6.17b) 

Internal rate of production of entropy (4.45), (5.7c) 

  00 = 0  , (6.18) 

Internal energy 

  0 = 0Cv (–0) + 3K0 (e • I). (6.19) 

 

LINEARIZED  HEAT  EQUATION 

 It then follows from (6.16)-(6.19), that the balance of entropy (6.6) and the balance of 

energy (6.8) reduce to the same linearized equation 

  0 
•
 = 0 r – div q  ,   0 

•
 = 0 r – qj,j  ,   (6.20a,b) 

where 0s has been approximated by r, and the quadratic term T • 
•
e has been neglected in 

the energy equation. 

 

SUMMARY  OF  THE  LINEARIZED  THEORY 

 Using the above approximations the main balance laws and constitutive equation used 

to determine the mass density , the displacements ui, and the temperature can be 

summarized as follows. 

Balance laws  

    = 0 (1 – e • I)  ,    = 0 (1 – emm)  , (6.21a,b) 

  0 
••
u = 0 b + div T  ,    0 

••
u i = 0 bi + Tij,j  , (6.21c,d) 

  0 
•
 = 0 r – div q  ,   0 

•
 = 0 r – qj,j  .   (6.21e,f) 

Constitutive equations 

  T = – p I + T'  ,   p = – K{e • I – 3(–0)} ,   T' = 2 e'  ,  (6.22a,b,c) 
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  Tij = – p ij + Tij'   ,   p = – K{emm – 3(–0)} ,   Tij'  = 2 eij'   , (6.22d,e,f) 

  q = –  ∂/∂x  ,   qi = –  ,i  , (6.22g,h) 

 0 = 0Cv (–0) + 3K0 (e • I),    0 = 0Cv (–0) + 3K0 emm.   (6.22i,j) 

 

MATERIAL  CONSTANTS 

 Table 6.1 lists material constants for a few materials.  The values of {0 , K , } were 

taken from p. 201 of Kolsky (1963), the values of { , Cv , } were taken from p. D-185 

of the CRC Handbook of Chemistry and Physics (1988), and the values of {Y , T} were 

taken from Ashby and Jones (1995).  Here, T is the tensile strength for brittle materials. 

 

Material 

Property 

Steel 

(Iron) 

Aluminum Silicon 

(Glass) 

 

0 (Mg/m3) 7.8 2.7 2.5 

K (GPa) 167.0 73.0 47.0 

 (GPa) 81.0 26.0 28.0 

E (GPa)* 209.0 69.7 70.1 

 * 0.291 0.341 0.251 

Y (GPa) 0.220 0.27 –– 

T(GPa) –– –– 7.20 

 (K–1) 12.0 10-6 25.0 10-6 3.0 10-6 

Cv (kJ/kg/K) 0.452 0.900 0.712 

 (J/s/K/m) 80.3 237.0 83.5 

 

Table 6.1  Material constants for steel, aluminum and silicon. 

*Calculated using the formulas presented in Table 9.1. 
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7. Initial and boundary conditions, Saint Venant's principle 

 In general, the number of initial conditions and the type of boundary conditions 

required will depend on the specific type of material under consideration.  However, for 

the thermoelastic material under consideration these initial and boundary conditions are 

quite clear.  

 To this end, it is recalled that the local forms of balance of linear momentum 

(6.21c,d) and the balance of energy (6.21e,f) are partial differential equations which 

require both initial and boundary conditions.  Specifically, the balance of linear 

momentum (6.21c,d) is second order in time with respect to displacement u so that it is 

necessary to specify the initial value of u and the initial value of the velocity v at each 

point of the body 

   u(x,0) = 
–
u(x)   on P  for t =0  , (7.1a) 

  
•
u(x,0) = 

–
v(x)   on P  for t = 0 , (7.1b) 

where 
–
u(x) and 

–
v(x) are specified function.  Also, the balance of energy (6.21e,f) is first 

order in time with respect to the temperature  and the displacement u so that it is 

necessary to specify the initial value of  at each point of the body 

   (x,0) = 
–
(x)   on P  for t =0  , (7.2) 

where 
–
(x) is a specified function. 

 Guidance for determining the appropriate form of the boundary conditions is usually 

obtained by considering the rate of work done by the stress vector and the rate of supply 

of heat in the balance of energy (4.31).  From (4.6) and (4.29) it can be observed that t • 
•
u 

is the rate of work per unit area ∂P done by the stress vector.  Now, at each point of the 

surface ∂P it is possible to define a right-handed orthogonal coordinate system with base 

vectors { s1 , s2 , n }, where n is the unit outward normal to ∂P and s1 and s2 are 

orthogonal vectors tangent to ∂P.  Then, with reference to this coordinate system it can be 

shown that 

  t • 
•
u = (t • s1) (

•
u • s1) + (t • s2) (

•
u • s2) + (t • n) (

•
u • n)  on  ∂P  . (7.3) 

Thus, using this representation it is possible to define three types of boundary conditions 



 

 

50 

Kinematic:  All three components of the velocity are specified 

  (
•
u • s1)  ,   (

•
u • s2)  ,   (

•
u • n)  specified on ∂P for all t ≥0 ,   (7.4) 

Kinetic:  All three components of the stress vector are specified 

  (t • s1)  ,   (t • s2)  ,   (t • n)  specified on ∂P for all t ≥0 ,   (7.5) 

Mixed:  Conjugate components of both the velocity  and the stress vector are specified 

  (
•
u • s1)  or   (t • s1)  specified on ∂P  for all t ≥0, (7.6a) 

  (
•
u • s2)  or   (t • s2)   specified on ∂P  for all t ≥0 ,   (7.6b) 

  (
•
u • n)  or  (t • n)   specified on ∂P  for all t ≥0 .   (7.6c) 

Essentially, the conjugate components (t • s1),(t • s2),(t • n) are the responses to the 

motions (
•
u • s1),(

•
u • s2),(

•
u • n), respectively.  Therefore, it is important to emphasize that, 

for example, both (
•
u • n) and (t • n) cannot be specified at the same point of ∂P because 

this would mean that both the motion and the stress response can be specified 

independently of the material properties of the body.  Notice also, that since the initial 

position of points on the boundary ∂P are specified by the initial condition (7.1a), the 

velocity boundary conditions (7.4) can be used to determine the position of the boundary 

for all time.  This means that the kinematic boundary conditions (7.4) could also be 

characterized by specifying the position of points on the boundary for all time. 

 Next, it is observed from (4.30) that (– q • n) is the rate of heat supplied to the body 

per unit area of ∂P.  It then follows using the constitutive equation (5.10) that at each 

point of the surface ∂P two types of boundary conditions can be specified 

Kinematic:  The value of the temperature is specified 

    specified on ∂P for all t ≥0 ,   (7.7a) 

Kinetic:  The normal component of the heat flux vector is specified 

  q • n  specified on ∂P for all t ≥0 . (7.7b) 

 

 

 

STRESS  TENSOR  AND  STRESS  VECTOR 
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 It is important to emphasize that the state of stress at a point in the body is 

characterized by the stress tensor T(x,t) which is a function of positions and time only.  

However, the boundary conditions (7.5) and (7.6) are specified in terms of components of 

the stress vector t(x,t;n), which is a function of position, time and the unit outward 

normal n to the surface ∂P at the point x.  Specifically, from (4.10) it follows that t is a 

linear function of  and n, such that 

  t(x,t;n) = T(x,t) n  ,   ti = Tij nj  . (7.8) 

This equation can also be written in the matrix form 

  









t1

t2

t3

  = 









T11 T12 T13

T12 T22 T23

T13 T23 T33

  









n1

n2

n3

   , (7.9)  

where use has been made of the fact that T is a symmetric tensor.  In particular, notice 

that if the values of ti are given on a specific surface, then (7.9) represents only three 

equations in terms of the six stresses Tij.  This means that not all of the stress components 

can be determined from boundary conditions on a single surface. For example, consider 

the surface whose outward normal is n = e1.  It then follows that 

  ti = Tijnj = Ti1 = (T11, T21 , T31)    for ni = (1,0,0)  . (7.10) 

Thus, no information can be obtained about the components (T22, T23, T33) of the stress 

tensor from this boundary condition. 

 

SAINT  VENANT 'S  PRINCIPLE 

 The global forms of the balance of linear momentum (4.5) and the balance of angular 

momentum (4.21) depend on the net effect of the tractions t (stress vector) on the 

boundary ∂P of the body.  In particular, with reference to the surface S which is part of 

the boundary ∂P, the resultant force F and moment M0 (about the point x0) applied by t 

can be written in the forms 

  F = S t da   ,  M0 =  S (x – x0)  t da  . (7.11) 



 

 

52 

Consequently, any distribution of the traction vector t which produces the same values 

for F and M0 will have the same net effect on the response of the body.  Such 

distributions of traction vectors are called equipollent. 

 Saint Venant's principle states that: 

  The differences between the solutions associated with two equipollent 

tractions vectors diminishes with distance from the boundary at which 

they are applied. 

Therefore, an approximate solution of a boundary value problem can be obtained by 

replacing the specified traction vector field with another simpler equipollent field.  This 

principle is used often in approximating boundary conditions like those associated with a 

clamped edge of a beam. 
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8.  Superposition 

 

 

   

 

 

 

 

 

 

Fig. 8.1  Sketch of the principle of superposition. 

 A complete initial value and boundary value problem associated with thermoelasticity 

requires the determination of the displacement and temperature fields 

  { u ,  }  , (8.1) 

and the kinetic quantities 

  { [–0] , T ,  , q }   , (8.2) 

which satisfy the balance laws (6.21), the constitutive equations (6.22), the initial 

conditions (7.1) and (7.2), and the boundary conditions (7.4)-(7.7) associated with a 

specific problem for specified values of the body force and the external heat supply 

  { b , r }  . (8.3)  

 Since all of these equations are linear functions of the given variables, it follows that 

the principle of superposition holds (see Fig. 8.1).  Specifically, the principle of 

superposition states that the sum of two solutions which satisfy the balance laws and the 

constitutive equations is also a solution.  In particular, let the one solution be 

characterized by the displacement and temperature fields 

  { u(1)  , (1) }  , (8.4) 

the kinetic quantities 

  { [(1)–0] , T(1), (1) , q(1) }   , (8.5) 

and the external fields 

  { b(1) , r(1) }  , (8.6) 

= + 

{ u  = u(1) + u(2) ,  = (1) + (2) } 

 

{ b = b(1) + b(2) , r = r(1) + r(2) }  

{ u(2) , (2) } 

 

{ b(2) , r(2) }  

{ u(1) , (1) } 

 

{ b(1) , r(1) }  

t = t(1) + t(2) 
t(2) t(1) 

q = q(1) + q(2) q(2) q(1) 
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and let the second solution be characterized by the displacement and temperature fields 

  { u(2)  , (2) }  , (8.7) 

the kinetic quantities 

  { [(2)–0] , T(2), (2) , q(2) }   , (8.8) 

and the external fields 

  { b(2) , r(2) }  . (8.9) 

Then, the principle of superposition states that the displacement and temperature 

  { u = u(1) + u(2) ,  = (1) + (2) }  , (8.10) 

and the kinetic quantities 

{ [–0] = [(1)–0] + [(2)–0] , T = T(1) + T(2),  = (1) + (2),  q = q(1) + q(2) } , (8.11) 

satisfy the balance laws and the constitutive equations when the external fields are given 

by 

  { b = b(1) + b(2) , r = r(1) + r(2) }  . (8.12) 

Moreover, the traction vector on the boundary ∂P of the body is given by 

  t = t(1) + t(2)   . (8.13) 

 It will be shown through examples that the main use of the principle of superposition 

is to combine a number of known solutions to obtain a solution of a particular set 

boundary conditions. 
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9. Simple examples with quasi-static uniform fields: Free thermal expansion, 

uniaxial stress, uniaxial strain, simple shear, adiabatic processes, restrictions on 

material constants  

 In this section, attention is confined to quasi-static uniform fields for which the strain 

e and the temperature  are independent of the position x.  For quasi-static response the 

inertia is neglected.   Consequently, in the absence of body forces (b = 0) the balance of 

linear momentum reduces to (6.21c) 

  div T = 0  ,   Tij,j = 0  . (9.1) 

Now, for uniform fields, the constitutive equations (6.22) indicate that the stress T is 

independent of position so that the balance law (9.1) is satisfied.  Also, the constitutive 

equations indicate that the heat flux vector q vanishes so that the balance of energy 

(6.21e) reduces to 

  
•
 = r  . (9.2) 

 When T is nonzero it is necessary to apply appropriate surface tractions t to the 

boundary ∂P of the body.  Also, since q vanishes,  no heat flows through the boundary 

∂P.  However, when  is nonzero, it can be observed from the balance law (9.2) that heat 

must be supplied or extracted by r. 

 Since the strains eij are independent of position, it follows from (3.39) and (3.40) that 

the strain-displacement relations (6.1) can be integrated to deduce that 

   ui = ci + ij xj + eij xj  , 

  u1 = c1 + e11 x1 +  (12 + e12) x2 + (13 + e13) x3  , 

  u2 = c2 + (–12 + e12) x1 + e22 x2 + (23 + e23) x3  , 

  u3 = c3 + (–13 + e13) x1 + (–23 + e23) x2 + e33 x3  , (9.3) 

where the constants ci represents rigid-body translation and the constants ij represents 

rigid-body rotation.  

 Before considering a number of special cases it is convenient to develop some results 

for the constitutive equations which are valid for general thermoelastic problems 

including dynamics and inhomogeneous deformations.  Specifically, with the help of 

(6.2) the constitutive equation for stress becomes 
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  Tij = K{emm – 3(–0)}ij + 2 [eij – 
1

3
  emm ij ]  , 

  Tij = K[(1 – 
2

3K
) emm – 3(–0)] ij + 2 eij  . (9.4) 

This equation can be solved for the strain by first multiplying it by ij to deduce that 

  Tmm = 3K[emm – 3(–0)]  ,  emm = 3(–0) + 
Tmm

3K
  , (9.5) 

and then using (9.4) to obtain 

  eij = 
Tij

2
  – (1 – 

2

3K
) 

Tmm

6
  ij + (–0) ij . (9.6) 

Also, equation (9.4) can then be expanded to yield 

  T11 = (K + 
4

3
) e11 + (K – 

2

3
) e22 + (K – 

2

3
) e33 – 3K(–0)  , 

  T22 = (K – 
2

3
) e11 + (K + 

4

3
) e22 + (K – 

2

3
) e33 – 3K(–0)  , 

  T33 = (K – 
2

3
) e11 + (K – 

2

3
) e22 + (K + 

4

3
) e33 – 3K(–0)  , 

  T12 = 2 e12  ,  T13 = 2 e13  ,  T23 = 2 e23  , (9.7) 

and equation (9.6) can be expanded to deduce that 

  e11 = (2 + 
2

3K
) 

T11

6
  – (1 – 

2

3K
) 

T22

6
  – (1 – 

2

3K
) 

T33

6
  + (–0)  , 

  e22 = – (1 – 
2

3K
) 

T11

6
  + (2 + 

2

3K
) 

T22

6
  – (1 – 

2

3K
) 

T33

6
  + (–0)  , 

  e33 = – (1 – 
2

3K
) 

T11

6
  – (1 – 

2

3K
) 

T22

6
  + (2 + 

2

3K
) 

T33

6
  + (–0)  , 

  e12 = 
T12

2
  ,  e13 = 

T13

2
  ,  e23 = 

T23

2
  . (9.8) 

However, it is usually more convenient to define Young's modulus of elasticity E and 

Poisson's ratio , such that (9.7) can be rewritten as 

  e11 = 
T11

E
  – 

T22

E
  – 

T33

E
  + (–0)  , 
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  e22 = – 
T11

E
  + 

T22

E
  – 

T33

E
  + (–0)  , 

  e33 = – 
T11

E
  – 

T22

E
  + 

T33

E
  + (–0)  , 

  e12 = 
T12

2
  ,  e13 = 

T13

2
  ,  e23 = 

T23

2
  . (9.9) 

Thus, comparison of (9.8) and (9.9) yields relationships between the material constants of 

the forms 

  E = 
9K

3K+
  ,   = 

(3K–2)

2(3K+)
  ,   

  E = 2(1+)  ,    K = 
E

3(1–2)
   , 

  K + 
4

3
  =  

(1–)E

(1+)(1–2)
  ,   K – 

2

3
  = 

E

(1+)(1–2)
  . (9.10) 

Next, the constitutive equation (6.22j) for the energy is expanded to obtain 

  0 = 0Cv (–0) + 3K0 (e11 + e22 + e33)  , 

  e11 + e22 + e33 =  
0{ – Cv(–0)}

3K0
   . (9.11) 

FREE  THERMAL  EXPANSION 

 For free thermal expansion, the stress Tij vanishes 

  Tij = 0  , (9.12) 

 and (9.9) yields 

  e11 = (–0)  ,  e22 = (–0)  ,  e33 = (–0)  , 

  e12 = e13 = e23 = 0  . (9.13) 

Moreover, it follows from (3.16) that the strain of all materials fibers are equal  

  E = eij Ni Nj = (–0) . (9.14) 

For this reason  is called the coefficient of thermal expansion.  Also, (9.11) yields 

  0 = [0Cv + 9K20] (–0)  . (9.15) 
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UNIAXIAL  STRESS 

 For uniaxial stress in the e1 direction, the only nonzero component of stress is T11  

  T11 ≠ 0 ,  all other Tij = 0  , (9.16) 

so that (9.9) yields 

  e11 = 
T11

E
 + (–0)  ,  e22 = e33 = – 

T11

E
  + (–0)  , 

  e12 = e13 = e23 = 0  . (9.17) 

In particular, notice that the lateral strains e22 and e33 are equal and nonzero.  Also, 

(9.11) yields 

  0 = [0Cv + 9K20] (–0) + [3K0]  
(1–2)T11

E
  . (9.18) 

 For the simpler case when the temperature  remains the reference temperature 0, 

these results reduce to 

  e11 = 
T11

E
  ,  e22 = e33 = – 

T11

E
  ,   e12 = e13 = e23 = 0  , 

  0 = [3K0]  
(1–2)T11

E
  ,  for =0  , (9.19) 

which show that tension (T11>0) causes extension (e11>0) in the axial direction,  

contraction (e22=e33<0) in the lateral direction, and increase in internal energy. 

 

UNIAXIAL  STRAIN 

 For uniaxial strain in the e1 direction, the only nonzero component of strain is e11  

  e11 ≠ 0  ,  all other eij = 0  , (9.20) 

so that (9.7) yields 

  T11 = (K + 
4

3
) e11 – 3K(–0)  ,   T22 = T33 = (K – 

2

3
) e11 – 3K(–0)  , 

  T12 = T13 = T23 = 0  . (9.21) 

In particular, notice that the lateral stresses T22 and T33 are equal and nonzero.  Also, 

(9.11) yields 
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  0 = 0Cv (–0) + 3K0 e11  . (9.22) 

 

SIMPLE  SHEAR 

 For simple shear in the e1–e2 plane, the only nonzero component of strain is e12 

  e12 ≠ 0  ,  all other eij = 0  . (9.23) 

so that (9.7) yields 

  T11 = T22 = T33 = – 3K(–0)  ,   T12 = 2 e12  ,  T13 = T23 = 0  . (9.24) 

Also, (9.11) yields 

  0 = 0Cv (–0)  . (9.25) 

In particular, notice that if the temperature  remains the reference temperature 0, then 

T12 is the only nonzero component of stress 

  T12 = 2 e12  ,  all other Tij = 0  ,  = 0  ,  for  =0  . (9.26) 

 

ADIABATIC  PROCESSES 

 For adiabatic processes no external heat is supplied to the body so that r vanishes in 

the energy equation (9.2).  Consequently, the internal energy  remains zero, which 

means that the temperature is determined by the equation (9.11) 

   = 0  ,   = 0 – 
3K0

0Cv
  (e11 + e22 + e33)  . (9.27) 

This result can then be substituted into the constitutive equation (9.7) for stress to deduce 

that 

  T11 = (
–
K + 

4

3
) e11 + (

–
K – 

2

3
) e22 + (

–
K – 

2

3
) e33  , 

  T22 = (
–
K – 

2

3
) e11 + (

–
K + 

4

3
) e22 + (

–
K – 

2

3
) e33  , 

  T33 = (
–
K – 

2

3
) e11 + (

–
K – 

2

3
) e22 + (

–
K + 

4

3
) e33  , 

  T12 = 2 e12  ,  T13 = 2 e13  ,  T23 = 2 e23  , (9.28) 

where the constant 
–
K has been introduced for convenience 
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–
K = K [1 + 

9K20

0Cv
 ]  . (9.29) 

In particular, for an adiabatic process in uniaxial strain it follows that 

  T11 = (
–
K + 

4

3
) e11 ,  T22 = (

–
K – 

2

3
) e11 ,  T33 = (

–
K – 

2

3
) e11  ,   

  T12 = T13 = T23 = 0  ,    

  for  e11 ≠ 0 , all other eij = 0 ,  = 0  . (9.30) 

  

RESTRICTIONS  ON  MATERIAL  CONSTANTS 

 The material constants which characterize the response of a thermoelastic material  

  { 0 , K ,  ,  , Cv }  , (9.31) 

are specified at the reference temperature 0 which is usually specified by 

  0 = 300 K  . (9.32) 

(Here, the use of the symbol K for degrees Kelvin should not be confused with the use of 

the same symbol K for the bulk modulus.)  Since these material constants model the 

response of real materials, they must satisfy certain physical restrictions.  For example, 

for uniaxial stress at reference temperature (9.19), it is expected that the material fiber in 

the axial direction will extend (e11>0) when the material is in tension (T11>0), which 

requires Young's modulus to be positive 

  E > 0  . (9.33) 

Similarly, for simple shear (9.26), is expected that the material will shear in the direction 

of the shear stress so that the shear modulus must be positive 

   > 0  . (9.34) 

These restrictions can be used together with the expressions (9.10) to show that the bulk 

modulus is positive 

  K > 0  , (9.35) 

and that Poisson's ratio is limited to the range 

  – 1 <  < 
1

2
  . (9.36) 
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In this regard, it is interesting to note that the restriction (9.35) can be alternatively 

obtained by requiring the part of the Helmholtz free energy (6.9) due to dilatational 

deformation to be positive definite 

  
1

2
 K (e • I)2 > 0    for  e ≠ 0  . (9.37) 

Also, the restriction (9.34) can be alternatively obtained by requiring the part of the 

Helmholtz free energy (6.9) due to distortional deformation to be positive definite 

   e' • e' > 0    for  e' ≠ 0  . (9.38) 

 Moreover, it is expected that for zero strain (eij=0) the temperature of the material 

must increase if heat is added (r >0), which requires the specific heat at constant 

deformation to be positive 

  Cv > 0  . (9.39) 

Also, since heat flows from hot to cold regions the heat conduction coefficient  is 

positive 

   > 0 . (9.40) 

 

 

 



 

 

62 

RELATIONSHIPS  BETWEEN  ELASTIC  CONSTANTS 

 Table 9.1 records the relationships between various pairs of elastic constants for 

isotropic elastic materials.  In this table:  is Lame's constant,  is the shear modulus, E is 

Young's modulus,  is Poisson's ratio, and K is the bulk modulus. 

 

 

 




 



 
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

 

 

K 



 , 
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(3+2)

+
  



2(+)
 

3+2

3
  



 , 


(1–2)

2
  

(1+)(1–2)


  

(1+)

3
  

 



 , K


3(K–)

2
  

9K(K–)

3K–
  



3K–
  

 

 



 , E

(2–E)

E–3
    

E–2

2
  

E

3(3–E)
  

 



 , 

2

1–2
   

 

2(1+) 
 

2(1+)

3(1–2)
  

 



 , K

3K–2

3
   

9K

3K+
  

3K–2

2(3K+)
  

 

 

 

E

E
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E

2(1+)
    

E

3(1–2)
  

 

 

E , K 

3K(3K–E)

9K–E
  

3EK

9K–E
   

3K–E

6K
  

 

 



 , K 

3K

1+
  

3K(1–2)

2(1+)
  

 

3K(1–2) 

 

  


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(E–3)+ (E–3)2+8E

4
   ,         = 

–(E+)+ (E+)2+82

4
   ,   

K = 
(3+E)+ (3+E)2–4E

6
 

 

 

Table 9.1  Relationships between various pairs of elastic constants.
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10. Beltrami-Michell compatibility equations  

 For dynamic problem where inertia cannot be neglected it is necessary to solve the 

equations of linear momentum (6.21c,d) directly for the displacements ui.  Consequently, 

there is no need to check for compatibility since a displacement field exits.  However, for 

static problems the equilibrium equation becomes 

  0  = 0 bi + Tij,j  , (10.1) 

which sometimes can be solved for the stresses without determining the displacements.  

Under these conditions it is necessary to limit the possible solutions for the stresses only 

to those stresses for which a displacement field exists.  Specifically, it is necessary to 

ensure that the strain field associated with the proposed stress field satisfies the 

compatibility equations (3.58) 

  eij,mm + emm,ij – eim,mj – ejm,im = 0  . (10.2) 

 To this end, it is noted that the expression (9.10) for E can be used to rewrite the 

constitutive equations (9.9) in the forms 

  e11 = 
T11

E
  – 

T22

E
  – 

T33

E
  + (–0)  , 

  e22 = – 
T11

E
  + 

T22

E
  – 

T33

E
  + (–0)  , 

  e33 = – 
T11

E
  – 

T22

E
  + 

T33

E
  + (–0)  , 

  e12 = 
(1+)T12

E
  ,  e13 = 

(1+)T13

E
  ,  e23 = 

(1+)T23

E
  , (10.3) 

Moreover, these equations can be written in the compact indicial form 

  eij = 
1

E
 [(1+) Tij –  Tnn ij ] + (–0)ij . (10.4) 

Next, with the help of this result, the compatibility equations (10.2) can be written in 

terms of the stresses and the temperature field in the forms 

  (1+) Tij,mm + Tmm,ij – (1+) [Tim,mj + Tjm,im] –  Tnn,mm ij 

  + E[,ij + ,mm ij ] = 0  . (10.5) 

Moreover, by contracting on ij it can be shown that 
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  Tnn,mm = 
1+

1–
 Tnm,mn – 

2

1–
 E,mm  , (10.6) 

which can be used to reduce (10.5) to the equation 

  (1+) Tij,mm + Tmm,ij – (1+) [Tim,mj + Tjm,im]  – 
(1+)

(1–)
  Tnm,mn ij 

  + E[,ij +  
1+

1–
 ,mm ij ] = 0  . (10.7) 

Next, the equation (10.1) can be used to deduce the results 

  Tim,mj = – 0 bi,j  ,   Tjm,im = – 0 bj,i   ,  Tnm,mn = – 0 bm,m , (10.8) 

so that (10.7) can be rewritten in the form 

  Tij,mm + [
1

1+
 ] Tmm,ij = – 0 [bi,j + bj,i + {



1–
} bm,m ij] 

  – [
E

1+
][,ij +  

1+

1–
 ,mm ij ]  . (10.9) 

These equations are called the Beltrami-Michell compatibility equations. 

 For the special case when the body force is constant and the temperature gradient is 

constant 

  bi = constant  ,   ,i = gi = constant  , (10.10) 

the compatibility equations (10.9) reduce to 

  Tij,mm + [
1

1+
 ] Tmm,ij = 0  ,    (10.11) 

which in expanded form become 

  T11,11 + T11,22 + T11,33 + [
1

1+
 ][T11,11 + T22,11 + T33,11] = 0  , 

  T22,11 + T22,22 + T22,33 + [
1

1+
 ][T11,22 + T22,22 + T33,22] = 0  , 

  T33,11 + T33,22 + T33,33 + [
1

1+
 ][T11,33 + T22,33 + T33,33] = 0  , 

  T12,11 + T12,22 + T12,33 + [
1

1+
 ][T11,12 + T22,12 + T33,12] = 0  , 

  T13,11 + T13,22 + T13,33 + [
1

1+
 ][T11,13 + T22,13 + T33,13] = 0  , 
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  T23,11 + T23,22 + T23,33 + [
1

1+
 ][T11,23 + T22,23 + T33,23] = 0  . (10.12) 
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11. Two-dimensional plane strain and generalized plane stress problems 

 Consider a thermoelastic body which has a right-cylindrical shape with a general 

lateral surface ∂P',  and flat bottom and top surfaces ∂P1 and ∂P2, respectively.  If 

appropriate boundary conditions and body forces are applied then the response of this 

body can be purely planar.  For these two-dimensional problems the displacements, 

temperature and stresses depend on only two space variables and time.  More 

specifically, these two-dimensional problems can be either plane strain problems (which 

are special exact solutions of the three-dimensional equations) or they can be generalized 

stress problems (which often are only approximate solutions of the three-dimensional 

equations). 

 

PLANE  STRAIN  PROBLEMS 

 For plane strain problems all field quantities are independent of one spatial coordinate 

which here is taken to be x3.  Specifically, the displacements ui, the temperature , the 

stresses Tij, and the body force bi take the forms 

  u= u(x,t)  ,  u3 = 0  ,   = (x,t)  , 

  T = T(x,t)  ,  T3 = 0  ,   T33 = T33(x,t)  ,   

  b = b(x,t)  ,   b3 = 0  ,   for ,=1,2 (11.1) 

where for convenience, throughout the text Greek indices take only the values 1,2.   

Using the expressions (6.1), it then follows that the strain-displacement relations reduce 

to 

  e = e(x,t) = 
1

2
 (u, + u,)  ,   e3i = 0  . (11.2a,b) 

Moreover, the balance laws (6.21) become 

          = 0 (1 – e)  ,   0 
••
u = 0 b + T,  ,   0 

•
 = 0 r – q,  . (11.3a,b,c) 

 Next, with the help of the expression for E in (9.10), the constitutive equation (10.4) 

can be rewritten in the form 

  eij = 
1

2
 [Tij – 



1+
 Tnn ij ] + (–0)ij . (11.4) 

In particular, using (11.4) it follows that 
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  e3 = 0  ,  e33 =  
1

2
 [T33 – 



1+
 Tnn ] + (–0)  , 

  e33 =  
1

2(1+)
 [T33 –  T ] + (–0)  , (11.5) 

where use has been made of the expression 

  Tnn = T + T33 . (11.6) 

Thus, the strain e33 will vanish provided that T33 is given by 

  T33 =  T – 2(1+)(–0)  , (11.7) 

so that (11.4) can be rewritten in the form 

  e = 
1

2
 [T –  T  ] + (1+)(–0) ,   e3i = 0  . (11.8) 

Moreover, this equation can be inverted and the constitutive equations for stress can be 

summarized as 

  T = 2 [e + {


1–2
} e ] – 

2(1+)

(1–2)
 (–0)  , 

  T3 = 0  ,  T33 =  T – 2(1+)(–0)  . (11.9) 

In particular, notice that for plane strain, a nonzero stress T33 is required to cause the 

strain e33 to vanish.   

 

GENERALIZED  PLANE  STRESS 

 For generalized plane stress problems the displacements, temperature, stress and body 

force are independent of the variable x3, such that 

  u= u(x,t)  ,    = (x,t)  ,  T = T(x,t)  ,  T3i = 0  ,   

  b = b(x,t)  ,   b3 = 0  ,   for ,=1,2  . (11.10) 

Next, the constitutive equations (11.4) can be written in the forms 

  e = 
1

2
 [T – 



1+
 T  ] + (–0) , 

  e3 = 0  ,   e33 = – 
1

2
 [



1+
 ] T + (–0)  , (11.11) 
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which indicates that the strain e33 does not vanish.  In this regard, it is important to 

emphasize that often generalized plane stress problems are only approximate solutions of 

the three-dimensional equations because a function for the displacement u3 may not exist 

even though the displacements u do exit.  Moreover, this equation can be inverted and 

the constitutive equations for stress can be summarized as 

  T = 2 [e + {


1–
} e ] – 

2(1+)

(1–)
 (–0)  ,   T3i = 0  . (11.12) 

GENERAL  TWO-DIMENSIONAL  CONSTITUTIVE  EQUATIONS 

 Comparison of the constitutive equations (11.8) and (11.9) for plane strain with 

(11.11) and (11.12) for generalized plane stress indicates the constitutive equations for 

both plane strain and generalized plane stress can be brought into a one-to-one 

correspondence by introducing a modified value 
–
 for Poisson's ratio and the modified 

value 
–
 for the coefficient of thermal expansion, such that 

  
–
 =  and  

–
 =   for plane strain  , 

  
–
 = 



1+
   and  

–
 = [

1+

1+2
]    for generalized plane stress  , (11.13) 

where  and  are the actual value of Poisson's ratio and the thermal coefficient of 

expansion of the three-dimensional material.  More specifically, it follows from this 

definition that 

  (1+
–
)

–
 =  ,   

–


1–2
–


  = 


1–
  ,   

(1+
–
)

(1–2
–
)

 
–
 = 

(1+)

(1–)
  (11.14) 

Thus, with the help of the equations (11.8), (11.9), (11.11), (11.12) and the definitions 

(11.13), it can be shown that the general two-dimensional constitutive equations can be 

written in the forms 

  e = 
1

2
 [T – 

–
 T  ] + (1+

–
)

–
(–0) ,   e3 = 0  , 

  T = 2 [e + {
–


1–2
–

} e ] – 

2(1+
–
)

(1–2
–
)

 
–
(–0)  ,  T3 = 0  . (11.15) 

Also, for plane strain 
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–
 =  ,   

–
 =  , 

  e33 = 0  ,   T33 =  T – 2(1+)(–0)  , (11.16) 

whereas for generalized plane stress  

  
–
 = 



1+
   ,  

–
 = [

1+

1+2
]   , 

   e33 = – 
1

2
 [



1+
 ] T + (–0)  ,   T33 = 0  . (11.17) 

 Next, with the help of (6.22) it follows that the constitutive equations for the heat flux 

qi and the internal energy  for planar problems can be written as 

  q = –  ,  ,   q3 = 0  , (11.18) 

and 

  0 = 0Cv (–0) + 3K0 [e + e33].   (11.19)  

Thus, for plane strain (11.19) reduces to 

  0 = 0Cv (–0) + 3K0 [e],   (11.20) 

whereas for generalized plane stress it follows from (11.12) that 

  T = 2 [
1+

1–
] [e – 2(–0)]  , (11.21) 

so that (11.17) yields 

   e33 = – [


1–
 ] [e – 2(–0)] + (–0) 

  e + e33 = [
1–2

1–
 ] e + [

1+

1–
] (–0)  . (11.22) 

Consequently, substituting (11.22) into (11.19) yields the internal energy for generalized 

plane stress in the form 

  0 = [0Cv  + 3K20{
1+

1–
}] (–0) + 3K0 [

1–2

1–
] e  . (11.23) 

 

 INITIAL  AND  BOUNDARY  CONDITIONS  

 The balance of linear momentum (11.3b) and the balance of energy (11.3c) are partial 

differential equations which are second order in time for the displacements u, first order 
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in time for the temperature , and second order in space for both the displacements and 

the temperature. It therefore, follows that the initial conditions in the region P occupied 

by the body are specified by (7.1) and (7.2), whereas the boundary conditions used to 

solve the equations (11.3b) and (11.3c) are specified in forms similar to  (7.4)-(7.7) on 

the lateral surface ∂P' of P.  More specifically, for two-dimensional problems the traction 

vector on the boundary of the body becomes 

  t = T n  ,  t3 = 0  on ∂P'  , 

  t = 0  ,  t3 = – T33  on ∂P1  ,   t = 0  ,  t3 = T33  on ∂P2  . (11.24) 
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12. Compatibility equations and Airy's stress function for two-dimensional 

problems 

 For two-dimensional dynamic problem where inertia cannot be neglected it is 

necessary to solve the equations of linear momentum (11.3b) directly for the 

displacements u.  Consequently, there is no need to check for compatibility since a 

displacement field exits.  However, for static problems the equilibrium equation becomes 

  0 b + T, = 0  , (12.1) 

which sometimes can be solved for the stresses without determining the displacements.  

Under these conditions it is necessary to limit the possible solutions for the stresses only 

to those stresses for which a displacement field exists.  Specifically, it is necessary to 

ensure that the strain field e associated with the proposed stress field satisfies the 

compatibility equations (3.58).    

 

COMPATIBILITY  EQUATIONS 

 Specifically, with the help of the expressions (11.2) it follows that the compatibility 

equations (3.58) reduce to 

  e, + e, – e, – e, = 0  , (12.2) 

which restrict the inplane components of strain so that the displacements u exit.  

However, these three equations represent only one nontrivial equation since one of them 

(=1,=2) automatically vanishes and the other two equations (==1; and ==2) are 

identical and require 

  e11,22 + e22,11 – 2e12,12 = 0  , (12.3) 

which is the same as the first of (3.57). 

 Next, with the help of the constitutive equation (11.15) it can be shown that 

  e = 
1

2
 [T – 

–
 T  ] + (1+

–
)

–
(–0) , (12.4) 

where the variables 
–
 and 

–
 have been defined in (11.13). Thus, it follows that 

  e11 =  
1

2
 [(1–

–
) T11 – 

–
 T22 ] + (1+

–
)

–
(–0)  , 
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  e22 =  
1

2
 [– 

–
 T11 + (1–

–
) T22 ] + (1+

–
)

–
(–0)  , 

  e12 = 
1

2
 [T12]  , (12.5) 

so that the compatibility equation (12.3) can be rewritten in the form 

  [(1–
–
) T11,22 – 

–
 T22,22] + [– 

–
 T11,11 + (1–

–
) T22,11] – 2T12,12  

  =  – 2(1+
–
)

–
,   . (12.6) 

Rearranging this equation it is possible to deduce that 

  [T11,22 + T22,11 – 2T12,12] – 
–
 [T11,11 + T11,22 + T22,11 + T22,22] 

  =  – 2(1+
–
)

–
,   . (12.7) 

Thus, the stress field must satisfy this compatibility equation in order to a strain field u 

to exist. 

 

AIRY'S  STRESS  FUNCTION 

 For the simple case when the body force is derivable from a potential V 

  0 b = – V, , (12.8) 

the equations of equilibrium (12.1) reduce to 

  T, – V, = 0  . (12.9) 

Now, it can easily be seen that these equilibrium equations are automatically satisfied if 

the stress field T is determined by derivatives of the Airy's stress function (x), such 

that 

  T = [,+ V]  – ,   , 

  T11 = ,22 + V  ,  T22 = ,11 + V ,   T12 = – ,12  . (12.10) 

Moreover, it can be shown that 

  T11,22 + T22,11 – 2T12,12 = , + V, = 22  + 2V , 

  T11,11 + T11,22 + T22,11 + T22,22 = , + 2V, = 22  + 22V , (12.11) 

so that for the body force (12.8), the compatibility equation (12.7) reduces to 
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  22 = – [
1–2

–


1–
–


] 2V – 2[
1+

–


1–
–

]–
 2   . (12.12) 

Alternatively, it follows from (12.10) that 

  2 = T – 2V  , (12.13) 

so that the compatibility condition (12.12) can be rewritten in the form 

  2T = [
1

1–
–

] 2V – 2[

1+
–


1–
–

]–
 2   . (12.14) 

Thus, when the body force potential V is a harmonic function (2V=0), the temperature 

field  is steady (independent of time) and there is no heat supply (2=0), the 

compatibility equations require the Airy's stress function to be a biharmonic function 

  22 = 2T = 0  . (12.15) 

 Using the Airy's stress function it is relatively easy to find stress fields which satisfy 

the equations of equilibrium and the compatibility equations for two-dimensional 

problems. Consequently, the main effort in finding the solution of a two-dimensional 

problem is shifted to the problem of satisfying the boundary conditions. 
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13. Two-dimensional problems in rectangular Cartesian coordinates 

 In this section attention is confined to the solution of two-dimensional problems in 

rectangular Cartesian coordinates for which the temperature is constant 

   = 0  , (13.1) 

and the body force is constant 

  b = constant  .   (13.2) 

It then follows that the body force is determined by a potential V such that 

  0 b = – V,  ,   V = – 0 bx  . (13.3) 

Moreover, the stresses for equilibrium are determined by the equations (12.10) in terms 

of V and the Airy's stress function , suchthat  

  T11 = ,22 + V  ,  T22 = ,11 + V ,   T12 = – ,12  , (13.3) 

and the compatibility equation (12.12) then requires 

  22 = 2T = 0  . (13.4) 

Also, the expressions (12.5) for the strains reduce to  

  e11 = (1–
–
) 

T11

2
  – 

–
 

T22

2
  ,   e22 = – 

–
 

T11

2
  + (1–

–
) 

T22

2
  ,  e12 = 

T12

2
  , (13.5) 

where 
–
 is defined by (11.13).  Furthermore, with the help of (11.20) and (11.23), the 

internal energy becomes  

  0 = 3K0 [e],   (13.6) 

for plane strain and becomes 

  0 = 3K0 [
1–2

1–
] e  . (13.7) 

for generalized plane stress. 

 A number of problems for beams can be solved by considering polynomial solutions 

of the biharmonic equation (13.4).  Specifically, let (m) be a polynomial of order m 

defined by 

  (m) = (m)(x1,x2) = 
n=0

m

 Cm–n,n  x1
m–n  x2

n    , (13.8) 
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where Cm–n,n are constant coefficients.  This function will be biharmonic if it satisfies the 

equation 

  22 (m) = (m), = 
∂4(m)

∂x1
4  + 2 

∂4(m)

∂x1
2∂x2

2  + 
∂4(m)

∂x2
4   = 0  . (13.9) 

 For polynomials of order (m < 4), the function (13.8) satisfies the biharmonic 

equation (13.9) for all values of the coefficients Cij.  However, for polynomials of order 

(m ≥ 4) the coefficients Cij must satisfy certain restrictions in order for (m) to be a 

biharmonic function.  These restrictions can be developed by substituting (13.8) into 

(13.9) to obtain 

  
n=0

m–4

 [(m–n)(m–n–1)(m–n–2)(m–n–3)] Cm–n,n  x1
m–n–4 x2

n 

  + 
n=2

m–2

  2 [(m–n)(m–n–1)(n)(n–1)] Cm–n,n  x1
m–n–2 x2

n–2 

  + 
n=4

m

  [(n)(n–1)(n–2)(n–3)] Cm–n,n  x1
m–n x2

n–4  = 0  . (13.10) 

Then, the indices can be changed so that 

  
n=0

m–4

 {[(m–n)(m–n–1)(m–n–2)(m–n–3)] Cm–n,n  

  + 2 [(m–n–2)(m–n–3)(n+2)(n+1)] Cm–n–2,n+2 

  + [(n+4)(n+3)(n+2)(n+1)] Cm–n–4,n+4 } x1
m–n–4 x2

n = 0  . (13.11) 

Now, since the coefficient of each of the (m–3) terms must vanish, it follows that 

coefficients are restricted by the (m–3) equations 

  [(m–n)(m–n–1)(m–n–2)(m–n–3)] Cm–n,n 

  + 2 [(m–n–2)(m–n–3)(n+2)(n+1)] Cm–n–2,n+2 

  + [(n+4)(n+3)(n+2)(n+1)] Cm–n–4,n+4 = 0   

  for n = 0,1,2,...,m–4     and  m ≥ 4  . (13.12) 
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 The stresses vanish for the polynomial with m=1. Moreover, the following give the 

polynomials of orders 2-5 as well as the associated stresses.  The specific values of the 

constant coefficients can be determined by using superposition to combine the solutions 

to match specified boundary conditions. 

For  m = 2 

 (2) = C20 x1
2 + C11 x1 x2 + C02 x2

2  , 

 T11
(2) = (2),22 = 2 C02  ,  T22

(2) = (2),11 = 2 C20  ,  T12
(2) = – (2),12 = – C11  , (13.13) 

For  m = 3 

 (3) = C30 x1
3 + C21 x1

2 x2 +  C12 x1 x2
2 + C03 x2

3  , 

 T11
(3) = (3),22 = 6 C03 x2 + 2 C12 x1  ,  T22

(3) = (3),11 = 6 C30 x1 + 2 C21 x2 ,   

 T12
(3) = – (3),12 = – 2 C21 x1 – 2 C12 x2   , (13.14) 

For  m = 4 

 (4) = C40 x1
4 + C31 x1

3 x2 +  C22 x1
2 x2

2 + C13 x1 x2
3 + C04 x2

4  , 

 3 C40 + C22 + 3 C04 = 0  , 

 T11
(4) = (4),22 = 2 C22 x1

2 + 6 C13 x1 x2 + 12 C04 x2
2  ,   

 T22
(4) = (4),11 = 12 C40 x1

2 +  6 C31 x1 x2 +  2  C22 x2
2   ,   

 T12
(4) = – (4),12 = – 3 C31 x1

2  – 4 C22 x1 x2 – 3 C13 x2
2  , (13.15) 

For  m = 5 

 (5) = C50 x1
5 + C41 x1

4 x2 + C32 x1
3 x2

2 +  C23 x1
2 x2

3 + C14 x1 x2
4 + C05 x2

5  , 

 5 C50 + C32 + C14 = 0  ,   C41 + C23 + 5 C05 = 0  , 

 T11
(5) = (5),22 = 2 C32 x1

3 + 6 C23 x1
2 x2 + 12 C14 x1 x2

2 + 20 C05 x2
3 ,   

 T22
(5) = (5),11 = 20 C50 x1

3 + 12 C41 x1
2 x2 +  6 C32 x1 x2

2
 +  2  C23 x2

3   ,   

 T12
(5) = – (5),12 = – 4 C41 x1

3  – 6 C32 x1
2 x2 – 6 C23 x1 x2

2  – 4 C14 x2
3  , (13.16) 
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14. Two-dimensional beam problems 

 

Fig. 14.1  Sketch of a cantilever beam 

 This section considers a class of two-dimensional beam problems.  Specifically, 

consider a rectangular cantilever beam of length L, height H, and depth W which 

occupies the region of space such that (see Fig. 14.1) 

  0 ≤ x1 ≤ L  ,  – 
H

2
 ≤ x2 ≤ 

H

2
  ,  – 

W

2
 ≤ x3 ≤ 

W

2
  . (14.1) 

The beam is subjected to surface tractions 
^
t on its top surface (x2=H/2) and surface 

tractions 
–
t  on its bottom surface (x2=–H/2) 

  t(x1,H/2;e2) = 
^
t(x1)  ,   t(x1,–H/2;–e2) = 

–
t(x1)  , (14.2) 

and axial force NL, shear force VL and bending moment ML (about the centroid of the 

cross-section) at its end (x1=L).  Also, the force of gravity g (per unit mass) acts in the 

negative e2 direction so that 

  b1 = 0  ,  b2 = – g  ,   

  0 b = – V,  ,  V = 0 g x2  . (14.3) 

In addition, the beam remains at constant temperature 

   = 0  . (14.4) 

 In order to compare the elasticity results with those of standard beam theory it is 

convenient to define the axial force n(x1), the shear force v(x1) and the bending moment 

m(x1) by the expressions 

e1 

e2 

ML 
NL 

VL 

L 

H 

^
t(x1)  

–
t(x1)  

g 
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  n(x1) = W 
–H/2

H/2
 T11 dx2  ,   v(x1) = W 

–H/2

H/2
 T12 dx2  , 

  m(x1) = – W 
–H/2

H/2
 x2 T11 dx2  . (14.5) 

Moreover, it is convenient to define the average displacement w(x1) and the average 

rotation (x1) by the formulas 

  w(x1) = 
1

H
 

–H/2

H/2
 u dx2  ,  (x1) = 

1

H
 

–H/2

H/2
 
∂u

∂x2
 dx2 = 

1

H
 [u(x1,H/2) – u(x1,–H/2)]  . (14.6) 

 Next, the equations of equilibrium of beam theory can be obtained by averaging the 

equilibrium equation of two-dimensional elasticity 

  T11,1 + T12,2 + 0 b1 = 0  , 

  T21,1 + T22,2 + 0 b2 = 0  . (14.7) 

Specifically, since for two-dimensional problems there is no dependence of quantities on 

x3, these equations can be integrated over the cross-section of the beam to obtain the 

averaged equations 

  W 
–H/2

H/2
 [T11,1 + T12,2 + 0 b1] dx2 = 0  , 

  W 
–H/2

H/2
 [T21,1 + T22,2 + 0 b2 ] dx2 = 0  . (14.8) 

Now, using the definitions (14.5) these equations can be rewritten in the simpler forms 

  
dn

dx1
 + q1 = 0  ,    

dv

dx1
 + q2 = 0  , (14.9) 

where q1 and q2 are assigned fields which represent forces per unit length of the beam 

applied in the e1 and e2 directions, respectively,  

  q1(x1) = 0 HWb1 + W [T12(x1,H/2) – T12(x1,–H/2)]  , 

  q2(x1) = 0 HWb2 + W [T22(x1,H/2) – T22(x1,–H/2)]  . (14.10) 

In particular, notice that q include both the effects of body forces and the loads on the 

top and bottom surfaces of the beam. 
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 The equations (14.9) represent the averages of the equations of equilibrium (14.7).  In 

order to derive the equation for the moment in standard beam theory, it is convenient to 

consider a weighted average of these equilibrium equations.  Specifically, the first of 

(14.7) is multiplied by the weighting function x2 to obtain 

  (x2 T11),1 + (x2 T12),2 – T12 + x2 0 b1 = 0   . (14.11) 

Now, integrating this equation over the cross-section of the beam yields the result 

  – 
dm

dx1
  – v + (x1) = 0  ,   (14.12) 

where (x1) is an assigned field which represents a couple per unit length that is 

generated by the shear stresses that are applied to the top and bottom surfaces of the beam 

  (x1) = 
HW

2
 [T12(x1,H/2) + T12(x1,–H/2)]  . (14.13) 

The simplest standard beam theory usually does not consider these shear forces.  It also 

does not consider the additional equation of equilibrium which is obtained by taking a 

similar weighted average of the second equation of equilibrium in (14.7).  

 In order to solve the problem sketched in Fig. 14.1 it is convenient to consider 

superposition of the following simpler problems. For each case it is necessary to 

determine the stresses, strains, displacements, average displacements and rotations, and 

the resultant forces and moment. 

 

Case I:  Rigid body displacements 

Boundary conditions on the top and bottom surfaces 

  
^
t1

I(x1) = 0  ,   
^
t2

I(x1) = 0  , 

  
–
t1

I(x1) = 0  , 
–
t2

I(x1) = 0 , (14.14) 

Body force 

  b
I  = 0   , (14.15)  

Stresses 

  T
I
 = 0  , (14.16) 

Strains 
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  e
I
 = 0  , (14.17) 

Displacements 

  u1
I =  x2 + c1  ,   u2

I = –  x1 + c2  , (14.18) 

Average displacements and rotations 

  w1
I = c1  ,  w2

I = –  x1 + c2  , 

  1
I =   ,  2

I = 0  , (14.19) 

Boundary conditions on the average displacements and rotations 

  w1
I(0) = c1  ,  w2

I(0) = c2  , 

  1
I(0) =   ,  2

I(0) = 0  , (14.20) 

Resultant forces and moment 

  nI = 0  ,   vI = 0  ,  mI = 0  , (14.21) 

Boundary conditions on the resultant forces and moment 

  nI(L) = NI = 0  ,   vI(L) = VI = 0 ,   mI(L) = MI = 0  . (14.22) 

 

Case II:  End forces and moment 

Boundary conditions on the top and bottom surfaces 

  
^
t1

II(x1) = 0  ,   
^
t2

II(x1) = 0  , 

  
–
t1

II(x1) = 0  , 
–
t2

II(x1) = 0 , (14.23) 

Body force 

  b
II = 0   , (14.24)  

Stresses  

  T11
II  = {

NII

HW
} – {

12MII

H3W
}x2 – {

12VII

H3W
}(L–x1) x2 , 

  T22
II  = 0 , 

  T12
II  = {

6VII

H3W
}{

H2

4
  – x2

2} , (14.25) 

Strains 
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  e11
II  = (1–

–
) [{

NII

2HW
} – {

12MII

 2H3W
}x2 – {

12VII

 2H3W
}(L–x1) x2] ,    

  e22
II  = – 

–
 [{

NII

2HW
} – {

12MII

 2H3W
}x2 – {

12VII

 2H3W
}(L–x1) x2] ,   

  e12
II  = {

3VII

H3W
}{

H2

4
  – x2

2}  , (14.26) 

Displacements 

  u1
II = (1–

–
) [{

NII

2HW
}x1 – {

6MII

H3W
} x1 x2 – {

3VII

H3W
}{2Lx1 – x1

2} x2 ] 

  + {
2VII

H3W
}{

3H2

4
 x2 – x2

3} + 
–
{

VII

H3W
}x2

3  , 

  u2
II = – 

–
 [{

NII

2HW
}x2 – {

3MII

H3W
} x2

2 – {
3VII

H3W
}(L–x1) x2

2 ] 

  + (1–
–
) [{

3MII

H3W
} x1

2 + {
VII

H3W
}{3Lx1

2 –x1
3}]   , (14.27) 

Average displacements and rotations 

  w1
II = (1–

–
) [{

NII

2HW
}x1]  , 

  w2
II = 

–
 [{

MII

4HW
} + {

VII

4HW
}(L–x1)] 

  + (1–
–
) [{

3MII

H3W
} x1

2 + {
VII

H3W
}{3Lx1

2 –x1
3}]  , 

  1
II = – (1–

–
) [{

6MII

H3W
} x1 + {

3VII

H3W
}{2Lx1 – x1

2} ] + {
VII

HW
} + 

–
{

VII

4HW
}  , 

  2
II = – 

–
 {

NII

2HW
}  , (14.28) 

Boundary conditions on the average displacements and rotations 

  w1
II(0) = 0  ,   

  w2
II(0) = 

–
 [{

MII

4HW
} + {

VII

4HW
}L]  , 
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  1
II(0) = {

VII

HW
} + 

–
{

VII

4HW
}  ,   

  2
II(0) = – 

–
 {

NII

2HW
}  , (14.29) 

Resultant forces and moment 

  nII = NII  ,   v
II = VII  ,  m

II = MII + VII (L–x1)  , (14.30) 

Boundary conditions on the resultant forces and moment 

  nII(L) = NII   ,   v
II(L) = VII  ,   m

II(L) = MII  . (14.31) 

 

Case III:  Uniform loads on the top and bottom surfaces with gravity 

Boundary conditions on the top and bottom surfaces 

  
^
t1

III(x1) = 0  ,   
^
t2

III(x1) = 
^
Q  , 

  
–
t1

III(x1) = 0  , 
–
t2

III(x1) = 
–
Q  , (14.32) 

Body force 

  b 1
III = 0   ,   b 2

III = – g  , (14.33) 

Stresses  

  T11
III = –{

6Q

H3}x1
2 x2 + {

4Q

H3}x2
3  , 

  T22
III = 

Q

4
 [2 + {

6

H
}x2 – {

8

H3}x2
3 ] + 0g[x2 + 

H

2
 ] – 

–
Q , 

  T12
III = –{

6Q

H3}{
H2

4
  – x2

2}x1  , 

  Q =  
–
Q + 

^
Q – 0gH , (14.34) 

Strains 

  e11
III = (1–

–
) [–{

3Q

H3}x1
2 x2 + {

2Q

H3}x2
3 ]  

  – 
–
 [

Q

8
 (2 + {

6

H
}x2 – {

8

H3}x2
3) + 

0g

2
{x2 + 

H

2
 } – 

–
Q

2
] ,    
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  e22
III = – 

–
 [–{

3Q

H3}x1
2 x2 + {

2Q

H3}x2
3]  

  + (1–
–
) [

Q

8
 (2 + {

6

H
}x2 – {

8

H3}x2
3) + 

0g

2
{x2 + 

H

2
 } – 

–
Q

2
]  ,   

  e12
III = –{

3Q

H3}{
H2

4
  – x2

2}x1  ,  (14.35) 

Displacements 

  u1
III = (1–

–
) [–{

Q

H3}x1
3 x2 + {

2Q

H3}x1x2
3

 ] 

  –  
–
 [ 

Q

8
 {2 + (

6

H
) x2 – (

8

H3) x2
3 }x1 + 

0g

2
{x2 + 

H

2
 }x1 – {

–
Q

2
} x1]  , 

  u2
III = – 

–
 [–{

3Q

2H3}x1
2 x2

2 + {
Q

2H3}x2
4] 

  + (1–
–
) [ 

Q

8
 {2 x2 + (

3

H
) x2

2 – (
2

H3) x2
4} + 

0g

4
 {x2

2 + H x2} – {
–
Q

2
} x2] 

  –{
3Q

4H
}x1

2 + (1–
–
){

Q

4H3}x1
4 + 

–
{

3Q

8H
  + 

g

4
}x1

2 , (14.36) 

Average displacements and rotations 

  w1
III = – 

–
 [ 

Q

4
 + 
0gH

4
 – {

–
Q

2
}] x1 , 

  w2
III = – 

–
 [–{

Q

8H
}x1

2 + {
QH

160
}]  

  + (1–
–
) [ 

Q

8
 { (

H

4
) – (

H

40
)} + 

0gH2

48
 ] 

  –{
3Q

4H
}x1

2 + (1–
–
){

Q

4H3}x1
4 + 

–
{

3Q

8H
  + 

0g

4
}x1

2  , 

  1
III = (1–

–
) [–{

Q

H3}x1
3 + {

Q

2H
}x1] – 

–
 [ 

3Q

4H
  x1 – 

Q

4H
  x1 + 

0g

2
 x1 ], 

  2
III = (1–

–
) [ 

Q

4
  + 

0gH

4
  – {

–
Q

2
}]  . (14.37) 
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Boundary conditions on the average displacements and rotations 

  w1
III(0) = 0  , 

  w2
III(0) = – 

–
 {

QH

160
} + (1–

–
) [ 

Q

8
 { (

H

4
) – (

H

40
)} + 

0gH2

48
 ]  , 

  1
III(0) = 0 , 

  2
III(0) = (1–

–
) [ 

Q

4
  + 

0gH

4
  – {

–
Q

2
}]  , (14.38) 

Resultant forces and moment 

  nIII = 0  ,   vIII = – QW x1  ,   mIII =  
QW

2
 [x1

2 – 
H2

10
 ]  , (14.39) 

Boundary conditions on the resultant forces and moment 

  nIII(L) = NIII = 0  ,  vIII(L) = VIII = – QWL  ,  

  mIII(L) = MIII = 
QWL2

2
 [1 – 

H2

10L2 ]  . (14.40) 

 

Case IV:  Linear loads on the top and bottom surfaces 

Boundary conditions on the top and bottom surfaces 

  
^
t1

IV(x1) = 0  ,   
^
t2

IV(x1) = 
^
S x1  ,  

  
–
t1

IV(x1) = 0  , 
–
t 2

IV(x1) =  
–
S x1  , (14.41) 

Body force 

  b 
IV = 0   ,   (14.42) 

Stresses  

  T11
IV = –{

2S

H3}x1
3 x2 + {

4S

H3} x1 x2
3  , 

  T22
IV = {

S

2
}[1 + 

3

H
 x2 – 

4

H3 x2
3 ] x1 –  

–
S x1 , 

  T12
IV = {

SH

16
}[1 – 

16

H4 x2
4 ] – {

3S

4H
}[1 – 

4

H2 x2
2 ]x1

2   , 



 

 

85 

  S = 
–
S + 

^
S , (14.43) 

Strains 

  e11
IV = (1–

–
) [–{

S

H3}x1
3 x2 + {

2S

H3} x1 x2
3]  

  – 
–
 [{

S

4
}[1 + 

3

H
 x2 – 

4

H3 x2
3 ] x1 –  {

–
S

2
} x1] ,    

  e22
IV = – 

–
 [–{

S

H3}x1
3 x2 + {

2S

H3} x1 x2
3]  

  + (1–
–
) [{

S

4
}[1 + 

3

H
 x2 – 

4

H3 x2
3 ] x1 –  {

–
S

2
} x1]  ,   

  e12
IV = {

SH

32
}[1 – 

16

H4 x2
4 ] – {

3S

8H
}[1 – 

4

H2 x2
2 ] x1

2  , (14.44) 

Displacements 

  u1
IV = (1–

–
) [ –{

S

4H3}x1
4 x2 + {

S

H3} x1
2

 x2
3]  

  – 
–
 [{

S

8
}{1 + 

3

H
 x2 – 

4

H3 x2
3 }x1

2 –  

–
S

4
  x1

2]  

  + {
SH

16
}[x2 – 

8

5H4 x2
5 ] – (1–

–
) [{

S

8
}{x2

2 + 
1

H
 x2

3 + 
2

5H3 x2
5 } –  {

–
S

4
} x2

2
 ]  , 

 

  u2
IV = – 

–
 [–{

S

2H3}x1
3 x2

2 + {
S

2H3} x1 x2
4]  

  + (1–
–
) [{

S

4
}{x2 + 

3

2H
 x2

2 – 
1

H3 x2
4 } x1 –  

–
S

2
 x1 x2 ]  

  – {
S

8H
}[x1

3 + (1–
–
){x1

3 – 
2

5H2 x1
5}]  . (14.45)  

Average displacements and rotations 

  w1
IV = – 

–
 [

S

8
  – 

–
S

4
  ] x1

2 – (1–
–
) [

SH2

96
  –  

–
SH2

48
  ]  , 
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  w2
IV = – 

–
 [–{

S

24H
}x1

3  + {
SH

160
} x1 ]  

  + (1–
–
){

9SH

320
} x1 – {

S

8H
}[x1

3 + (1–
–
){x1

3 – 
2

5H2 x1
5}]   , 

  1
IV = (1–

–
) [ –{

S

4H3}x1
4  + {

S

4H
} x1

2
 ]  

  + 
–
 {

S

8H
} x1

2  + {
9SH

160
} – (1–

–
){

11SH

320
} , 

  2
IV = (1–

–
) [

S

4
  –  

–
S

2
 ] x1  . (14.46) 

Boundary conditions on the average displacements and rotations 

  w1
IV(0) = – (1–

–
) [

SH2

96
  –  

–
SH2

48
  ]  , 

  w2
IV(0) = 0 , 

  1
IV(0) =  

–
{

9SH

160
} – (1–

–
){

11SH

320
} , 

  2
IV(0) = 0  , (14.47) 

Resultant forces and moment 

  nIV = 0  ,   vIV = 
SH2W

20
  – 

SW

2
 x1

2   ,   

  mIV =  
SW

6
 x1

3 – 
SH2W

20
 x1  , (14.48) 

Boundary conditions on the resultant forces and moment 

  nIV(L) = NIV = 0  ,  vIV(L) = VIV = – 
SWL2

2
 [1 – 

H2

10L2 ]  , 

  mIV(L) = MIV = 
SWL3

6
 [1 – 

3H2

10L2 ]  . (14.49) 

 

Case V:  Uniform shear loads on the top and bottom surfaces 

Boundary conditions on the top and bottom surfaces 
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^
t 1
V(x1) = 

^
  ,   

^
t 2
V(x1) = 0  ,  

  
–
t 1
V(x1) = 

–
  , 

–
t 2
V(x1) =  0  , (14.50) 

Body force 

  b
V = 0   ,   (14.51) 

Stresses  

  T11
V  = –{



H
}x1  ,  T22

V  = 0 , 

  T12
V  = {



2
}[1 + 

2

H
 x2] – 

–
   ,     = 

^
 + 

–
  , (14.52) 

Strains 

  e11
V  = (1–

–
) [–{



2H
}x1]  ,   e22

V  = – 
–
 [–{



2H
}x1]   , 

  e12
V  = {



4
}[1 + 

2

H
 x2] – 

–


2
  , (14.53) 

Displacements 

  u1
V = – (1–

–
){



4H
}x1

2 – 
–
 {



4H
} x2

2 + {


2
}[x2 + 

1

H
 x2

2] – 

–



 x2  ,  

  u2
V = 

–
 {



2H
} x1 x2  . (14.54)  

Average displacements and rotations 

  w1
V = – (1–

–
){



4H
}x1

2  – 
–
 {

H

48
} + {

H

24
} , 

  w2
V = 0  ,  

  1
V = 



2
  – 

–



  ,   2

V = 
–
 {



2H
} x1  . (14.55) 

Boundary conditions on the average displacements and rotations 

  w1
V(0) = – 

–
 {

H

48
} + {

H

24
}  ,  w2

V(0) = 0 , 
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  1
V(0) = 



2
  – 

–



   ,  2

V(0) = 0  , (14.56) 

Resultant forces and moment 

  nV = –  W x1  ,   vV = HW [
^
 – 

–


2
 ]   ,   mV =  0  , (14.57) 

Boundary conditions on the resultant forces and moment 

   nV(L) = NV = –  WL ,  vV(L) = VV = HW [
^
 – 

–


2
 ]  ,  mV(L) = MV = 0  . (14.58) 

 

Superposition 

 It is important to note that the solutions for Cases I-V generate average displacements 

and rotation at the clamped end (x1=0) and forces and moment at the end (x1=L).  

However, the constants c1, c2 and  associated with average displacements  and rotation 

in the rigid body solution (Case I), and the constants NII, VII and MII associated with the 

forces and moment in the solution for Case II,  can be specified arbitrarily.  Thus, the 

solution for the general boundary conditions and body force associated with all of the 

solutions (Cases I-V) can be obtained by superposition. 

Boundary conditions on the top and bottom surfaces 

  
^
t(x1) = 

^
t

I  + 
^
t

I I + 
^
t

I II + 
^
t

I V + 
^
t
V  , 

  
–
t(x1) = 

–
t

I  + 
–
t

I I + 
–
t

I II + 
–
t

I V + 
–
t 
V  , (14.59) 

Body force 

  b = b
I  + b

II + b
III + b 

IV + b
V    , (14.60)  

Stresses  

  T(x1,x2) = T
I
 + T

II
 + T

III
 + T 

IV
 + T

V
  , (14.61) 

Strains 

  e(x1,x2) = e
I
 + e

II
 + e

III
 + e 

IV
 + e

V
  , (14.62) 

Displacements 

  u(x1,x2) = u
I  + u

I I + u
I II + u

I V + u
V  , (14.63) 
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Average displacements and rotations 

  w(x1) = w
I  + w

I I + w
I II + w

I V + w
V  ,  

  (x1) = 
I  + 

I I + 
I II + 

I V + 
V  , (14.64) 

Boundary conditions on the average displacements and rotations 

  w(0) = c + w
I I(0) + w

I II(0) + w
I V(0) + w

V(0)  ,  

  1(0) =  + 
II(0) + 1

III(0) + 1
IV(0) + 1

V(0)  , (14.65) 

Resultant forces and moment 

  n(x1) = nI + nII + nIII + nIV + nV  , 

  v(x1) = vI + vII + vIII + vIV + vV  , 

  m(x1) = mI + mII + mIII + mIV + mV  , (14.66) 

Boundary conditions on the resultant forces and moment 

  NL = n(L) = NI + NII + NIII + NIV + NV  , 

  VL = v(L) = VI + VII + VIII + VIV + VV  , 

  ML = m(L) = MI + MII + MIII + MIV + MV  . (14.67) 

Now, for a clamped end the average displacements and rotation are specified by 

  w(0) = 0  ,  1(0) = 0  . (14.68) 

Also, general forces and moment can be specified at the end (x1=L), such that 

  n(L) = NL  ,  v(L) = VL ,  m(L) = ML  . (14.69) 

Thus, with the help of (14.65) and (14.67) it follows that these boundary conditions can 

be satisfied by the specifications 

  c = – [w
I I(0) + w

I II(0) + w
I V(0) + w

V(0)]  , 

   = – [1
II(0) + 1

III(0) + 1
IV(0) + 1

V(0)]  , 

  NII = NL – [NI + NIII + NIV + NV]  , 

  VII = VL – [VI + VIII + VIV + VV]  , 

  MII = ML – [MI + MIII + MIV + MV]  . (14.70) 

 



 

 

90 

15. Cylindrical polar coordinates 

 

Fig. 15.1  Definition of cylindrical polar coordinates and base vectors. 

 The position vector x of a material point can be expressed in terms of cylindrical 

polar coordinates in the form 

  x = r er() + x3 e3  , (15.1) 

where  

  { r ,  , x3 }  , (15.2) 

are the coordinates and  

  { er , e , e3 }  , (15.3) 

are the unit base vectors.  Moreover, the base vectors er and e can be related to those of 

the rectangular Cartesian coordinate system by the formulas 

  er() = cos e1 + sin e2  , 

  e() = – sin e1 + cos e2  . (15.4) 

Also, by substituting the expression for er into (15.1) it can be seen that the coordinates of 

the cylindrical polar coordinate system can be related to those of the rectangular 

Cartesian coordinate system by the formulas 

  x1 = r cos  ,  x2 = r sin  , 

  r = x1
2 + x2

2  ,   = tan–1(x2/x1)  . (15.5) 

Here, the coordinate  should not be confused with the same symbol that is used for the 

temperature. 

 

r 

x3 

x e3 

er 

e 

e2 

e1 
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 Now, the displacement vector u, the body force b, the stress tensor T, the strain 

tensor e and the heat flux vector q can be expressed in terms of their cylindrical polar 

components in the forms 

  u = ur er + u e + u3 e3  , 

  b = br er + b e + b3 e3  , 

  T = Trr (erer) + Tr (ere) + Tr3 (ere3) 

  + Tr (eer) + T (ee) + T3 (ee3) 

  + Tr3 (e3er) + T3 (e3e) + T33 (e3e3)  , 

  e = err (erer) + er (ere) + er3 (ere3) 

  + er (eer) + e (ee) + e3 (ee3) 

  + er3 (e3er) + e3 (e3e) + e33 (e3e3)  , 

  q = qr er + q e + q3 e3  , (15.6) 

where no summation is implied here for repeated values of the indices r and .  Since the 

balance laws (6.21a,c,e) are expressed in coordinate free form they can be easily 

translated to any set of coordinates.  In particular, it is necessary to emphasize that the 

base vectors er and e depend on the coordinate , so the expressions for the gradient and 

the divergence operators are more complicated than those associated with rectangular 

Cartesian coordinates.  Specifically, it can be shown that 

  V = 
∂V

∂r
  er +  

∂V

∂
  
1

r
 e + 

∂V

∂x3
  e3  , 

  u = 
∂u

∂r
  er + 

∂u

∂
  

1

r
 e + 

∂u

∂x3
  e3  , 

  div q = 
∂q

∂r
  • er + 

∂q

∂
  • 

1

r
 e + 

∂q

∂x3
  • e3  , 

  div T = 
∂T

∂r
  • er + 

∂T

∂
  • 

1

r
 e + 

∂T

∂x3
  • e3  , 

  2V = div (V) = 
∂(V)

∂r
  • er + 

∂(V)

∂
  • 

1

r
 e + 

∂(V)

∂x3
  • e3  . (15.7) 
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Next, using these formulas it follows that the gradient of the displacement vector is given 

by 

  u = 
∂ur

∂r
 (erer) + [ 

1

r
  
∂ur

∂
  – 

u
r

 ] (ere) + 
∂ur

∂x3
 (ere3) 

  + 
∂u
∂r

 (eer) + [ 
1

r
  
∂u

∂
  + 

ur

r
 ] (ee) + 

∂u
∂x3

 (ee3) 

  + 
∂u3

∂r
 (e3er) + [ 

1

r
  
∂u3

∂
 ] (e3e) + 

∂u3

∂x3
 (e3e3)  , (15.8) 

so the strain components become 

  err = 
∂ur

∂r
  ,  e =  

1

r
  
∂u

∂
  + 

ur

r
  ,  e33 = 

∂u3

∂x3
  , 

  er = 
1

2
 [ 

1

r
  
∂ur

∂
  + 

∂u
∂r

  – 
u
r

 ]  ,  er3 = 
1

2
 [ 

∂ur

∂x3
  + 

∂u3

∂r
 ]  ,  e3 = 

1

2
 [ 

∂u
∂x3

  + 
1

r
  
∂u3

∂
 ] . (15.9) 

Also, the divergence of the heat flux vector becomes 

  div q = 
∂qr

∂r
 + 

qr

r
 + 

1

r
  
∂q

∂
   + 

∂q3

∂x3
   , (15.10) 

the divergence of the stress tensor becomes 

  div T = [ 
∂Trr

∂r
 + 

Trr–T

r
  + 

1

r
  
∂Tr

∂
  + 

∂Tr3

∂x3
 ] er  

  + [ 
∂Tr

∂r
  + 

2Tr

r
  + 

1

r
  
∂T

∂
  + 

∂T3

∂x3
 ] e 

  + [ 
∂Tr3

∂r
  + 

Tr3

r
  + 

1

r
  
∂T3

∂
  + 

∂T33

∂x3
 ] e3  , (15.11) 

and the Laplacian of the scalar V becomes 

  2V = 
∂2V

∂r2   + 
1

r
  
∂V

∂r
  + 

1

r2  
∂2V

∂2   + 
∂2V

∂x3
2   . (15.12) 

 Thus, the balance laws (6.21a,c,e) can be written in the forms 

    = 0 (1 – err – e – e33)  , 
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  0 
••
u r = 0 br + 

∂Trr

∂r
 + 

Trr–T

r
  + 

1

r
  
∂Tr

∂
  + 

∂Tr3

∂x3
  , 

  0 
••
u = 0 b + 

∂Tr

∂r
  + 

2Tr

r
  + 

1

r
  
∂T

∂
  + 

∂T3

∂x3
  , 

  0 
••
u3 = 0 b3 + 

∂Tr3

∂r
  + 

Tr3

r
  + 

1

r
  
∂T3

∂
  + 

∂T33

∂x3
  , 

  0 
•
 = 0 r – [ 

∂qr

∂r
 + 

qr

r
 + 

1

r
  
∂q

∂
  + 

∂q3

∂x3
 ]  . (15.13) 

Also, the strain-stress relations can be written in forms similar to (10.3) 

  err = 
Trr

E
  – 

T
E

  – 
T33

E
  + (*–0

*)  , 

  e = – 
Trr

E
  + 

T
E

  – 
T33

E
  + (*–0

*)  , 

  e33 = – 
Trr

E
  – 

T
E

  + 
T33

E
  + (*–0

*)  , 

  er = 
(1+)Tr

E
  ,  er3 = 

(1+)Tr3

E
  ,  e3 = 

(1+)T3

E
  , (15.14) 

and the constitutive equation for the heat flux vector (6.22g) becomes 

  qr = –  
∂*

∂r
  ,  q = –  

1

r
  
∂*

∂
  ,  q3 = –  

∂*

∂x3
  , (15.15) 

where, for clarity, the temperature has been denoted as * to avoid confusion with the 

coordinate .  Also, using (6.22i) the internal energy can be expressed in the form 

  0 = 0Cv (*–0
*) + 3K0

*(err + e + e33).   (15.16) 

 Next, it is of interest to determine the form of rigid body displacements in cylindrical 

polar coordinates.  To this end, it is recalled from (3.43) that rigid body displacements 

can be expressed in terms of rectangular Cartesian coordinates in the forms 

  u = ui ei  ,  ui = ci + Hij xj  ,  Hij = – Hji  , 

  u = [c1 + H12 x2 + H13 x3] e1 + [c2 – H12 x1 + H23 x3] e2 

  + [c3 – H13 x1 – H23 x2] e3  , (15.17) 
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where ci and Hij are independent of position.  Now, the cylindrical polar components of 

these rigid body displacements can be obtained by using (15.4) and (15.5) to deduce that 

  ur = u • er = [c1 + H12 r sin+ H13 x3] cos + [c2 – H12 r cos + H23 x3] sin  , 

  u = – [c1 + H12 r sin + H13 x3] sin + [c2 – H12 r cos + H23 x3] cos  , 

  u3 = [c3 – H13 r cos – H23 r sin]  , (15.18) 

which can be rewritten in the forms 

  ur = [c1 cos + c2 sin] + [H13 cos + H23 sin] x3  , 

  u = [– c1 sin + c2 cos] – H12 r + [– H13 sin + H23 cos] x3  , 

  u3 = c3 – [H13 cos + H23 sin] r  . (15.19) 
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16. Two-dimensional problems in polar coordinates 

 The equations for polar coordinates can be obtained by considering the equations for 

cylindrical polar coordinates section 15 and neglecting dependence on the coordinate x3.  

Thus, the position vector x of a material point can be expressed in terms of polar 

coordinates in the form 

  x = r er()  , (16.1) 

where  

  { r ,  }  , (16.2) 

are the coordinates and  

  { er , e }  , (16.3) 

are the unit base vectors.  Moreover, the base vectors er and e can be related to those of 

the rectangular Cartesian coordinate system by the formulas 

  er() = cos e1 + sin e2  , 

  e() = – sin e1 + cos e2  . (16.4) 

Also, by substituting the expression for er into (15.1) it can be seen that the coordinates of 

the cylindrical polar coordinate system can be related to those of the rectangular 

Cartesian coordinate system by the formulas 

  x1 = r cos  ,  x2 = r sin  , 

  r = x1
2 + x2

2  ,   = tan–1(x2/x1)  . (16.5) 

Here, the coordinate  should not be confused with the same symbol that is used for the 

temperature. 

 Now, the displacement vector u, the body force b, the stress tensor T, the strain 

tensor e and the heat flux vector q can be expressed in terms of their cylindrical polar 

components in the forms 

  u = ur er + u e  , 

  b = br er + b e  , 

  T = Trr (erer) + Tr (ere + eer) + T (ee) + T33 (e3e3)  , 

  e = err (erer) + er (ere) + er (eer) + e (ee)   , 
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  q = qr er + q e  , (16.6) 

where no summation is implied here for repeated values of the indices r and .  For 

generalized plane stress, the strain e33 is determined so that T33 vanishes. Since the 

balance laws (6.21a,c,e) are expressed in coordinate free form they can be easily 

translated to any set of coordinates.  In particular, it is necessary to emphasize that the 

base vectors er and e depend on the coordinate , so the expressions for the gradient and 

the divergence operators are more complicated than those associated with rectangular 

Cartesian coordinates.  Specifically, it can be shown that 

  V = 
∂V

∂r
  er +  

∂V

∂
  
1

r
 e  , 

  u = 
∂u

∂r
  er + 

∂u

∂
  

1

r
 e  , 

  div q = 
∂q

∂r
  • er + 

∂q

∂
  • 

1

r
 e  , 

  div T = 
∂T

∂r
  • er + 

∂T

∂
  • 

1

r
 e  , 

  2V = div (V) = 
∂(V)

∂r
  • er + 

∂(V)

∂
  • 

1

r
 e  . (16.7) 

Next, using these formulas it follows that the gradient of the displacement vector is given 

by 

  u = 
∂ur

∂r
 (erer) + [

1

r
  
∂ur

∂
  – 

u
r

] (ere) 

  + 
∂u
∂r

 (eer) + [
1

r
  
∂u

∂
  + 

ur

r
] (ee)  , (16.8) 

so the strain components become 

  err = 
∂ur

∂r
  ,  e =  

1

r
  
∂u

∂
  + 

ur

r
  ,  er = 

1

2
 [

1

r
  
∂ur

∂
  + 

∂u
∂r

  – 
u
r

]  . (16.9) 

Also, the divergence of the heat flux vector becomes 

  div q = 
∂qr

∂r
  + 

1

r
  
∂q

∂
   , (16.10) 

the divergence of the stress tensor becomes 
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  div T = [
∂Trr

∂r
 + 

Trr–T

r
  + 

1

r
  
∂Tr

∂
] er  

  + [
∂Tr

∂r
  + 

2Tr

r
  + 

1

r
  
∂T

∂
] e   , (16.11) 

and the Laplacian of the scalar V becomes 

  2V = 
∂2V

∂r2   + 
1

r
  
∂V

∂r
  + 

1

r2  
∂2V

∂2    . (16.12) 

 Thus, the balance laws (6.21a,c,e) can be written in the forms 

    = 0 (1 – err – e– e33)  , 

  0 
••
u r = 0 br + 

∂Trr

∂r
 + 

Trr–T

r
  + 

1

r
  
∂Tr

∂
   , 

  0 
••
u = 0 b + 

∂Tr

∂r
  + 

2Tr

r
  + 

1

r
  
∂T

∂
   , 

  0 
•
 = 0 r – [

∂qr

∂r
 + 

qr

r
 + 

1

r
  
∂q

∂
]  , (16.13) 

where e33 vanishes for plane strain and is given by (11.22) for generalized plane stress. 

Also, the strain-stress relations can be written in forms similar to (11.15), such that 

  err = 
1

2
 [(1–

–
) Trr – 

–
 T] + (1+

–
)

–
(*–0

*)  , 

  e = 
1

2
 [– 

–
 Trr + (1–

–
) T] + (1+

–
)

–
(*–0

*)  , 

  er = 
Tr

2
  ,   er3 = e3 = 0  , (16.14) 

where, for clarity, the temperature has been denoted as * to avoid confusion with the 

coordinate .  Also, the stress-strain relations can be written as 

  Trr = 
2

(1–2
–
)

 [(1–
–
) err + 

–
 e] – 

2(1+
–
)

(1–2
–
)

 
–
(*–0

*)  , 

  T = 
2

(1–2
–
)

 [ 
–
 err + (1–

–
) e] – 

2(1+
–
)

(1–2
–
)

 
–
(*–0

*)  , 

  Tr = 2 er  ,   Tr3 = T3 = 0  , (16.15) 
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where 
–
 and 

–
 are defined by (11.13).  In addition, the constitutive equation for the heat 

flux vector (6.22g) becomes 

  qr = –  
∂*

∂r
  ,  q = –  

1

r
  
∂*

∂
   , (16.16) 

Furthermore, with the help of (11.20) and (11.23), the internal energy becomes  

  0 = 0Cv (*–0) + 3K0 (err + e),   (16.17) 

for plane strain and becomes 

  0 = [0Cv  + 3K20{
1+

1–
}] (*–0

*) +  3K0 [
1–2

1–
] (err + e)  . (16.18) 

for generalized plane stress. 

 If the body force is derivable from a potential V, then 

  0 b = – V  ,   0 br = – 
∂V

∂r
  ,  0b = – 

1

r
  
∂V

∂
   , (16.19) 

and the equations of equilibrium can be satisfied using the Airy's stress function , which 

from the first of (12.10) can be generalized to yield 

  T = [V + 2] I – ()  , (16.20) 

where I is the two-dimensional identity tensor.  Thus, using expressions (16.7) and 

(16.12) it follows that 

  2 = 
∂2

∂r2   + 
1

r
  
∂

∂r
  + 

1

r2  
∂2

∂2  , 

  () = [
∂

∂r
  er +  

∂

∂
  
1

r
 e] , 

   () = [
∂2

∂r2 ] (erer) + [
1

r
  
∂

∂r
 +  

1

r2  
∂2

∂2] (ee) 

  + [
1

r
  

∂2

∂r∂
  – 

1

r2  
∂

∂
] (ere + (eer)  . (16.21) 

Then, the stresses can be written in the forms 

  Trr = V +  
1

r2  
∂2

∂2  + 
1

r
  
∂

∂r
  ,  T = V + 

∂2

∂r2   , 

  Tr = – [ 
1

r
  

∂2

∂r∂
  – 

1

r2  
∂

∂
 ] = – 

∂

∂r
 [ 

1

r
  
∂

∂
 ]  . (16.22) 
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Next, the compatibility equation can be written in the form (12.12) or (12.14) 

  22 = – [
1–2

–


1–
–


] 2V – 2[
1+

–


1–
–


] 
–
 2*   ,  

  2(Trr + T) = [
1

1–
–


] 2V – 2[
1+

–


1–
–


] 
–
 2*   . (16.23) 

Thus, when the body force potential V is a harmonic function (2V=0), the temperature 

field * is steady (independent of time) and there is no heat supply (2*=0), the 

compatibility equations require the Airy's stress function to be a biharmonic function 

  22 = 2(Trr + T) = 0  , (16.24) 

where 

  22  = [ 
∂2

∂r2  + 
1

r
  

∂

∂r
  + 

1

r2  
∂2

∂2 ] [ 
∂2

∂r2   + 
1

r
  
∂

∂r
  + 

1

r2  
∂2

∂2 ]   . (16.25) 

 Next, it is of interest to determine the form of rigid body displacements in polar 

coordinates.  To this end, it is only necessary to eliminate dependence of the results 

(15.19) on the e3 direction so that the rigid body displacements in the plane become 

  ur = [c1 cos + c2 sin] , 

  u = [– c1 sin + c2 cos] – H12 r , (16.26) 

where c and H12 are independent of position. 

 Michell developed a solution of the biharmonic equation (16.24) which is quite useful 

for problems in cylindrical polar coordinates.  The main features of this solution are 

summarized in the following pages which has been taken from Little (1973).  

Specifically, use is made of a separated solution of the form 

   = f(r) g()   . (16.27) 

It then follows that the biharmonic equation becomes 

  22  = [
d4f

dr4 + 
2

r
  
d3f

dr3 – 
1

r2  
d2f

dr2 + 
1

r3  
df

dr
] g + [

2

r2  
d2f

dr2 – 
2

r3  
df

dr
 + 

4

r4 f] 
d2g

d2  

  +  
1

r4 f 
d4g

d4  = 0  . (16.28) 

The Michell solution considers functions of g of the forms 
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 g = {1 or }  

   
d4f

dr4 + 
2

r
  
d3f

dr3 – 
1

r2  
d2f

dr2 + 
1

r3  
df

dr
 = 0 , (16.29a) 

 g = {sin  or  cos}  

  
d4f

dr4 + 
2

r
  
d3f

dr3 – 
3

r2  
d2f

dr2 + 
3

r3  
df

dr
 – 

3

r4 f = 0  , (16.29b)  

 g = { sin  or   cos}  

  
d2f

dr2 – 
1

r
  
df

dr
 + 

1

r2 f = 0 , (16.29c) 

 g = {sin(n)  or  cos(n)}  for n=2,3,… 

  
d4f

dr4 + 
2

r
  

d3f

dr3 – 
(1+2n2)

r2   
d2f

dr2 + 
(1+2n2)

r3  
df

dr
  –  

n2(4–n2)

r4  f = 0  . (16.29d) 

 

The next four pages are copied from the book 

Elasticity by R.Wm. Little, Prentice-Hall 1973 

which is out of print. 

The displacement fields in these solutions correspond to generalized plane stress.
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Another class of solutions can be obtained by taking 

  f = rm , g = {sin(n)  or  cos(n)}  , (16.30) 

where m and n are no longer integers.  Using this form the biharmonic equation (16.28) 

will be satisfied provided that 

  n4 – 2(m2–2m+2) n2 + m2(m–2)2 = 0  . (16.31) 

For example, basic solutions for cracks with stress singularities can be obtained by taking 

  m = 
3

2
  ,  n = ± 

1

2
  or ± 

3

2
  . (16.32) 
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17. Lame's problem: Internal and external pressure on a cylindrical tube 

 

 

Fig. 17.1  Sketch of a cylindrical tube subjected to internal pressure p1  

and external pressure p2. 

 Lame's problem considers two-dimensional deformation of a cylindrical tube that is 

subjected to an internal pressure p1 and an external pressure p2.  The internal radius of 

the cylinder is take to be a and its external radius is take to be b.  Also, the body force 

vanishes 

  br = b = 0  , (17.1) 

and the temperature * is taken to be uniform but not necessarily equal to 0
*. 

 For this problem it is sufficient to assume that the Airy's stress function (r) is a 

function of r only so that the biharmonic equation (16.24) reduces to 

  [
∂2

∂r2  + 
1

r
  

∂

∂r
] [

∂2

∂r2   + 
1

r
  
∂

∂r
] = 

∂4

∂r4  +  
2

r
 
∂3

∂r3   – 
1

r2  
∂2

∂r2  + 
1

r3  
∂

∂r
  = 0  . (17.2) 

The relevant solution for Lame's problem is 

   = 
A

2
  r2 + B ln(r)  , (17.3) 

where A and B are constants to be determined.  Now, using (16.22), with the potential V 

set to zero, it follows that the stresses are given by 

a 

b 

p2 p1 
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  Trr = A + 
B

r2   ,  T = A – 
B

r2 ,  Tr = 0  . (17.4) 

However, the boundary conditions can be expressed in the forms 

 On r = b,  n = er  , 

  t = – p2 er = T(b) er = Trr(b) er  ,   Trr(b) = A + 
B

b2  = – p2  , (17.5) 

 On r = a, n = – er  , 

  t = p1 er = T(a) (– er) = – Trr(a) er  ,   Trr(a) = A + 
B

a2  = – p1  . (17.6) 

These equations can be solved to deduce that 

  A = 
a2p1–b2p2

b2–a2   ,  B = 
a2b2(p2–p1)

b2–a2   . (17.7) 

Thus, using these results it follows that 

  Trr(a) = – p1  ,  T(a) =  
(a2+b2)p1 – 2b2p2

b2–a2   , 

  Trr(b) = – p2  ,  T(b) =  
2a2p1 – (a2+b2)p2

b2–a2    . (17.8) 

 Next, the constitutive equation (16.14) is used to determine the strains 

  err = 
1

2
 [(1–2

–
) A + 

B

r2] + (1+
–
)

–
(*–0

*)  , 

  e = 
1

2
 [(1–2

–
) A – 

B

r2] + (1+
–
)

–
(*–0

*)  ,   er = 0  . (17.9) 

Consequently, for axisymmetric deformation 

  ur = ur(r)  ,  u = 0  , (17.10) 

so the strain-displacement relations (16.9) yield 

  ur = 
1

2
 [(1–2

–
) A r – 

B

r
] + (1+

–
)

–
(*–0

*) r  . (17.11) 

 Notice that if the cylinder is solid (a=0), then B vanishes and the solution reduces to 

  a = 0  ,  A = –p2  ,  B = 0  , 

  Trr = T = – p2  ,  Tr = 0  ,  
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  ur = [–  
(1–2

–
)p2

2
  + (1+

–
)

–
(*–0

*)] r  ,  u = 0  , (17.12) 

which corresponds to homogeneous deformation in the plane. 

 

Fig. 17.2  Shrink fitting of a cylindrical tube onto a solid cylinder. 

 

 As another example consider the case when the cylinder is subjected to only an 

exterior pressure (p2 > 0 and p1=0).  Then, the stresses (17.8) simplify to 

  Trr(a) = 0  ,  T(a) =  –  
2b2p2

b2–a2  , 

  Trr(b) = – p2  ,  T(b) = – 
(a2+b2)p2

b2–a2    . (17.13) 

Now, if the inner radius is much smaller than the outer radius (a << b), then these 

expressions further simplify to 

  Trr(a) = 0  ,  T(a) =  –  2 p2  , 

  Trr(b) = – p2  ,  T(b) = – p2   , (17.14) 

which shows that there is a stress concentration of a factor of 2 at the inner boundary. 

Moreover, by taking the thickness of the tube to be H it follows that 

  a = b – H  , 

  T(a) =  –  
bp2

H[1 –  
H

2b
]

  ,   T(b) = –  

bp2[1 – 
H

b
 + 

H2

2b2]

H[1 – 
H

2b
]

  , (17.15) 

which yields the simple strength of materials solution for a thin tube (a=b–H, H/b<<1)  

b1 

a2 

b2 

(1) 

(2) 
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  T  – 
bP2

H
   . (17.16) 

 As another example, consider a solid cylinder (1) of outer radius b1, and a hollow 

tube (2) of inner radius a2 and outer radius b2 [see Fig. 17.2].  Both bodies are made of 

the same material, but b1 is slightly larger than a2 

  b1 > a2  . (17.17) 

In order to fit the hollow tube over the solid cylinder, the hollow tube is heated to the 

temperature 2
* which is the minimum temperature required to have the hollow tube just 

fit over the solid cylinder (which remains at temperature 0
*).  It therefore, follows that 

the heated location of the inner radius of the hollow tube is given by 

  b1 = a2 + u r
(2)(a2)  . (17.18) 

Since the stresses in the hollow tube vanish, it follows (17.4), (17.7) and (17.11) that 

  u r
(2)(a2) = (1+

–
)

–
(2

*–0
*) a2  , (17.19) 

so that the temperature 2
* is given by 

  2
* = 0

* + 
b1–a2

a2(1+
–
)

–


  . (17.20) 

 After placing the hollow tube over the solid cylinder, the hollow tube is allowed to 

cool down to room temperature 0
* and the contact pressure p develops at the interface of 

the solid cylinder and the hollow tube.  To determine this pressure it is necessary to 

specify both a kinematic and a kinetic boundary condition at this interface.  Specifically, 

the kinematic boundary condition requires the deformed location of the outer radius of 

the solid cylinder to be the same as the deformed inner radius of the hollow tube 

  b1 + u r
(1)(b1) = a2 + u r

(2)(a2)  , (17.21) 

and the kinetic boundary condition requires the radial stress to be continuous at this 

interface 

  T rr
(1)(b1) = T rr

(2)(a2) = – p  . (17.22) 

Now, using (17.12) for the solid cylinder it follows that 
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  u r
(1)(b1) = – [

(1–2
–
)b1

2
] p  , (17.23) 

and using (17.7) and (17.11) for the cooled down hollow tube it follows that  

  A(2) = [
a2

2

b2
2–a2

2] p ,   B(2) = –  [
a2

2b2
2

b2
2–a2

2] p  , 

  u r
(2)(a2) = 

1

2
 [(1–2

–
){

a2
3

b2
2–a2

2} + {
a2b2

2

b2
2–a2

2}] p  . (17.24) 

Then, (17.23) and (17.24) can be substituted into the kinematic condition (17.21) to 

determine the contact pressure  

  b1 – [
(1–2

–
)b1

2
] p = a2 + 

1

2
 [(1–2

–
){

a2
3

b2
2–a2

2} + {
a2b2

2

b2
2–a2

2}] p  , 

  p = 
2(b1–a2)

[(1–2
–
)b1 + 

(1–2
–
)a2

3

b2
2–a2

2  + 
a2b2

2

b2
2–a2

2]

  , (17.25) 

which then can be used in (17.21) to determine the deformed radius of the interface. 
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18. Kirsch's problem: Loading of a plate with a circular hole 

 

 

Fig. 18.1  Sketch of a plate with a circular hole of radius a,  

which is subjected to a tension T11
  in the e1 direction far away from the hole. 

 Kirsch's problem considers two-dimensional deformation of a plate with a circular 

hole of radius a, which is subjected to a tension T11
  in the e1 direction far away from the 

hole. The surface of the hole remains stress-free, the body force vanishes 

  br = b = 0  , (18.1) 

and the temperature * is taken to be uniform but not necessarily equal to 0
*. 

LOADING  IN  THE e1  DIRECTION 

 The boundary conditions for the hole are most easily stated in terms of cylindrical 

polar coordinates, whereas those for the loading far away from the hole (at infinity) are 

most easily stated in terms of rectangular Cartesian coordinates 

  t = T(a) (–er) = 0   , 

   Trr(a) = 0  ,  Tr(a) = 0  , (18.2a,b) 

  
b
limit  t = 

b
limit T(±b,x2) (± e1) = ±T11

  e1  

   
b
limit T11(±b,x2) = T11

   , 
b
limit T12(±b,x2) = 0  , (18.2c,d) 

  
b
limit  t = 

b
limit T(x1,±b) (± e2) = 0  ,  

T11
  

 

a 

e 

e2 

er 

e1 T11
  
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   
b
limit T12(x1,±b) = 0  , 

b
limit T22(x1,±b) = 0  . (18.2e,f)  

 Moreover, to solve the problem it is most convenient to use cylindrical polar 

coordinates and to transform the boundary conditions at r= from rectangular Cartesian 

components to cylindrical polar coordinates.  In particular, it follows from (18.2c-f) that 

the stress tensor at infinity is given by 

  
r
limit T = T11

  (e1e1)  . (18.3) 

Consequently, using the definitions (16.4) for the base vectors er and e it follows that 

  
r
limitTrr = T11

  (e1e1) • (erer) = T11
  cos2 = 

T11


2
 [1 + cos(2)]  , 

  
r
limitT = T11

  (e1e1) • (ee) = T11
  sin2 = 

T11


2
 [1 – cos(2)] , 

  
r
limitTr = T11

  (e1e1) • (ere) = – 
T11


2
  sin(2)  . (18.4) 

Now, with the help of the general solution of Michell and recognizing that the stresses 

must be bounded at r=, it is reasonable to consider the following forms 

  Trr = 
b0

r2  + 2c0 – (2a2 + 
6c2

r4   + 
4d2

r2 ) cos(2)  , 

  T = – 
b0

r2  + 2c0 + (2a2 + 
6c2

r4 ) cos(2)  , 

  Tr = (2a2 – 
6c2

r4   – 
2d2

r2 ) sin(2)  , (18.5) 

where {b0, c0, a2, c2} are constants to be determined.  To make sure that no 

typographical error in the Michell solution affects this stress field, it is necessary to check 

that (18.5) satisfies the equilibrium equations (16.13) 

  
∂Trr

∂r
 + 

Trr–T

r
  + 

1

r
  
∂Tr

∂
  = 0 , 

  
∂Tr

∂r
  + 

2Tr

r
  + 

1

r
  
∂T

∂
  = 0 , (18.6) 
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and the compatibility equations (16.23) 

  2(Trr + T) = [
∂2

∂r2  + 
1

r
  

∂

∂r
  + 

1

r2  
∂2

∂2] (Trr + T) = 0 . (18.7) 

Next, substituting (18.5) into the boundary conditions (18.2a,b) and (18.4) yields the 

conditions 

  
b0

a2 + 2c0 – (2a2 + 
6c2

a4   + 
4d2

a2 ) cos(2) = 0  , 

  (2a2 – 
6c2

a4   – 
2d2

a2 ) sin(2) = 0  , 

  2c0 – 2a2 cos(2) = 
T11


2
 [1 + cos(2)]  , 

  2c0 + 2a2 cos(2) = 
T11


2
 [1 – cos(2)] , 

  2a2 sin(2) = – 
T11


2
  sin(2)  ,  (18.8) 

which can be solved to deduce that 

   b0 = – 
a2T11



2
  , c0 = 

T11


4
  , a2 = – 

T11


4
  , c2 = – 

a4 T11


4
  ,   d2 = 

a2T11


2
   . (18.9) 

Thus, the stress field (18.5) can be rewritten in the form 

  Trr = 
T11


2
 (1 – 

a2

r2) + 
T11


2
 (1 + 

3a4

r4   – 
4a2

r2 ) cos(2) , 

  T = 
T11


2
 (1 + 

a2

r2) – 
T11


2
 (1 + 

3a4

r4 ) cos(2)  , 

  Tr = – 
T11


2
 (1 – 

3a4

r4   + 
2a2

r2 ) sin(2)  . (18.10) 

It is important to emphasize that this solution predicts a stress concentration at the 

boundary of the hole [see Fig. 17.2].  Specifically, it follows from (18.10) that 

 

  T(a,) = T11
  [1 – 2 cos(2)]  , 

  T(a,0) = – T11
  ,  T(a,/2) = 3 T11

  . (18.11) 
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Fig. 18.2  Stress concentration at the boundary of a hole. 

 In order to determine the displacement field associated with the solution (18.10), use 

is made of the constitutive equations (16.14) with the temperature set to the constant 

value 1
* 

  err = 
T11


4
 [(1–2

–
) – 

a2

r2] + 
T11


4
 [1 + 

3a4

r4   – 
4(1–

–
)a2

r2 ] cos(2) + (1+
–
)

–
(1

*–0
*) , 

  e =  
T11


4
 [(1–2

–
) + 

a2

r2] – 
T11


4
 [1 + 

3a4

r4   – 
4

–
a2

r2 ] cos(2) + (1+
–
)

–
(1

*–0
*)  , 

  er = – 
T11


4
 [1 – 

3a4

r4   + 
2a2

r2 ] sin(2)  . (18.12) 

Next, integration of the strain-displacement relations (16.9) yields 

  ur = 
T11


4
 [(1–2

–
) r + 

a2

r
] + 

T11


4
 [r – 

a4

r3  + 
4(1–

–
)a2

r
] cos(2)  

  + (1+
–
)

–
(1

*–0
*) r  + 

df()

d
  ,  

  u = – 
T11


4
 [r + 

a4

r3  + 
2(1–2

–
)a2

r
] sin(2) – f() + g(r)  , (18.13) 

where f() and g(r) are functions of integration.  Moreover, substituting these results into 

the expression (16.9) for the strain er and use of (18.12) yields the equation 

   
1

r
  [ 

d2f()

d2  + f()] + [
dg(r)

dr
  – 

1

r
  g(r)] = 0  . (18.14)   

T(a,/2) = 3T11
  

T(a,0) = – T11
  

T11(,x2) = T11
  
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Thus, in view of the expressions (16.8) for rigid body displacements it follows that the 

solution of (18.14) can be expressed in the form 

  f() = c1 sin – c2 cos  ,  g(r) = – H12 r  , (18.15) 

where c and H12 are constants, which for the present purposes can be set equal to zero 

so that 

  f() = 0  ,  g(r) = 0   . (18.16) 

Then, the displacements reduce to 

  ur = 
T11


4
 [(1–2

–
) r + 

a2

r
] + 

T11


4
 [r – 

a4

r3  + 
4(1–

–
)a2

r
] cos(2) + (1+

–
)

–
(1

*–0
*) r  ,  

  u = – 
T11


4
 [r + 

a4

r3  + 
2(1–2

–
)a2

r
] sin(2)   . (18.17) 

LOADING  IN  THE e2  DIRECTION 

 This previous solution can be used to obtain the solution for tension T22
  in the e2 

direction by making the replacements 

    ( – 


2
 )  , T11

   T22
   , (18.18) 

in (18.10) for the stresses 

  Trr = 
T22


2
 [1 – 

a2

r2] – 
T22


2
 [1 + 

3a4

r4   – 
4a2

r2 ] cos(2) , 

  T = 
T22


2
 [1 + 

a2

r2] + 
T22


2
 [1 + 

3a4

r4 ] cos(2)  , 

  Tr = 
T22


2
 [1 – 

3a4

r4   + 
2a2

r2 ] sin(2)  , (18.19) 

and in (18.17) for the displacements 

  ur = 
T22


4
 [(1–2

–
) r + 

a2

r
] – 

T22


4
 [r – 

a4

r3  + 
4(1–

–
)a2

r
] cos(2) + (1+

–
)

–
(1

*–0
*) r  ,  

  u = 
T22


4
 [r + 

a4

r3  + 
2(1–2

–
)a2

r
] sin(2)   . (18.20) 
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SHEAR  LOADING 

 In order to develop the solution for shear loading it is convenient to consider the axes 

e1'  and e2' , which are rotated by /4 relative to the axes e1 and e2, such that 

  e1'  = 
1

2
 (e1 + e2)  ,  e2'  = 

1

2
 ( – e1 + e2)  . (18.21) 

Now, pure shear relative to the ei axes can be expressed in the form 

  T = S (e1'e1'  – e2'e2' ) = S (e1e2 + e2e1)  , (18.22)  

which corresponds to tensor (T11
  = S)  in the e1'  direction and compression (T22

  = –S) in 

the e2'  direction.  Thus, the solution for pure shear relative to the e1 and e2 axes can be 

obtained adding the previous two solutions after making the replacements 

    ( – 


4
 )  , T11

   T12
   ,  T22

   – T12
  , (18.23) 

in (18.10) and (18.19) for the stresses 

  Trr =  T12
  [1 + 

3a4

r4   – 
4a2

r2 ] sin(2) ,   T =  – T12
  [1 + 

3a4

r4 ] sin(2)  , 

  Tr = T12
  [1 – 

3a4

r4   + 
2a2

r2 ] cos(2)  . (18.24) 

and in (18.17) and (18.20) [with 1
*=0

*] for the displacements 

  ur = 
T12


2
 [r – 

a4

r3  + 
4(1–

–
)a2

r
] sin(2) + (1+

–
)

–
(1

*–0
*) r  ,  

  u = 
T12


2
 [r + 

a4

r3  + 
2(1–2

–
)a2

r
] cos(2)   . (18.25) 

Here, it is important to emphasize that the influence of temperature should only be 

included in one of the two solutions that are being superposed. 

GENERAL  LOADING 

 
T22
  
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Fig. 18.3  Sketch of a plate with a circular hole of radius a,  

which is subjected to general loading far away from the hole. 

 The solution to the problem of general loading far away from the hole [Fig. 18.3] can 

be obtained by superposing (18.10), (18.19) and (18.24) for the stresses 

  Trr = 
(T11

+T22
 )

2
 [1 – 

a2

r2] + 
(T11

–T22
 )

2
 [1 + 

3a4

r4   – 
4a2

r2 ] cos(2)  

  + T12
  [1 + 

3a4

r4   – 
4a2

r2 ] sin(2) , 

  T = 
(T11

+T22
 )

2
 [1 + 

a2

r2] – 
(T11

–T22
 )

2
 [1 + 

3a4

r4 ] cos(2)  

  – T12
  [1 + 

3a4

r4 ] sin(2), 

   Tr = – 
(T11

–T22
 )

2
 [1 – 

3a4

r4   + 
2a2

r2 ] sin(2) + T12
  [1 – 

3a4

r4   + 
2a2

r2 ] cos(2) , (18.26) 

and by superposing (18.17) [with 1
*=0

*], (18.20) [with 1
*=0

*] and (18.25) for the 

displacements 

  ur = 
(T11

+T22
 )

4
 [(1–2

–
) r + 

a2

r
] + 

(T11
–T22

 )

4
 [r – 

a4

r3  + 
4(1–

–
)a2

r
] cos(2)  

T12
  

T12
  

T12
  

T12
  

T22
  

T11
  T11

  

 

a 

e 

e2 

er 

e1 
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  + 
T12


2
 [r – 

a4

r3  + 
4(1–

–
)a2

r
] sin(2) + (1+

–
)

–
(1

*–0
*) r  ,  

  u = – 
(T11

–T22
 )

4
 [r + 

a4

r3  + 
2(1–2

–
)a2

r
] sin(2)   

  + 
T12


2
 [r + 

a4

r3  + 
2(1–2

–
)a2

r
] cos(2)  . (18.27) 
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19. The second law of thermodynamics 

 The thermodynamic procedure proposed by Green and Naghdi (1977,1978) 

introduces the balance of entropy (4.16) to determine the temperature field , and it 

suggests that the balance of angular momentum (4.21) and the balance of energy (4.31) 

place restrictions on constitutive equations which ensure that these balance laws are 

satisfied for all thermomechanical processes.  In particular, the reduced forms of the 

balances of angular momentum and energy are given by (4.52a,b) and (4.52c,d), 

respectively.  Moreover, it was shown in section 5 that for a thermoelastic material these 

equations require the entropy  and the stress T to be determined by derivatives of the 

Helmholtz free energy , (5.7a,b).  Also, for a thermoelastic material it was shown that 

the internal specific rate of entropy production ' associated with material dissipation 

vanishes.  This procedure has the advantage that restrictions on constitutive equations can 

be obtained without making any statement of the second law of thermodynamics.   

 Various statements of the second law have been proposed which relate to purely 

thermal processes and coupled thermomechanical processes.  All of these statements 

attempt to propose mathematical expressions for restrictions on constitutive equations 

that ensure that theoretical predictions are consistent with observations.   

 For example, one thermal statement of the second law requires heat to flow from hot 

to cold regions.  Mathematically, this means that 

  – q • g > 0   for g = ∂/∂x ≠ 0  . (19.1) 

Alternatively, since temperature remains positive, (4.41) can be used to rewrite the 

restriction (19.1) in terms of the entropy flux p instead of the heat flux q to obtain 

  – p • g > 0   for g = ∂/∂x ≠ 0  . (19.2) 

For either case, the constitutive equations (5.10) and (5.9b) will satisfy the restrictions 

(19.1) and (19.2), respectively, provided that the heat conduction coefficient  is positive 

   > 0  . (19.3)  

Thus, (5.10) and (5.9b), associated with Fourier's law, require the entropy flux p and the 

heat flux q to be in the opposite direction to the temperature gradient g. 

 Another example is the notion that friction causes heat generation.  It has been shown 

in section 5 that ' vanishes for a thermoelastic material which is considered an ideal 

material with no material dissipation [also see Rubin (1992)].  Therefore, within the 
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context of continuum mechanics, a nonzero value of ' indicates that the material is non-

ideal or dissipative.  However, using (4.46) it can be shown that the rate of heat expelled 

from the body can be written in the form 

  – (r – div q) = – 
•
 + '  . (19.4) 

Thus, if ' remains positive then material dissipation causes a tendency for heat to be 

expelled by the body (which is consistent with the notion of friction).  Consequently, 

another statement of the second law is that the rate of material dissipation must be non-

negative 

   ' ≥ 0  . (19.5) 

Although this restriction is trivially satisfied for a thermoelastic material, it places 

important restrictions on the constitutive equations of more complicated materials like 

viscous fluids and elastic-plastic or elastic-viscoplastic solids. 

 Finally, it is noted from (4.45) that the two restrictions (19.2) and (19.5) require the 

internal rate of entropy production  to be non-negative 

   = – p • g + ' ≥ 0  . (19.6) 
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20. Uniqueness of the solution of the linearized theory of thermoelasticity 

 The objective of this section is to prove uniqueness of the solution of the linearized 

theory of thermoelasticity.  To this end, it is necessary to recall the formulation of the 

initial value and boundary value problem in thermoelasticity. 

 Specifically, recall from section 6 that for the linear theory of thermoelasticity the 

balances of linear momentum and energy are given by 

   0 
••
u = 0 b + div T  ,  0 

•
 = 0 r – div q , (20.1a,b) 

and the constitutive equations are specified by 

  T = K [e • I – 3(–0)] I + 2 e'  ,   

  q = –  
∂

∂x
 ,0 = 0Cv (–0) + 3K0 (e • I). (20.2) 

Moreover, from (7.1) and (7.2) the initial conditions require 

  u(x,0) = 
–
u(x)  ,  

•
u(x,0) = 

–
v(x)  , (x,0) = 

–
(x)  on P for t = 0  , (20.3) 

and the mixed boundary conditions (7.6) and (7.7) require 

  {(
•
u • s1) or (t • s1) , (

•
u • s2) or (t • s2) , (

•
u • n) or (t • n) , 

   or q • n}   specified on ∂P for all t ≥ 0  , (20.4) 

where {s1,s2} are orthogonal unit vectors tangent to ∂P, n is the unit outward normal to 

∂P and the traction vector t is given by 

  t = T n . (20.5) 

 In order to prove uniqueness of the solution of a problem in thermoelasticity, it is 

assumed that two different solutions exit and then it is proved that the difference in these 

two solutions must vanish.  Specifically, let {u(1), (1)} and {u(2), (2)} be two solutions 

which satisfy the balance laws (20.1), the constitutive equations (20.2) for specified 

initial conditions (20.3), boundary conditions (20.4) and specified values of the body 

force b and rate of energy supply r.  Next, form the difference solutions defined by 

  u = u(2) – u(1) ,   = (2) – (1)  . (20.6) 

Using superposition of the linear solution it follows that these difference quantities satisfy 

the balance laws 

  0 
••
u = div(T)  ,  0 

•
 = – div(q) , (20.7) 
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constitutive equations 

  T = [K (e • I) – 3] I + 2e' ,  

  q = –  
∂()

∂x
  ,0 = 0Cv + 3K0 (e • I), (20.8) 

initial conditions 

  u(x,0) = 0  ,  
•
u(x,0) = 0  , (x,0) = 0  on P for t = 0  , (20.9) 

and mixed boundary  

  {(
•
u • s1) = 0 or (t • s1) = 0 , (

•
u • s2) = 0 or (t • s2) = 0 ,  

  (
•
u • n) = 0 or (t • n) = 0 ,  

   = 0 or (q • n) = 0} on ∂P for all t ≥ 0  , (20.10) 

where the difference strain e and difference traction vector t are defined by 

  e = 
1

2
 [∂(u)/∂x + {∂(u)/∂x}T]  ,  t = T n  . (20.11)  

 Next, taking the dot product of (20.7a) with 
•
u, multiplying (20.7b) by /0 and 

adding the results yields the equation 

  
d

dt
 [

1

2
 0 (

•
u • 

•
u)] + 0(



0
) 

•
 + T • 

•
e = 

1

0
 q • 

∂()

∂x
  

  + div(
•
u • T – 



0
  q)  , (20.12) 

where use has been made of the symmetry of the stress tensor.  Now, with the help of the 

constitutive equations (20.8) it can be shown that 

  0(


0
) 

•
 + T • 

•
e = 

d

dt
 [ 
0Cv

20
 ()2 + 

K

2
 (e • I)2 +  (e' • e')]  , (20.13) 

so that integration of (20.12) over the region P and use of the divergence theorem yields 

   

 

  
d

dt
 

P
 [
0Cv

20
 ()2 + 

1

2
 0 (

•
u • 

•
u) + 

K

2
 (e • I)2 +  (e' • e')] dv 
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  = – 
P

 


0
 [

∂()

∂x
 • 

∂()

∂x
] dv + 

∂P
 [t • u – 



0
  (q • n)] da  . (20.14) 

Furthermore, with the help of the boundary conditions (20.10) it follows that the integral 

over ∂P vanishes so that 

  
d

dt
 

P
 [
0Cv

20
 ()2 + 

1

2
 0 (

•
u • 

•
u) + 

K

2
 (e • I)2 +  (e' • e')] dv 

  = – 
P

 


0
 [

∂()

∂x
 • 

∂()

∂x
] dv . (20.15) 

Next, using the initial conditions (20.9) and integrating (20.15) over time yields 

  
P

 [
0Cv

20
 ()2 + 

1

2
 0 (

•
u • 

•
u) + 

K

2
 (e • I)2 +  (e' • e')] dv 

  = – 
t

0
 

P
 


0
 [

∂()

∂x
 • 

∂()

∂x
] dv dt  . (20.16) 

Now, assuming that  

  0 > 0 , 0 > 0 , Cv > 0 , K > 0 ,  > 0 ,  > 0  , (20.17) 

it can be seen that the left hand side of (20.16) is non-negative and the right hand side of 

(20.16) is non-positive.  This means that both sides must be zero which ensures that the 

solution is unique with 

  u = 0 , 
•
u = 0 , e = 0 ,  = 0 , 

∂()

∂x
 = 0  on P for all t ≥ 0  . (20.18) 
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21. Material dissipation 

 A thermoelastic material is an ideal material in the sense that the internal rate of 

production of entropy ' due to material dissipation vanishes (5.7c).  The simplest model 

which includes material dissipation can be developed by adding linear viscous damping 

to the thermoelastic response. Specifically, it is assumed that the stress tensor T separates 

additively into two parts 

  T = 
^
T + 

v
T  . (21.1) 

The first part 
^
T characterizes the thermoelastic response and takes the form (5.12)  

  
^
T = – 

^
p I + 

^
T'  ,  

^
p = – K [e • I – 3(–0)] , 

^
T' = 2 e'  ,  (21.2a,b,c) 

  
^
Tij = – 

^
p ij + 

^
Tij'   ,  

^
p = – K [emm – 3(–0)] , 

^
Tij'  = 2 eij'    , (21.2d,e,f) 

and the second part 
v
T is due to viscous dissipation and takes the form 

  
v
T = – 

v
p I + 

v
T'  ,  

v
p = – d1 

•
e • I ,  

v
T' = 2d2 

•
e'  ,  (21.3a,b,c) 

  
v
Tij = – 

v
p ij + 

v
Tij'   ,  

v
p = – d1 

•
emm  ,  

v
Tij'  = 2d2 

•
eij'    , (21.3d,e,f) 

where d1 controls the dissipation due to dilatational deformation and d2 controls the 

dissipation due to distortional deformation.  Also, the values of the Helmholtz free energy 

, the entropy , the internal energy , and the entropy flux vector p, are the same as 

those associated with a thermoelastic material 

   = 
^
  ,    = 

^
  ,    = 

^
 = 

^
 + 

^
  ,  p = 

^
p  , (21.4) 

where 
^
 is given by (5.9a), 

^
 is given by (5.7a), 

^
T is given by (5.7b), and 

^
p is given by 

(5.9b), such that 

  
^
 = – 

∂
^


∂
  ,   

^
T = 0

∂
^


∂e
  . (21.5) 

 Now, the reduced form of the energy equation (5.5) becomes  

  0' = – 0[ 
^
 + 

∂
^


∂
 ] 

•
 + [ T – 0

∂
^


∂e
 ] • 

•
e  . (21.6) 

Thus, with the help of (21.1) and (21.5), it follows that the rate of material dissipation is 

given by 
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  0' = 
v
T  • 

•
e ≥ 0  , (21.7) 

which must be nonnegative by the second law of thermodynamics (19.5).  Moreover, 

substitution of (21.3) into (21.7) yields 

  0' = d1 (
•
e • I)2 + 2d2 (

•
e' • 

•
e') ≥ 0 , (21.8) 

which is satisfied provided that both d1 and d2 are nonnegative 

  d1 ≥ 0  ,  d2 ≥ 0   . (21.9) 

  In order to understand the connection of the internal rate of production of entropy 

and dissipation, it is convenient to consider an idealized problem where the outer 

boundary ∂P of a body is free of surface tractions, and is insulated from heat flux (or 

entropy flux) 

  t = 0   and  q • n = 0  (p • n = 0)  on ∂P  . (21.10) 

Moreover, the body force b and external rate of heat supply r (or entropy supply s) are 

taken to be zero in the entire region P occupied by the body 

  b = 0  and  r = 0  (s = 0)  on P  . (21.11) 

Also, for simplicity, it is assumed that in its initial configuration the body has no strain, 

the temperature is the reference temperature, but the velocity field is nonzero and is 

inhomogeneous 

  e = 0  ,   = 0  ,  grad L ≠ 0   at  t = 0  . (21.12) 

It then follows that the global form of the balance of entropy (4.16) reduces to 

  
d

dt
  P   dv =  P   dv  , (21.13) 

and the global form of the balance of energy can be integrated to yield 

   P   dv +  P 
1

2
  v • v dv = K0  , (21.14) 

where K0 is the kinetic energy of the body in its initial configuration.  This means that the 

total energy (internal plus kinetic) remains constant. 

 Next, it is recalled from (19.6) that the internal rate of production of entropy separates 

into a thermal part and a material part, such that 

   = – p • g + ' ≥ 0  ,   (21.15) 
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each of which is nonnegative due to the second law of thermodynamics (19.2) and (19.5) 

  – p • g > 0   for g = ∂/∂x ≠ 0  ,    ' ≥ 0  . (21.16) 

 Furthermore, for , d1 and d2 positive 

   > 0  ,  d1 > 0  ,  d2 > 0  , (21.17) 

it can be seen that the internal production of entropy vanishes only when the temperature 

is uniform and the strain rate vanishes 

   = 0    ∂/∂x = 0  and  
•
e = 0  . (21.18) 

 Now, it is observed from (21.13) that since  is nonnegative, the entropy continues to 

increase as long as the temperature is not uniform and the strain rate does not vanish.  

However, the entropy  and the internal energy  for a thermoelastic material are 

functions of the strain e and the temperature  only 

   = (e,)  ,   = (e,)  . (21.19) 

Moreover, in view of (21.14), the total internal energy is bounded from above 

   P   dv ≤ K0  . (21.20) 

Consequently, it is impossible for the entropy to increase without bound and for the 

internal energy to remain bounded.  This means that the thermomechanical process must 

evolve so that eventually the temperature becomes uniform and the strain rate vanishes.  

It is particularly interesting to note that even if the material dissipation vanishes (21.10), 

the thermomechanical process will still evolve to a uniform temperature with vanishing 

strain rate since thermal heat conduction causes entropy production. 

 In the remainder of this course attention will be confined to the case of a 

nondissipative thermoelastic material with 

  d1 = d2 = 0  . (21.21) 
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22.  Wave propagation: Wave speeds in an infinite media, uniaxial strain waves, and 

vibrations of a bar in uniaxial stress  

 Typical wave propagation speeds in metals are about 5 km/s.  Therefore, the wave 

travels so fast that there is essentially no time for heat transfer by heat conduction.  

Consequently, in the absence of external heat supply r, it is reasonable to consider wave 

propagation to be an adiabatic process. 

 For adiabatic processes the stress is determined by the constitutive equations (9.28)  

  Tij = (
–
K – 

2

3
) emm ij + 2 eij  , (22.1) 

where 
–
K is specified by (9.29) 

  
–
K = K [1 + 

9K20

0Cv
]  . (22.2) 

Also, the temperature is given by (9.27) 

   = 0 – 
3K0

0Cv
  emm  . (22.3) 

It then follows that in the absence of body force (b=0), the strain-displacement relations 

(6.1) can be used together with (22.1) to rewrite the balance of linear momentum (6.21d) 

in the form 

  0 
••
u i = (

–
K + 



3
) um,mi +  ui,mm  . (22.4) 

 

WAVE  SPEEDS  IN  AN  INFINITE  MEDIA 

 In order to show that there are two types of waves in an infinite media it is convenient 

to express the displacement field in terms of two potential functions  and , such that 

  u =  +     ,    •  = 0  , 

  ui = ,i + ijk k,j  ,   j,j = 0  . (22.5) 

Physically, the potential  is associated with pure distortional deformations, whereas the 

potential  includes both dilatational and distortional deformations since 

  eij = ,ij + 
1

2
  [imn n,mj + jmn n,mi]  , 
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  e • I =  • u = emm = ,mm = 2   , 

  eij'  = [,ij – 
1

3
 ,mm ij] +  

1

2
  [imn n,mj + jmn n,mi]  . (22.6)  

Now, it follows from (22.5) that 

  um,mi = ,mmi  ,  ui,mm = ,mmi + ijk k,mmj  , (22.7) 

so that the equations of motion (22.4) can be rewritten in the forms 

  [0 
••
  – (

–
K + 

4

3
) ,mm],i + ijk [0 

••
k –  k,mm],j = 0  . (22.8) 

It then follows that the equations of motion will be satisfied if 

  0 
••
  = (

–
K + 

4

3
) ,mm  ,   0 

••
k =  k,mm  , (22.9a,b) 

which are wave equations of standard form. 

 To derive the wave speeds from these equations consider plane waves traveling in the 

ki direction (kiki = 1) with speed C and let 

   = (x)  ,   i = i(x)  ,   x = kixi – Ct  . (22.10a,b,c) 

Using this representation it follows that the dilatational wave equation (22.9a) will be 

satisfied for an arbitrary functional form (x) if the wave propagates with the dilatational 

wave speed 

  C = CP = 

–
K + 

4

3

0
  . (22.11) 

Similarly, it follows that the distortional wave equation (22.9b) will be satisfied for an 

arbitrary functional form i(x)  if the wave propagates with the distortional wave speed 

  C = CS = 


0
  . (22.12) 

In particular, it can be observed that the dilatational wave speed is faster than the 

distortional wave speed.  With regard to earthquakes, (22.11) is the speed of the P-wave 

(primary wave) and (22.12) is the speed of the S-wave (secondary wave), so the P-wave 

arrives before the S-wave. 
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 Also, it is noted that if the minus sign in front of C in (22.10c) is replaced by a plus 

sign then the wave travels in the negative ki direction with the same speed as the wave 

traveling in the positive ki direction. 

 

UNIAXIAL  STRAIN  WAVES 

 In order to study the properties of materials at high strain rates it is most common to 

use plate impact experiments where a cylindrical flyer plate is propelled to a high 

velocity by a gas gun and impacts a cylindrical target plate.  Since waves travel with a 

finite speed, points at the center of the plate experience uniaxial strain until release waves 

arrive from the plate's free lateral surfaces.  Moreover, the time window for which the 

strain remains uniaxial can be controlled by specifying the thickness and radius of the 

plate. 

 Taking the e1 direction to be the direction of motion, it follows that for uniaxial strain 

  u1 = u1(x1–Ct)  ,  u2 = u3 = 0  . (22.13) 

Thus, the only nontrivial equation of motion associated with (22.4) becomes 

  0 
••
u1 = (

–
K + 

4

3
) u1,11  , (22.14) 

which is satisfied provided that the uniaxial strain wave speed C is the same as the P-

wave speed (22.11).  Moreover, it is important to note from (22.1) that the nonzero 

stresses associated with uniaxial strain are given by 

  T11 = (
–
K + 

4

3
) u1,1  ,  T22 = (

–
K – 

2

3
) u1,1  ,  T33 = (

–
K – 

2

3
) u1,1  . (22.15) 

 

VIBRATIONS  OF  A  BAR  IN  UNIAXIAL  STRESS 

 Waves traveling along the axis of a thin bar are affected by the free lateral surfaces of 

the bar because the time required for waves to travel through the thickness of the bar is 

short.  Consequently, the majority of the energy transmitted by the wave travels at a wave 

velocity associated with uniaxial stress conditions.  Specifically, with the help of (9.17), 

and (9.18) with vanishing, it can be shown that  

  –0 = – (
3K0

0Cv + 9K20

) 
(1–2)T11

E
   , 
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  T11 = 
–
E e11 ,   

–
E = E [

0Cv + 9K20

0Cv + 6K20(1+)
]  . (22.15) 

It is interesting to note that 
–
E > E since 0 ≤ (1+) ≤ 3/2 and the material cools when it is 

stretched adiabatically. 

 Now, in the absence of body force (b=0), the balance of linear momentum (6.21d) in 

the e1 direction becomes 

  0 
••
u1 = 

–
E u1,11  . (22.16) 

Thus, taking u1 in the form 

  u1 = u1(x1–Ct)  , (22.17) 

the equation of motion (22.16) is satisfied if the adiabatic wave speed is given by 

  C = CB = 

–
E

0
   . (22.18) 

Then, equation (22.16) can be written in the alternative form 

  
••
u1 = CB

2 u1,11  . (22.19) 

 Next, consider a bar of length L which in its reference configuration occupies the 

region  

  0 ≤ x1 ≤ L  . (22.20) 

Free vibrations of the bar 

 For free vibrations of the bar, both the ends x1=0 and x1=L remain stress free.  

Therefore, from (22.15) it follows that the free boundary conditions require 

  u1,1(0) = 0  ,   u1,1(L) = 0  . (22.21) 

Using separation of variables, the solution of equation (22.19) can be written in the form 

  u1 = A sint  f(x1)  , (22.22) 

where A is the amplitude of the mode and  is its frequency.  Next, substituting this 

solution into the equation (22.19) yields 

  f,11 + k2 f = 0  ,   k = 


CB
  , (22.23) 
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where k is called the wave number.  Thus, the solution of (22.23) associated with  

symmetric modes about the center of the bar is given by 

  u1 = A sint  sin [k(x1 – L/2)]  , (22.24) 

with the boundary conditions (22.21) reducing to 

  cos kL/2 = 0  . (22.25) 

The solution of (22.25) predicts an infinite number of modes with wave number kn and 

frequency n characterized by 

  kn = 
(2n–1)

L
   ,  n = 

(2n–1)CB

L
    for  n = 1,2,3,...   . (22.26) 

In particular, notice that the higher modes (higher values of n) have shorter wavelengths 

(2/kn) and higher frequencies, and that the frequency increases with decreasing length 

L.  Moreover, the lowest free vibrational frequency of the symmetric mode corresponds 

to n=1 and has the frequency 1 and the period T1 of vibration given by 

  1 = 
CB

L
  ,  T1 =  

2

1
  =  

2L

CB
   . (22.27) 

Thus, the period of vibration is equal to the time required for a wave to travel from one 

end of the bar to the other end and back again (i.e. twice the length of the bar). 

 Similarly, the solution of (22.23) associated with anti-symmetric modes about the 

center of the bar is given by 

  u1 = A sint  cos [k(x1 – L/2)]  , (22.28) 

with the boundary conditions (22.21) reducing to 

  sin kL/2 = 0  . (22.29) 

The solution of (22.28) predicts an infinite number of modes with wave number kn and 

frequency n characterized by 

  kn = 
2n

L
   ,  n = 

2nCB

L
    for  n = 1,2,3,... (22.30) 

Thus, the lowest anti-symmetrical vibrational frequency corresponds to n=1 and has the 

frequency 1 and the period T1 of vibration given by 



 

 

131 

  1 = 
2CB

L
  ,  T1 =  

2

1
  =  

L

CB
   , (22.31) 

which equals twice the frequency of the lowest symmetric mode. 

Fixed-Free vibrations of the bar 

 As another example, consider the case when the end (x1=0) is fixed and the end 

(x1=L) is free.  Therefore, from (22.15) it follows that the boundary conditions require 

  u1(0) = 0  ,   u1,1(L) = 0  . (22.32a,b) 

Again, using separation of variables, the solution can be written in the form (22.22) with 

the function f satisfying the equation (22.23).  Now, the solution of (22.23) which 

satisfies the boundary condition (22.32a) becomes 

  u1 = A sint  sin (kx1)  , (22.33) 

where k is determined by the boundary condition (22.32b) 

  cos (kL) = 0  . (22.34) 

The solution of (22.34) predicts an infinite number of modes with wave number kn and 

frequency n characterized by 

  kn = 
(2n–1)

2L
   ,  n = 

(2n–1)CB

2L
    for  n = 1,2,3,...   . (22.35) 

Therefore, it follows that the lowest vibrational frequency corresponds to n=1 and has the 

frequency 1 and the period T1 of vibration given by 

  1 = 
CB

2L
   ,  T1 = 

2

1
  = 

4L

CB
  . (22.36) 

This period of vibration corresponds to the wave traveling four lengths of the bar. 

 It is of interest to note that this result can be obtained from the symmetrical free 

vibrational mode, since the middle of the bar (x1=L/2) remains stationary in the 

symmetric mode (22.24).  This means that the effective fixed-free length of the free 

vibrational bar is L/2.  In other words, if the free bar has length 2L then its effective 

fixed-free length with L.  Consequently, the results (22.35) can be obtained by replacing 

L in (22.26) by 2L. 
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23. Bending of a rectangular plate due to mechanical and thermal loads  

 Consider a rectangular plate with length L, height H, and width W, which in its 

reference configuration occupies the region characterized by 

  – 
L

2
 ≤ x1 ≤ 

L

2
  ,  – 

H

2
  ≤ x2 ≤ 

H

2
  ,  – 

W

2
  ≤ x3 ≤ 

W

2
  . (23.1) 

The top (x2=H/2) and bottom (x2=–H/2) surfaces of the plate are taken to be traction free 

so that 

  t(x1,±H/2,x3;±e2) = 0  ,   Ti2(x1,±H/2,x3) = 0  . (23.2) 

Also, the boundary conditions on the edges of the plate are specified in a Saint Venant 

sense (7.11) such that the resultant forces are zero, but the resultant moments are not.  

Specifically, the boundary conditions on the edges are specified by 

  
W/2

–W/2


H/2

–H/2
t(L/2,x2,x3;e1) dx2 dx3 = 0  , 

  M3 e3 = 
W/2

–W/2


H/2

–H/2
 (x – 

L

2
 e1) t(L/2,x2,x3;e1) dx2 dx3   , 

  
W/2

–W/2


H/2

–H/2
t(–L/2,x2,x3;–e1) dx2 dx3 = 0  , 

  – M3 e3 = 
W/2

–W/2


H/2

–H/2
 (x + 

L

2
 e1) t(–L/2,x2,x3;–e1) dx2 dx3   , 

  
H/2

–H/2


L/2

–L/2
 t(x1,x2,W/2;e3) dx1 dx2 = 0  , 

  M1 e1 = 
H/2

–H/2


L/2

–L/2
 (x – 

W

2
 e3) t(x1,x2,W/2;e3) dx1 dx2   , 

  
H/2

–H/2


L/2

–L/2
 t(x1,x2,–W/2;e3) dx1dx2 = 0  , 

  – M1 e1 = 
H/2

–H/2


L/2

–L/2
 (x + 

W

2
 e3) t(x1,x2,–W/2;–e3) dx1 dx2   , (23.3) 

where M1 and M3 are the moments applied to the edges. It then follows from (23.2) and 

(23.3) that the total resultant force and total resultant moment (about any fixed point) 

applied to the entire plate both vanish.  Consequently, the plate will be in equilibrium if 

the body force also vanishes (b=0).  Moreover, the boundary conditions (23.3) can be 

expanded to yield 
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  
W/2

–W/2


H/2

–H/2
Ti1(±L/2,x2,x3) dx2 dx3 = 0  , 

  
W/2

–W/2


H/2

–H/2
 [x2 T31(±L/2,x2,x3) – x3 T21(±L/2,x2,x3)] dx2 dx3 = 0  , 

  
W/2

–W/2


H/2

–H/2
x3 T11(±L/2,x2,x3) dx2 dx3 = 0  , 

  M3 = – 
W/2

–W/2


H/2

–H/2
x2 T11(±L/2,x2,x3) dx2 dx3  , 

  
H/2

–H/2


L/2

–L/2
 Ti3(x1,x2,±W/2) dx1 dx2 = 0  , 

  M1 = 
H/2

–H/2


L/2

–L/2
 x2 T33(x1,x2,±W/2) dx1 dx2  , 

  
H/2

–H/2


L/2

–L/2
 x1 T33(x1,x2,±W/2) dx1 dx2 = 0  , 

  
H/2

–H/2


L/2

–L/2
 [x1 T23(x1,x2,±W/2) – x2 T13(x1,x2,±W/2)] dx1 dx2 = 0  . (23.4)  

Examination of the boundary conditions (23.3) and (23.4) suggests that the stresses be 

specified by 

  T11 = – [
12M3

WH3 ] x2  ,  T33 = [
12M1

LH3 ] x2 ,  all other Tij = 0  . (23.5) 

These stresses also satisfy the equilibrium equations 

  Tij,j = 0  . (23.6) 

 In addition to the mechanical loads associated with the moments M1 and M3 it is of 

interest to specify a thermal load by taking the temperature gradient through the thickness 

H of the plate to be nonzero.  Specifically, the temperature field is specified by 

   = 0 + G2 x2  , (23.7)  

where G2 is a constant.  It then follows from the constitutive equation (6.22g) that the 

heat flux q is given by 

  q = – G2 e2  , (23.8) 

so that heat flows in the negative e2 direction.   This physically corresponds to a plate 

which is heated on its top surface (x2=H/2) and cooled on its bottom surface (x2=–H/2).  
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In this regard, it is recalled that the case of a uniform thermal expansion was solved in 

section 8. 

 Next, using the constitutive equations (9.9) it follows that the strains associated with 

the stresses (23.5) and the temperature field (23.7) become 

  e11 = A x2   ,  e22 = B x2  ,  e33 = C x2  ,  e12 = e13 = e23 = 0  , (23.9) 

where the constants A, B, C are specified by 

  A = – 
12M3

EWH3  – 
12M1

ELH3   + G2  ,   B = 
12M3

EWH3 – 
12M1

ELH3   + G2  ,  

  C = 
12M3

EWH3  + 
12M1

ELH3  + G2  . (23.10) 

Since the strains (23.9) are linear functions of the coordinate x2 it follows that they 

satisfy the compatibility equations (6.3) so that a displacement field exists. 

 Moreover, the constitutive equation (6.22j) indicates that the internal energy 

  0 = 0Cv G2 x2 + 3K0 emm.   (23.11) 

is independent of time so that in the absence of external heat supply (r=0) the balance of 

energy (6.21f) 

  0 
•
 = – qj,j   . (23.12) 

is satisfied. 

 In order to complete the solution it is necessary to integrate the strain-displacement 

relations (6.1) to determine expressions for the displacement field.  Specifically, it 

follows from (23.9) that 

  u1,1 = A x2  ,  u2,2 =  B x2  ,  u3,3 = C x2  , (23.13a,b,c) 

  u1,2 + u2,1 = 0  ,  u1,3 + u3,1 = 0  ,  u2,3 + u3,2 = 0  . (23.13d,e,f) 

Thus, integration of the first three of these equations yields 

  u1 = A x1x2 + f1(x2,x3)  ,   u2 = 
B

2
 x2

2 + f2(x1,x3)  ,   

  u3 = C x2x3 + f3(x1,x2)  , (23.14) 
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where f1, f2 and f3 are functions of integration.  These functions are determined by 

substituting (23.14) into the remaining three equations of (23.13).  Specifically, (23.13d) 

requires 

  A x1 + f1,2 + f2,1 = 0  . (23.15)   

Now, from (23.14) it can be seen that since f2 does not depend on x2, then f1,2 also 

cannot depend on x2 so it must be a function g1(x3) of x3 only 

  f1,2 = g1(x3)  ,   f1(x2,x3) = g1(x3) x2 + h1(x3)  , (23.16a,b) 

where h1(x3) is a function of x3 only.  Substituting this result back into (23.15) yields 

        A x1 + g1(x3) + f2,1 = 0  ,   f2(x1,x3) = – 
A

2
 x1

2 – g1(x3) x1 + h2(x3)  , (23.17a,b) 

where h2(x3) is another function of x3 only.  Thus, with the help of (2.14), (2.16) and 

(2.17), the displacements u1 and u2 become 

  u1 = A x1x2 + g1(x3) x2 + h1(x3)  , (23.18a) 

  u2 =  – 
A

2
 x1

2 + 
B

2
 x2

2  – g1(x3) x1 + h2(x3)  . (23.18b) 

 Next, (2.14) and (23.18a) are substituted into (23.13e) to deduce that 

  g1,3 x2 + h1,3 + f3,1 = 0  . (23.19) 

Now, since f3 does not depend on x3, and g1 and h1 depend only on x3, it follows that 

g1,3 and h1,3 are constants, and f3,1 is a function of x2 only 

  g1,3 = D  ,   g1 = D x3 + H12  , 

  h1,3 = H13  ,  h1 = H13 x3 + c1  , 

   f3,1 = – D x2 – H13  ,  f3 = – D x1x2 – H13 x1 + h3(x2) , (23.20) 

where D, H12, H13, c1 are constants and h3 is a function of x2 only.  Thus, with the help 

of (23.14), (23.18b) and (23.20) the displacements u2 and u3 become 

  u2 = – 
A

2
 x1

2 + 
B

2
 x2

2 – D x1x3 – H12 x1 + h2(x3)  , (23.21a) 

  u3 = C x2x3 – D x1x2 – H13 x1 + h3(x2) . (23.21b)  

 To determine the remaining functions, (23.21) are substituted into (23.13f) to obtain 

  – D x1 + h2,3 + C x3 – D x1 + h3,2 = 0  . (23.22) 
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Since h2 depends on x3 only, and h3 depends only on x2, it follows that D vanishes and 

h3,2 is constant 

  D = 0  , 

  h3,2 = – H23  ,   h3 = – H23 x2 + c3  ,  

  h2,3 = – C x3 + H23  ,  h2 = – 
C

2
 x3

2  + H23 x3 + c2 , (23.23) 

where H23, c2, c3 are constants. 

 Thus, collecting the results (23.18a), (23.20), (23.21) and (23.23), the displacement 

field becomes 

  u1 = A x1x2 + H12 x2 + H13 x3 + c1  , 

  u2 = – 
A

2
 x1

2  + 
B

2
 x2

2  – 
C

2
 x3

2  – H12 x1  + H23 x3 + c2 , 

  u3 = C x2x3 – H13 x1 – H23 x2 + c3  , (23.24) 

where A, B and C are given by (23.10).  Moreover, it can be observed that ci represent 

rigid body translations and H12, H13, H23 represent rigid body rotations.   

 As special cases consider: 

 

PURE  BENDING  IN  THE  e1–e2 PLANE (M1=G2=0) 

  u1 = – [
12M3

EWH3] x1x2 + H12 x2 + H13 x3 + c1  , 

  u2 = [
6M3

EWH3] [ x1
2 +  x2

2 –  x3
2]  – H12 x1 + H23 x3 + c2 , 

  u3 = [
12M3

EWH3] x2x3 – H13 x1 – H23 x2 + c3  . (23.25) 

 

PURE  BENDING  IN  THE  e2–e3 PLANE (M3=G2=0) 

  u1 = – [
12M1

ELH3 ] x1x2 + H12 x2 + H13 x3 + c1  , 

  u2 = – [
6M1

ELH3] [–  x1
2 +  x2

2 + x3
2]  – H12 x1 + H23 x3 + c2 , 
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  u3 = [
12M1

ELH3] x2x3 – H13 x1 – H23 x2 + c3  . (23.26) 

FREE  THERMAL  BENDING (M1=M3=0) 

  u1 = [G2] x1x2 + H12 x2 + H13 x3 + c1  , 

  u2 = [
G2

2
] [– x1

2 + x2
2 – x3

2] – H12 x1 + H23 x3 + c2 , 

   u3 = [G2] x2x3 – H13 x1 – H23 x2 + c3  . (23.27) 



 

 

138 

24. Composite plates  

 The objective of this section is to consider simple deformations of composite plates 

which are loaded by both mechanical and thermal loads.  Specifically, consider a 

composite rectangular plate which is made of two different materials (see Fig. 24.1).  The 

plate has length L, and width W.  The heights of the bottom and top portions of the plate 

are H1 and H2, respectively.  The bottom portion of the plate occupies the region  

  – 
L

2
 ≤ x1 ≤ 

L

2
  ,  – H1  ≤ x2 ≤ 0  ,  – 

W

2
  ≤ x3 ≤ 

W

2
  , (24.1) 

and has the material properties 

  { 01 , E1 , 1 , 1 , Cv1 }  , (24.2) 

whereas the top portion of the plate occupies the region 

  – 
L

2
 ≤ x1 ≤ 

L

2
  ,  0  ≤ x2 ≤ H2  ,  – 

W

2
  ≤ x3 ≤ 

W

2
  , (24.3) 

and has the material properties 

  { 02 , E2 , 2 , 2 , Cv1 }  . (24.4) 

 

 

Fig. 24.1  Sketch of a composite plate. 

 For simplicity, attention will be focused only on simple problems of equilibrium with 

no body force 

  b = 0  . (24.5) 

Also, it will be assumed that heat is supplied (r≠0) only during the process of heating the 

body uniformly to a uniform temperature 

   = constant  , (24.6) 

e2 

e1 

e3 

H2 

H1 

L 

W 
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so that the heat flux vector q vanishes.  In general, it is necessary to specify boundary 

conditions which are valid at each point of the exterior boundary of the composite plate.  

Also, it is necessary to specify conditions at the interface (x2=0) which characterize the 

bonding between the top and bottom portions of the plate.  

 For definiteness, let the displacement, strain and stress fields be {u i
(1) , e ij

(1), T ij
(1)} in 

the bottom portion of the plate and be {u i
(2) , e ij

(2), T ij
(2)} in its top portion.  Assuming that 

the two portions of the plate are bonded perfectly at the interface (x2=0), it follows that 

material points that were in contact before loading remain in contact.  This means that the 

displacement field must be continuous at the contact surface 

  u i
(1)(x1,0,x3) = u i

(2)(x1,0,x3)  . (24.7) 

In addition, it is necessary to specify kinetic conditions at this surface.  Specifically, it is 

necessary to require the traction vector 
–
t  applied by the top portion of the plate on its 

bottom portion to be equal and opposite to the traction vector applied by the bottom 

portion of the plate on its top portion 

  t(x1,0,x3;e2) = 
–
t   applied to the bottom portion of the plate  , 

  t(x1,0,x3;–e2) = – 
–
t   applied to the top portion of the plate  . (24.8) 

Now, using the relationship between the stress vector and the stress tensor it follows that 

  T(1)(x1,0,x3) e2 = 
–
t   ,   T(2)(x1,0,x3) (– e2) = – 

–
t   , 

  T(1)(x1,0,x3) e2 = T(2)(x1,0,x3) e2  , 

  T i2
(1)(x1,0,x3) = T i2

(2)(x1,0,x3)  , (24.9) 

which require continuity of three components of stress. 

 Since the two materials are different, they respond differently to thermal and 

mechanical loads so the solution of boundary value problems of contact problems such as 

the one under consideration usually are quite complicated and lead to inhomogeneous 

deformation fields in each portion of the plate.  However, it is possible to develop 

intuition about the potential deformation field associated with this incompatibility of the 

materials by considering a very special case where surface tractions are applied in such a 

way that the deformation fields in each of the portions of the plate remain homogeneous.  
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 To this end, consider the following boundary value problem. Let the top  (x2=H2) and 

bottom  (x2=–H1) surfaces of the plate be traction free so that 

  t(x1,H2,x3;e2) = 0  ,   T i2
(2)(x1,H2,x3) = 0  , 

  t(x1,–H1,x3;–e2) = 0  ,   T i2
(1)(x1,–H1,x3) = 0  . (24.10) 

Also, specify the boundary conditions on the edges of the plate in a Saint Venant sense 

(7.11), such that the resultant forces and moments on the edges are specified by 

  P e1 = 
W/2

–W/2


H
2

–H
1
t(L/2,x2,x3;e1) dx2 dx3  , 

  M3 e3 = 
W/2

–W/2


H
2

–H
1
[x – 

L

2
 e1 – 

(H2–H1)

2
 e2] t(L/2,x2,x3;e1) dx2 dx3   , 

  – P e1 =
W/2

–W/2


H
2

–H
1
t(–L/2,x2,x3;–e1) dx2 dx3  , 

  – M3 e3 = 
W/2

–W/2


H
2

–H
1
 [x + 

L

2
 e1 – 

(H2–H1)

2
 e2] t(–L/2,x2,x3;–e1) dx2 dx3   , 

  
H

2

–H
1


L/2

–L/2
 t(x1,x2,W/2;e3) dx1 dx2 = 0  , 

  M1 e1 = 
H

2

–H
1


L/2

–L/2
 [x – 

(H2–H1)

2
 e2 – 

W

2
 e3] t(x1,x2,W/2;e3) dx1 dx2   , 

  
H

2

–H
1


L/2

–L/2
 t(x1,x2,–W/2;e3) dx1dx2 = 0  , 

  – M1 e1 = 
H

2

–H
1


L/2

–L/2
 [x – 

(H2–H1)

2
 e2 + 

W

2
 e3] t(x1,x2,–W/2;–e3) dx1 dx2   . (24.11) 

Here, P is a specified resultant force, and M1 and M3 are the resultant moments applied to 

the edges that are determined by the solution of the problem. It then follows from (24.10) 

and (24.11) that the total resultant force and total resultant moment (about any fixed 

point) applied to the entire plate both vanish.  Moreover, the boundary conditions (24.11) 

can be expanded to yield 

  P = 
W/2

–W/2


H
2

–H
1
T11(±L/2,x2,x3) dx2 dx3   , 
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  0 = 
W/2

–W/2


H
2

–H
1
T21(±L/2,x2,x3) dx2 dx3 = 0  , 

  0 = 
W/2

–W/2


H
2

–H
1
T31(±L/2,x2,x3) dx2 dx3 = 0  , 

 
W/2

–W/2


H
2

–H
1
 [{x2 – 

(H2–H1)

2
 } T31(±L/2,x2,x3) – x3 T21(±L/2,x2,x3)] dx2 dx3 = 0  , 

  
W/2

–W/2


H
2

–H
1
x3 T11(±L/2,x2,x3) dx2 dx3 = 0  , 

  M3 = – 
W/2

–W/2


H
2

–H
1
{x2 – 

(H2–H1)

2
}T11(±L/2,x2,x3) dx2 dx3  , 

  
H

2

–H
1


L/2

–L/2
 Ti3(x1,x2,±W/2) dx1 dx2 = 0  , 

  M1 = 
H

2

–H
1


L/2

–L/2
 {x2 – 

(H2–H1)

2
} T33(x1,x2,±W/2) dx1 dx2  , 

  
H

2

–H
1


L/2

–L/2
 x1 T33(x1,x2,±W/2) dx1 dx2 = 0  , 

  
H

2

–H
1


L/2

–L/2
 [x1 T23(x1,x2,±W/2) – x2 T13(x1,x2,±W/2)] dx1 dx2 = 0  . (24.12)  

 Here, simple solutions are considered of the forms 

  e11
(1) = e11

(2) = e11 = constant  ,   e22
(1) = constant  ,   e22

(2) = constant  , 

  e33
(1) = e33

(2) = e33 = constant  ,   e12
(1) = e12

(2) = 0  , 

  e13
(1) = e13

(2) = 0  ,   e23
(1) = e23

(2) = 0  , (24.13) 

where the constants {e11, e22
(1), e22

(2), e33} must be determined by the solution.  In then 

follows from the constitutive equations (6.22) that the stress fields are constant in each 

portion of the plate so the balance laws (6.21) are satisfied pointwise.  Also, it follows 

that   

  T12
(1) = T12

(2) = 0  ,   T13
(1) = T13

(2) = 0  ,  T23
(1) = T23

(2) = 0  . (24.14) 

Moreover, the contact conditions (24.9) and the boundary conditions (24.10) can be used 

to deduce the additional result that 
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  T22
(1) = T22

(2) = 0  . (24.15) 

Then, the constitutive equations in the forms (9.9) can be used to obtain 

  e11 = 
T11

(1)

E1
  – 

1T33
(1)

E1
  + 1(–0)  ,   e22

(1) = – 
1T11

(1)

E1
   – 

1T33
(1)

E1
  + 1(–0)  , 

  e33 = – 
1T11

(1)

E1
   + 

T33
(1)

E1
  + 1(–0)  , (24.16) 

in the bottom portion of the plate, and 

  e11 = 
T11

(2)

E2
  – 

2T33
(2)

E2
  + 2(–0)  ,   e22

(2) = – 
2T11

(2)

E2
   – 

2T33
(2)

E2
  + 2(–0)  , 

  e33 = – 
2T11

(2)

E2
   + 

T33
(2)

E2
  + 2(–0)  , (24.17) 

in its top portion.   

 Next, equating the expressions for e11 and e33 in (24.16) and (24.17) yields 

   
T11

(1)

E1
  – 

1T33
(1)

E1
  –   

T11
(2)

E2
  + 

2T33
(2)

E2
   = – (1–2)(–0)  , 

  – 
1T11

(1)

E1
   + 

T33
(1)

E1
  + 

2T11
(2)

E2
   – 

T33
(2)

E2
  = – (1–2)(–0)  , (24.18) 

which are two equations for the four unknowns {T11
(1), T33

(1), T11
(2), T33

(2)}.  The remaining 

two equations are obtained from (24.12)1 and (24.12)7 

  W [H1 T11
(1) + H2 T11

(2)] = P ,   L [H1 T33
(1) + H2 T33

(2)] = 0  . (24.19) 

Alternatively, these equations yield 

  T11
(2) = – [

H1

H2
] T11

(1) + 
P

H2W
  ,  T33

(2) = – [
H1

H2
] T33

(1)  , (24.20) 

so that (24.18) can be written in the matrix form 

  






A11 A12

A12 A11
 






T11

(1)

T33
(1)  = 







B1

B2
  , 

  A11 = [
1

E1
 + 

H1

H2
  

1

E2
 ]  ,  A12 = – [

1

E1
 + 

H1

H2
  
2

E2
 ]  , 
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  B1 = 
P

H2WE2
  – (1–2)(–0)  ,  B2 = – 

2P

H2WE2
  – (1–2)(–0)  , (24.21) 

which has the solution 

  T11
(1) = 

A11B1 – A12B2

A11
2  – A12

2   ,  T33
(1) = 

A11B2 – A12B1

A11
2  – A12

2    . (24.22) 

 Now, the equations (24.12) will be satisfied provided that M1 and M3 are specified by 

  M1 = L [ – 
H1

2

2
 T33

(1) +  
H2

2

2
 T33

(2) ] = – H1 L [
H1+H2

2
] T33

(1) , 

  M3 = – W[– 
H1

2

2
 T11

(1) +  
H2

2

2
 T11

(2)] + [
H2–H1

2
] P = H1 W [

H1+H2

2
] T11

(1) – [
H1

2
] P , (24.23) 

where use has been made of the equations (24.20). 

 In summary, once the force P and the temperature  have been specified, the stresses 

are given by (24.14, (24.15), (24.20) and (24.22), and the strains are given by (24.13), 

(24.16) and (24.17).  Also, the moments M1 and M3 are given by (24.23).  It is important 

to emphasize that since M1 and M3 are not zero, the plate would bend if these moments 

were not supplied. 

 In order to analyze the physical meaning of this solution, it is convenient to consider 

simpler problems.  Specifically, consider the case when the top and bottom portions of 

the plate have the same geometry and the same Young's modulus 

  H1 = H2 = H  ,  E1 = E2 = E  . (24.24) 

It then follows from (24.20), (24.21) and (24.22) that 

  A11 = 
2

E
  ,   A12 = – 

(1+2)

E
   ,   

  B1 = 
P

HWE
  – (1–2)(–0)  ,  B2 = – 

2P

HWE
  – (1–2)(–0)  , (24.25) 

and that 

  T11
(1) = 

{2–2(1+2)}
P

HW
 – (2+1+2)(1–2)(–0)

4 [1 – {
1+2

2
}

2
]

   , 
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  T11
(2) = 

{2–1(1+2)}
P

HW
 + (2+1+2)(1–2)(–0)

4 [1 – {
1+2

2
}

2
]

   , 

  T33
(1) = 

(1–2) 
P

HW
 – (2+1+2)(1–2)(–0)

4 [1 – {
1+2

2
}

2
]

   ,   T33
(2) = – T33

(1)  , 

  M1 = – 

(1–2) 
HLP

W
 – H2L(2+1+2)(1–2)(–0)

4 [1 – {
1+2

2
}

2
]

  

  M3 = 

{
1

2–2
2

2
}HP – H2W(2+1+2)(1–2)(–0)

4 [1 – {
1+2

2
}

2
]

   . (24.26) 

First of all, notice that if the materials are the same then 

  1 = 2 =   ,   1 = 2 =   , 

  T11
(1) = T11

(2) = 
P

2HW
  ,  T33

(1) = T33
(2) = 0  ,  M1 = M3 = 0  , (24.27) 

which is consistent with uniaxial stress in the e1 direction.   

 Next, consider the case of mechanical loading only, such that 

   = 0  ,   

  T11
(1) = 

{2–2(1+2)}
P

HW

4 [1 – {
1+2

2
}

2
]

   ,   T11
(2) = 

{2–1(1+2)}
P

HW

4 [1 – {
1+2

2
}

2
]

   , 

  T33
(1) = 

(1–2) 
P

HW

4 [1 – {
1+2

2
}

2
]

   ,   T33
(2) = – T33

(1)   , 
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  M1 = – 

(1–2) 
HLP

W

4 [1 – {
1+2

2
}

2
]

    ,   M3 = 

{
1

2–2
2

2
}HP

4 [1 – {
1+2

2
}

2
]

   . (24.28) 

Now, for 1 greater than 2, it is necessary to apply a tension T33
(1) to the bottom portion 

of the plate and a compression T33
(2) to its top portion in order to prevent the Poisson effect 

of contracting the bottom portion of the plate more than its top portion.  Also, the tension 

T11
(1) in the top portion of the plate is greater than the tension T11

(2) in its bottom portion.  

Moreover, notice that even if the dimensions L and W are equal, the magnitudes of the 

bending moments M1 and M3 are not equal. 

 Finally, consider the case of thermal loading only, such that 

  P = 0  , 

  T11
(1) = T33

(1) =  –  
(2+1+2)(1–2)(–0)

4 [1 – {
1+2

2
}

2
]

   ,   T11
(2)  = T33

(2) = – T11
(1) , 

  M1 =  
H2L(2+1+2)(1–2)(–0)

4 [1 – {
1+2

2
}

2
]

  , 

  M3 = –  
H2W(2+1+2)(1–2)(–0)

4 [1 – {
1+2

2
}

2
]

  = – 
W

L
 M1 . (24.29) 

Now, for 1 greater than 2 and  greater than 0, it is necessary to apply a compression 

T11
(1) = T33

(1) to the bottom portion of the plate and a tension T11
(2) = T33

(2) to its top portion in 

order to prevent the temperature expanding the bottom portion of the plate more than its 

top portion.  
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25. Flamant's problem: A concentrated line force on a two-dimensional half space 

 

 

Fig. 25.1  Sketch of a concentrated line force P applied to a two-dimensional half space.  

 Flamant's problem considers a concentrated line force applied to a two-dimensional 

half space [see Fig. 25.1].  The body force vanishes 

  br = b = 0  , (25.1) 

and the temperature * is taken to be uniform but not necessarily equal to 0
*.  Also, the 

surface (x2=0) of the half space is free of surface tractions except at the point (x1=x2=0) 

where the concentrated force is applied 

  t = T(r,0) [–e(0)] = 0  for r > 0  

   Tr(r,0) = 0  and  T(r,0) = 0  for  r > 0  , (25.2a,b) 

  t = T(r,) [e()] = 0  for r > 0  ,  

   Tr(r,) = 0  and  T(r,) = 0  for  r > 0  . (25.2c,d) 

 Figure 25.2 shows a semi-circle of radius a centered at the concentrated line force P 

(per unit length in the e3 direction).  Since this semi-circle must be in equilibrium, the 

surface traction t applied to the curved part of the semi-circle must balance the applied 

force 

 

e1 

e 

e2 

er 

P 
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Fig. 25.2  Sketch of a semi-circle of radius a centered at the concentrated line force. 

 

  


0
 t(a,;er) a d + P e2 = 0  ,  

  


0
 [Trr(a,) er() + Tr(a,) e()] a d + P e2 = 0 , 

  


0
 [{Trr(a,) cos – Tr(a,) sin} e1 + {Trr(a,) sin + Tr(a,) cos} e2] a d  

  + P e2 = 0 , 

  


0
 [Trr(a,) cos – Tr(a,) sin] a d = 0  , (25.3a) 

  


0
 [Trr(a,) sin + Tr(a,) cos] a d + P = 0  . (25.3b) 

Moreover, since these equations must be valid for any value of the radius a, they suggest 

that the stress field should depend on (1/r).  Thus, examination of the Michell solution 

indicates that the simplest stress field which satisfies this condition as well as the 

boundary conditions (25.2) is given by 

  Trr = – [
2A1

r
] sin  ,  T = 0  ,  Tr = 0  , (25.4) 

where A1 is a constant.  It can easily be seen that this stress field satisfies the equations of 

equilibrium (18.6) and the compatibility equations (18.7).  Moreover, it can be seen that 

this stress field satisfies the boundary conditions (25.3) provided that A1 is given by 

  A1 = 
P


  , (25.5) 

so the stress field becomes 

P 

a 

t = ? 
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  Trr = – [ 
2P

r
 ] sin  ,  T = 0  ,  Tr = 0  . (25.6) 

 In order to determine the displacement field associated with the solution (25.6), use is 

made of the constitutive equations (16.14) with the temperature set to the constant value 

1
* 

  err = – [ 
(1–

–
)P

r
 ] sin  + (1+

–
)

–
(1

*–0
*) , 

  e =  [ 

–
P

r
 ] sin + (1+

–
)

–
(1

*–0
*)  ,  er = 0  . (25.7) 

Next, integration of the strain-displacement relations (16.9) yields 

  ur = – [ 
(1–

–
)P


 ] ln(r) sin + (1+

–
)

–
(1

*–0
*) r  + 

df()

d
  ,  

  u = – 
P


 [ 

–
 + (1–

–
) ln(r) ] cos – f() + g(r)  , (25.8) 

where f() and g(r) are functions of integration.  Moreover, substituting these results into 

the expression (16.9) for the strain er and use of (25.7) yields the equation 

   
1

r
  [ 

d2f()

d2  + f() – 
(1–2

–
)P


  cos ] + [ 

dg(r)

dr
  – 

1

r
  g(r)  ] = 0  . (25.9)   

Thus, in view of the expressions (16.8) for rigid body displacements it follows that the 

solution of (25.9) can be expressed in the form 

  f() = c1 sin – c2 cos + 
(1–2

–
)P

2
  [ cos +  sin ] ,  g(r) = – H12 r  , (25.10) 

where c and H12 are constants.  Then, the displacements become 

  ur = – [ 
(1–

–
)P


 ] ln(r) sin + (1+

–
)

–
(1

*–0
*) r  + c1 cos + c2 sin 

  + 
(1–2

–
)P

2
   cos ,  

 

  u = – 
P


 [ 

–
 + (1–

–
) ln(r)] cos – c1 sin + c2 cos – 

(1–2
–
)P

2
  [cos +  sin] 
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  – H12 r  . (25.11) 

 Now, using the relations 

  r = x1
2+x2

2  ,  cos = 
x1

x1
2+x2

2
  ,  sin = 

x2

x1
2+x2

2
  ,   = tan–1[ 

x2

x1
 ] , (25.12) 

the rectangular Cartesian components of the stress tensor associated with the results 

(25.6) and (25.11) become 

  T = Trr (erer) = Trr [cos2 (e1e1) + sin2 (e2e2)  

  + sin cos (e1e2 + e2e1)], 

  T11 = –  
2P


 [ 

x1
2x2

(x1
2+x2

2)2 ]  ,  T22 = –  
2P


 [ 

x2
3

(x1
2+x2

2)2]  , (25.13a,b) 

  T12 = –  
2P


 [ 

x1x2
2

(x1
2+x2

2)2]  , (25.13c) 

and those of the displacement vector become 

  u = ur er + u e = [ur cos – u sin] e1 + [ur sin + u cos] e2  , 

  u1 =  
P

2
  [ 

x1x2

x1
2+x2

2 + (1–2
–
) tan–1( 

x2

x1
)] + (1+

–
)

–
(1

*–0
*) x1+ c1 + H12 x2  ,  (25.14a) 

  u2 = – 
P

2
  [

x1
2

x1
2+x2

2  + (1–
–
) ln(x1

2+x2
2)] + (1+

–
)

–
(1

*–0
*) x2 + c2 – H12 x1 . (25.14b) 
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26. Hertz contact: Contact of an elastic cylinder with a smooth rigid half space 

 

 

Fig. 26.1  Sketch of an elastic cylinder in contact with a smooth rigid half space . 

 The objective of this section is to develop an approximate solution for contact of an 

elastic cylinder with a smooth rigid half space [see section 12.2 in Barber, 1996].  The 

undeformed radius of the cylinder is R and the half length of the deformed contact region 

is c.  Also, P is the magnitude of the line force (per unit length in the e3 direction) applied 

by the half space on the cylinder over the contact region. 

  

Fig. 26.2  Sketch of the displacement field u2(x1,0) that must be applied to the cylinder. 

 

Within the context of the linear theory of elasticity, the exact formulation of this problem 

is as follows.  Since the rigid half space is smooth, it can only apply a contact stress in the 

positive e2 direction.  The distribution p(x1) of this stress must be determined so that the 

displacement u2 (in the e2 direction) of cylinder causes the cylinder to remain in contact 

e1 

e2 

Rigid half space 

R 

c 

P 

+ = 

Undeformed 

Cylinder 
Displacement 

Field u2(x1,0) 

Deformed 

Cylinder 
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with the half space. Figure 26.2 shows a sketch of the displacement field u2 that must be 

applied to the cylinder to cause the contact region to become flat. 

 Moreover, even within the context of the linear theory of elasticity, the solution 

becomes nonlinear because the extent of the contact region also needs to be determined.  

For more general contact problems it is possible that the solution will predict that the 

contact stress becomes negative over portions of the presumed contact region.  For this 

case, the actual solution must be reformulated to allow portions of the presumed contact 

region to separate from the half space with no contact stress being applied there. 

 

Fig. 26.3  Sketch of the line pressure distribution p(x1) applied to the contact region.  

 One of the major assumptions in the Hertz solution of this problem is that the contact 

region is very small relative to the radius of the cylinder (c/R<<1).  This means that the 

curvature of the surface of the cylinder is negligible.  Consequently, it is possible to 

generalize Flamant's solution of section 25 to model the line pressure distribution p(x1) 

(per unit length in the e3 direction) and the displacement field u2(x1,0) that must be 

applied to the cylinder [see Fig. 26.3].  To this end, it is first recalled that the delta 

function (x1–x) has the property that 

  p(x1) = 
c

–c
  p(x) (x1–x) dx  , (26.1)  

for any continuous function p(x1) defined to be nonzero over the domain (–c ≤ x1 ≤ c).  

Therefore, it is possible to use the solutions (25.13) and (25.14) as the Green's function 

for the solution of a distributed line load p(x1) applied to the surface x2=0 to obtain the 

stress field 

e1 

e2 

p(x1) 
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  T11(x1,x2) = – 
2


  

c

–c
 [ p(x) { 

(x1–x)2x2

{(x1–x)2+x2
2}

2 }] dx  , 

  T22(x1,x2) = – 
2


  

c

–c
 p(x) [ 

x2
3

{(x1–x)2+x2
2}

2 ] dx  , 

  T12(x1,x2) = – 
2


  

c

–c
  p(x) [ 

(x1–x)x2
2

{(x1–x)2+x2
2}

2 ] dx  , (26.2) 

and the displacement field 

   u1(x1,x2) =  
1

2
   

c

–c
 p(x) [ 

(x1–x)x2

{(x1–x)2+x2
2}

  + (1–2
–
) tan–1{ 

x2

(x1–x)
 } ] dx 

  + (1+
–
)

–
(1–0) x1+ c1 + H12 x2  , 

   u2(x1,x2) = – 
1

2
   

c

–c
 p(x) [ 

(x1–x)2

{(x1–x)2+x2
2}

  + (1–
–
) ln{(x1–x)2+x2

2} ] dx 

  + (1+
–
)

–
(1

*–0
*) x2 + c2 – H12 x1   . (26.3) 

 Now, in the limit that x2 approaches zero, it can be shown that 

 u2(x1,0) = – 
1

2
   

c

–c
 p(x) dx  – 

(1–
–
)

2
   

c

–c
 p(x) ln{(x1–x)2} dx + c2 – H12 x1  . (26.4) 

If the contact pressure p(x1) is a symmetric function 

  p(x1) = p(–x1)  , (26.5) 

then it can be shown that 

   
c

–c
 p(x) f(x) dx =  

c

0
 p(x) f(x) dx +  

0

–c
 p(x) f(x) dx  , 

   
c

–c
 p(x) f(x) dx =  

c

0
 p(x) {f(x) + f(–x)} dx   . (26.6) 

Thus, 

  
c

–c
 p(x) ln{(x1–x)2} dx =   

c

0
 p(x) ln{(x1

2–x2)2} dx  . (26.7) 
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Next, it is convenient to express the constant c2 in terms of another constant C2 and to 

rewrite the expression for u2, such that 

  c2 = 
1

2
   

c

–c
 p(x) dx + 

(1–
–
)

2
   

c

0
 p(x) ln{(c2–x2)2} dx + C2 , 

  u2(x1,0) =  – 
(1–

–
)

2
  

c

0
 p(x) ln{

(x1
2–x2)2

(c2–x2)2} dx + C2 – H12 x1  . (26.8) 

It then can be seen that the displacement u2 will correspond to symmetric deformation 

provided that the constant H12 associated with rigid body rotation vanishes  

  u2(–c,0) = u2(c,0)     H12 = 0 . (26.9)  

Then, the displacement u2 reduces to 

  u2(x1,0) =  – 
(1–

–
)

2
  

c

0
 p(x) ln{

(x1
2–x2)2

(c2–x2)2} dx + C2  , u2(±c,0) = C2 , (26.10) 

where C2 is the value of u2 at the edges x1=±c of the contact region.  

 Given the displacement field u2(x1,0), equation (26.10) represents an integral 

equation for determining the contact pressure p(x1).  In order to solve this integral 

equation it is convenient to differentiate it once with respect to x1 to obtain  

  
du2(x1,0)

dx1
  = – 

(1–
–
)


  

c

0
 p(x) (

2x1

x1
2–x2) dx  . (26.11) 

However, 

  
2x1

x1
2–x2  = 

1

x1–x
  + 

1

x1+x
  , 

  
c

0
  

p(x)

x1+x
  dx =  

0

–c
  

p(x)

x1–x
  dx  , (26.12) 

so that (26.11) can be written in the alternative form 

  
du2(x1,0)

dx1
  = – 

(1–
–
)


  

c

–c
  

p(x)

x1–x
  dx  . (26.13) 

 Taking C2 to be zero in (26.9b), the displacement u2(x1,0) which is required to flatten 

the portion of the cylinder is given by 
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  u2(x1,0) = R2–x1
2 – R2–c2    for – c ≤ x1 ≤ c  , 

   = u2(0,0) = R – R2–c2   , (26.14) 

where  is the displacement of the center of the cylinder if the cylinder is considered to 

be rigid.  Now, since the contact region is assumed to be small (c/R << 1), the 

expressions (26.14) can be approximated by 

  u2(x1,0) = 
1

2R
 (c2 – x1

2)  ,    = u2(0,0) = 
c2

2R
  , (26.15) 

so that the integral equation (26.13) simplifies to 

  
x1

R
  =  

(1–
–
)


  

c

–c
  

p(x)

x1–x
  dx  . (26.16) 

 It will now be shown that the solution of this equation takes the form 

  p(x1)  = 
2P

c2 c2–x1
2  ,    for |x1| < c  ,   (26.17) 

where the coefficient was determined by satisfying the expression 

  P = 
c

–c
 p(x) dx  . (26.18)  

In particular, with the help of (26.17) and the change of variables 

  x = c cos ,   x1 = c cos  , (26.19) 

the integral equation (26.16) can be rewritten in the form 

  
c

R
  cos = 

2P(1–
–
)

2c
   



0
  

sin2

cos–cos
  d. (26.20)

Moreover, it can be shown that 

  
sin2

cos–cos
  = 

d

d
 Re [ cos + ln{sin(



2
  – 



2
)}sin  

  – ln{sin(


2
  + 



2
)}sin + sin] , (26.21) 

where Re[x] denotes the real part of x.  Thus, using this result it follows that 

   


0
  

sin2

cos–cos
  d cos ,     
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  
c

–c
  

p(x)

x1–x
  dx =  

2P

c2  
c

–c
 

c2–x1
2

x1–x
  dx = 

2P

c2   x1 (26.22) 

and the equation (26.16) is satisfied provided that 

  P = 
c2

2R(1–
–
)

  ,    c = 
2R(1–

–
)P


  . (26.23a,b) 

In particular, note that the extent of the contact region c is a nonlinear function of the 

force. 

 From a practical point of view, it is of interest to determine the relationship between 

the total line force P applied in the contact region to the displacement  of the center of 

the cylinder.  To this end, (26.15) is used to rewrite (26.23a) in the form 

  P = 


(1–
–
)

    , (26.24) 

which indicates that the line force P and the displacement  are linearly related. 

Furthermore, it is of interest to note that in contrast with the result of this two-

dimensional problem, the three-dimensional problem of indentation of a sphere into a 

half-space yields a nonlinear relationship between the applied force and the displacement. 

 

 

Fig. 26.4  Sketch of the two-dimensional Hertz problem. 
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 Next, consider the two-dimensional Hertz problem shown in Fig. 26.4 where two 

elastic cylinders are pressed into contact by a line force P.  One cylinder has material 

constants 1 and 
–
1 and undeformed radius R1, whereas the other cylinder has material 

constants 2 and 
–
2 and undeformed radius R2.  In general, the line of contact between 

the two cylinders in the x3=0 plane is curved.  Using the approximations of the previous 

analysis, the cylindrical surfaces are approximated as parabolas and the pressure 

distribution applied to the contact region is determined by the solution for a pressure 

distribution on a flat half-space. 

 Specifically, the pressure distribution is taken in the form (26.17) which satisfies the 

equation (26.18) and ensures that each of the cylinders is in equilibrium.  Next, using the 

approximation that the contact line is described by a parabola f(x1) 

  f(x1) = 
b

2
 (c2 – x1

2)  , (26.25) 

it follows that the magnitude of the displacement u2 compressing the cylinder of radius 

R1 is given by 

  u = R1
2 – x1

2 – R1
2 – c2 + f(x1)  

1

2
 [

1

R1
  + b] (c2 – x1

2)  . (26.26) 

Thus, replacing u2 in (26.13) by the expression (26.26), replacing , 
–
 by 1, 

–
1, 

respectively, and using (26.22), the kinematic contact condition reduces to 

  (
1

R1
  + b) x1 =  

2P(1–
–
1)

1
2c2   

c

–c
 

c2–x1
2

x1–x
  dx = 

2P(1–
–
1)

1c2   x1  , (26.27) 

which is satisfied provided that 

  
1

(1–
–
1)

  (
1

R1
  + b) =  

2P

c2  . (26.28) 

 Similarly, the magnitude of the displacement u2 compressing the cylinder of radius 

R2 is given by 

  u = R2
2 – x1

2 – R2
2 – c2 – f(x1)  

1

2
 (

1

R2
  – b) (c2 – x1

2)  . (26.29) 
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Thus, replacing u2 in (26.13) by the expression (26.29), replacing , 
–
 by 2, 

–
2, 

respectively,  and using (26.22), the kinematic contact condition reduces to 

  (
1

R2
  – b) x1 =  

2P(1–
–
2)

2
2c2   

c

–c
 

c2–x1
2

x1–x
  dx = 

2P(1–
–
2)

2c2   x1  , (26.30) 

which is satisfied provided that 

  
2

(1–
–
2)

  (
1

R2
  – b) =  

2P

c2  . (26.31) 

 The equations (26.28) and (26.31) represent two equations to determine the extent 2c 

and the shape b of the contact region.   In particular, the solutions of these equations 

yields the results that 

    b = 

2

(1–
–
2)R2

  –  
1

(1–
–
1)R1

1

(1–
–
1)

  + 
2

(1–
–
2)

  ,     

  c = 

2P


 [

1

(1–
–
1)

 + 
2

(1–
–
2)

]

1

(1–
–
1)

 
2

(1–
–
2)

 (
1

R1
  + 

1

R2
)

   . (26.32) 

Also, letting 1 be the displacement (towards the contact surface) of the center of the 

cylinder of radius R1, and 2 be the displacement (towards the contact surface) of the 

center of the cylinder of radius R2, it can be shown that 

  1 = R1 – R1
2 – c2   

c2

2R1
  , 

  2 = R2 – R2
2 – c2   

c2

2R2
  . (26.33) 

Thus, the relationship between the line force P and the total displacement  of the centers 

of the cylinders 
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   = 1 + 2 = 
c2

2
 (

1

R1
 + 

1

R2
) , (26.34) 

can be written in the form 

  P = [ 

 
1

(1–
–
1)

 
2

(1–
–
2)

1

(1–
–
1)

 + 
2

(1–
–
2)

]    , (26.35) 

which again is a linear relationship. 

 It is interesting to note that if the two materials are identical then the expression b in 

(26.32) reduces to 

  b = 
1

2
 (

1

R2
  – 

1

R1
)   . (26.36) 

This means that the contact surface is such that the smaller cylinder penetrates the larger 

cylinder.  Moreover, if the cylinder of radius R2 is rigid then 2= and the expression 

(26.32) reduces to 

  b = 
1

R2
  , (26.37) 

as expected.  Also, the contact surface will be flat (b=0) if 

     
1

(1–
–
1)R1

  =  
2

(1–
–
2)R2

   . (26.38) 
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27. Two-dimensional climb dislocation solution 

 

 

Fig. 27.1  Sketch of the compressive stresses on the surfaces of a two-dimensional climb 

dislocation.  

 Following the development in section 13.2 of Barber (1992), it is convenient to 

consider the solution for a two-dimensional climb dislocation to develop the Green's 

function for the solution of a two-dimensional crack considered in the next section.        

Fig. 27.1 shows a sketch of the compressive stresses on the surfaces of a two-dimensional 

climb dislocation which is modeled as a slit of constant thickness B.  For this problem the 

body force vanishes 

  br = b = 0  , (27.1) 

and the temperature * is taken to be uniform but not necessarily equal to 0
*.    

 The solution of this problem is not only singular at the origin but it is not single 

valued, since the stresses and displacements of the surface =0 are different from those of 

the surface =2.  Specifically, consider the Michell solution of the form 

  Trr = 
b1

r
 cos  ,  T = 

b1

r
 cos  ,  Tr = 

b1

r
 sin  , (27.2) 

e2 

e1 

B 

 = 2 

 = 0 

O 



 

 

160 

where b1 is a constant to be determined.  It can easily be seen that this stress field 

satisfies the equations of equilibrium (18.6) and the compatibility equations (18.7).  

 In order to determine the displacement field associated with the solution (27.2), use is 

made of the constitutive equations (16.14) with the temperature set to the constant value 

1
* 

  err = [
(1–2

–
)b1

2r
] cos  + (1+

–
)

–
(1

*–0
*) , 

  e =  [
(1–2

–
)b1

2r
] cos + (1+

–
)

–
(1

*–0
*)  ,  er = 

b1

2r
 sin  . (27.3) 

Next, integration of the strain-displacement relations (16.9) yields 

  ur = [
(1–2

–
)b1

2
] ln(r) cos + (1+

–
)

–
(1

*–0
*) r  + 

df()

d
  ,  

  u = [
(1–2

–
)b1

2
] [1 – ln(r)] sin – f() + g(r)  , (27.4) 

where f() and g(r) are functions of integration.  Moreover, substituting these results into 

the expression (16.9) for the strain er and using of (27.3) yields the equation 

   
1

r
  [

d2f()

d2  + f() – 
2(1–

–
)b1


  sin] + [

dg(r)

dr
  – 

1

r
  g(r)] = 0  . (27.5)   

Thus, in view of the expressions (16.8) for rigid body displacements, it follows that the 

solution of (27.4) can be expressed in the form 

  f() = c1 sin – c2 cos + 
(1–

–
)b1


  (sin –  cos) ,  g(r) = – H12 r  , (27.6) 

where c and H12 are constants.  Then, the displacements become 

  ur = [
(1–2

–
)b1

2
] ln(r) cos + (1+

–
)

–
(1

*–0
*) r  + c1 cos + c2 sin 

  + [
(1–

–
)b1


]  sin ,  
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  u = [
(1–2

–
)b1

2
] [1 – ln(r)] sin – c1 sin + c2 cos – 

(1–
–
)b1


 (sin –  cos) 

  – H12 r  . (27.7) 

 Next, the value of b1 is determined by using this expression for u to determine the 

value B of the gap caused by the dislocation 

  d = e2 • [u(r,0) – u(r,2)] = u(0) + u(2) = – 
2(1–

–
)b1


  . (27.8) 

Thus, a dislocation of strength d = B can be defined by taking 

  b1 = –  
B

2(1–
–
)

  , (27.9) 

so that the displacement field becomes 

  ur = – [
(1–2

–
)B

4(1–
–
)

] ln(r) cos + (1+
–
)

–
(1

*–0
*) r  + c1 cos + c2 sin 

  – (
B

2
)  sin ,  

  u = – [
(1–2

–
)B

4(1–
–
)

] [1 – ln(r)] sin – c1 sin + c2 cos + (
B

2
) (sin –  cos) 

  – H12 r  , (27.10) 

and the stress field becomes 

  Trr = – [
B

2(1–
–
)r

]  cos  ,  T = – [
B

2(1–
–
)r

] cos  ,   

  Tr = – [
B

2(1–
–
)r

] sin  , (27.11) 

 Now, using the relations 

  r = x1
2+x2

2  ,  cos = 
x1

x1
2+x2

2
  ,  sin = 

x2

x1
2+x2

2
  ,   = tan–1[ 

x2

x1
 ] , (27.12) 

the rectangular Cartesian components of the displacement vector associated with the 

results (25.11) and (25.12) become 

  u = ur er + u e = (ur cos – u sin) e1 + (ur sin + u cos) e2  , 
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  u1 = – [
(1–2

–
)B

4(1–
–
)

] ln( x1
2+x2

2 ) – [
B

4(1–
–
)

] (
x2

2

x1
2+x2

2)  

  + (1+
–
)

–
(1–0) x1 + c1 + H12 x2 , (27.13a) 

  u2 = [
B

4(1–
–
)

) (
x1x2

x1
2+x2

2) – 
B

2
 tan–1(

x2

x1
) 

  + (1+
–
)

–
(1

*–0
*) x2 + c2  – H12 x1  . (27.13b) 

and those of the stress tensor become 

  T = Trr (erer)+ T (ee) + Tr (ere+eer)  

  T = Trr [cos2 (e1e1) + sin2 (e2e2) + sin cos (e1e2 + e2e1)] 

  + T [sin2 (e1e1) + cos2 (e2e2) – sin cos (e1e2 + e2e1)] 

  + Tr [2 sin cos(– e1e1+e2e2) + (cos2 – sin2)(e1e2+e2e1)]  , 

  T = – [
B

2(1–
–
)r

] cos [(1–2sin2)(e1e1) + (1+2sin2)(e2e2) 

  + (cos2–sin2)sin (e1e2+e2e1)]  , 

     T11 = – [
B

2(1–
–
)

] [
x1(x1

2–x2
2)

(x1
2+x2

2)2 ]  ,   T22 = – [
B

2(1–
–
)

] [
x1(x1

2+3x2
2)

(x1
2+x2

2)2 ]  , (27.14a) 

  T12 =  – [
B

2(1–
–
)

] [
x2(x1

2–x2
2)

(x1
2+x2

2)2 ]  . (27.14b) 

In particular, notice that the stress field is self equilibrating since the stresses vanish far 

way from the dislocation. 
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28. Two-dimensional crack in a tensile field 

 

 

 

 

Fig. 28.1  Sketch of a two-dimensional crack subjected to far field tension T.  

 Following the development in section 13.3 of Barber (1992), it is convenient to use 

the solution of section 27 as the Green's function for a two-dimensional crack subjected 

to far field tension (Fig. 28.1). For this problem the body force vanishes 

  br = b = 0  , (28.1) 

and the temperature * is taken to be uniform but not necessarily equal to 0
*. 

 The main idea is to consider the simple solution of uniaxial stress T in the e2 direction 

  T11 = T12 = 0  ,  T22 = T  , 

  e11 = – 


E
  ,  e22 = 

T

E
  ,  e12 = 0  , 

  u1 = – 


E
 x1  ,  u2 = 

T

E
 x2  , (28.2) 

and to use superposition of the solution of section 27 to eliminate the tensions on the 

crack surfaces. 

 Specifically, consider a distribution of dislocations B(x1) which model the crack 

opening in the region –a ≤ x1 ≤ a.  Then, using (27.14) with x1 replaced by (x1–x) and 

e1 

e2 

a a 

O 

T 

T 
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superposition of (28.2), the stress field associated with this distribution can be written in 

the form 

  T11(x1,x2) =  – [


2(1–
–
)

] 
a

–a
 B(x) {

(x1–x)[(x1–x)2–x2
2]

[(x1–x)2+x2
2]2 } dx  , (28.3a) 

  T22(x1,x2) = T  – [


2(1–
–
)

] 
a

–a
 B(x) {

(x1–x)[(x1–x)2+3x2
2]

[(x1–x)2+x2
2]2 } dx  , (28.3b) 

  T12(x1,x2) =  – [


2(1–
–
)

] 
a

–a
 B(x) {

x2[(x1–x)2–x2
2]

[(x1–x)2+x2
2]2 } dx  , (28.3c) 

where x denotes the location of the root of the dislocation of strength B(x).  Similarly, the 

displacement field associated with this distribution of dislocations can be obtained using 

(27.13) and superposition of (28.2) to deduce that 

  u1(x1,x2) = – [
(1–2

–
)

4(1–
–
)

] 
a

–a
 B(x) [(1–2

–
) ln( (x1–x)2+x2

2 } + {
x2

2

(x1–x)2+x2
2}] dx 

  – 

–
T

E
 x1 + (1+

–
)

–
(1

*–0
*) x1 + c1 + H12 x2 , (28.4a) 

  u2(x1,x2) = [
1

4–
–


] 
a

–a
 B(x) [{ 

(x1–x)x2

(x1–x)2+x2
2} – 2(1–

–
)  tan–1{

x2

(x1–x)
}] dx 

  + 
T

E
 x2 + (1+

–
)

–
(1

*–0
*) x2 + c2 – H12 x1  , (28.4b) 

where the effects of temperature and rigid body displacements have been included.  

Moreover, the solution (28.3) will correspond to a crack with stress-free surfaces if 

  T22(x1,0) = T  – [


2(1–
–
)

] 
a

–a
  

B(x)

x1–x
  dx  = 0   for – a < x1 < a . (28.5) 

 It will now be shown that the solution of this integral equation becomes 

  B(x1) = [
2(1–

–
)TC


] 

x1

a2–x1
2
    for  – a < x1 < a  , (28.6) 

where C is a constant to be determined.  To this end, (28.6) is substituted into (28.5) to 

obtain the equation 
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  C 
a

–a
  

x

(x1–x) a2–x2
  dx = 1    for  – a < x1 < a  .   (28.7)   

Next, it can be shown that 

  
x

(x1–x) a2–x2
  =  Re[

∂f(x,x1)

∂x
] , 

  f(x,x1) = – tan–1{
x a2–x2

a2–x2 }+ 
x1

a2–x1
2
  ln{

2 a2–x2 a2–x1
2 + 2(a2–x1x)

x1(x1–x) a2–x1
2

}  ,  (28.8) 

where Re[x] denote the real part of x and f(x,x1) is an auxiliary function.  Then, the 

integral in (28.7) can be written in the form 

  
a

–a
  

x

(x1–x) a2–x2
  dx = Re [f(a,x1) – f(–a,x1)]  . (28.9) 

To evaluate this expression, it is convenient to define an additional auxiliary function 

  g(x,x1) = f(x,x1) – f(–x,x1) , 

  g(x,x1) = – 2 tan–1{
x a2–x2

a2–x2 }+ 
x1

a2–x1
2
  ln{

2 a2–x2 a2–x1
2 + 2(a2–x1x)

x1(x1–x) a2–x1
2

} 

  –  
x1

a2–x1
2
  ln{

2 a2–x2 a2–x1
2 + 2(a2+x1x)

x1(x1+x) a2–x1
2

}  . (28.10) 

Now, it can easily be seen that in the limit as x approaches a from below 

  limit

xa–
  g(x,x1) = –  + h(x1)  , 

   h(x1) = 
x1

a2–x1
2
 [ln{– 

a

x1 a2–x1
2
} – ln{

a

x1 a2–x1
2
}]  . (28.11) 

Thus, the integral (28.9) can be expressed in the form 

  
a

–a
  

x

(x1–x) a2–x2
  dx = –  +  Re [h(x1)] . (28.12) 

Moreover, recalling that 

  ln(x) = ln(|x|)  for x > 0  ,   ln(x) = i  + ln(|x|) for x < 0  , 

  i = –1  ,  
1

i
  = –i  ,  ln(i) = 

i

2
  , ln(–i) = – 

i

2
  , (28.13) 
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it can be shown that 

For 0 < x1 < a 

  h(x1) = 
x1

a2–x1
2
 [i  + ln{

a

x1 a2–x1
2
} – ln{

a

x1 a2–x1
2
}] = 

ix1

a2–x1
2
  , (28.14a) 

For – a < x1 < 0 

       h(x1) = 
x1

a2–x1
2
 [ln{

a

|x1| a2–x1
2
} – ln{

a

|x1| a2–x1
2
} – i ] = – 

ix1

a2–x1
2
  , (28.14b) 

For a < x1 

    h(x1) = –  
ix1

x1
2–a2

 [
i

2
 + ln{

a

x1 x1
2–a2

} + 
i

2
  – ln{

a

x1 x1
2–a2

}] = 
x1

x1
2–a2

  ,  (28.14c) 

For x1 < – a 

h(x1) = –  
ix1

x1
2–a2

 [– 
i

2
 +ln{

a

|x1| x1
2–a2

} – 
i

2
  –ln{

a

|x1| x1
2–a2

}] = – 
x1

x1
2–a2

 . (28.14d) 

It then follows that the integral (28.12) becomes 

  
a

–a
  

x

(x1–x) a2–x2
  dx = –     for  |x1|  < a  ,   (28.15a) 

  
a

–a
  

x

(x1–x) a2–x2
  dx =  [– 1 + 

|x1|

x1
2–a2

]    for  |x1|  > a  .  (28.15b) 

Consequently, the constant C in (28.7) can be determined using the result (28.15a) to 

obtain 

  C = – 
1


  . (28.16) 

Next, with the help of (28.3b),  (28.6) and (28.16), the stress T22 ahead of the crack tip 

can be expressed in the form  

  T22(x1,0) = T [1 + 
1


  

a

–a
  

x

(x1–x) a2–x2
  dx]   for  |x1| > a  . (28.17) 

Consequently, using (28.15b) this expression becomes 
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  T22(x1,0) = 
T |x1|

x1
2–a2

   for  |x1| > a  . (28.18) 

 This solution is the basis for linear elastic fracture mechanics.  In particular, it 

indicates that the stress field is square root singular at the crack tip.  Moreover, it is 

convenient to define the stress intensity factor KI for this mode I crack by the expression 

  KI = limit

x1a+
 [T22(x1,0) x–a] = limit

x1a+
 [

T |x1| x–a

x1
2–a2

 ]  , 

  KI = T 
a

2
  .     (28.19) 

Linear elastic fracture mechanics assumes that brittle materials have a material constant 

KIc, called the fracture toughness, which limits the value of KI for which the crack 

remains stationary.  In other words, when KI attains the critical value KIc, then crack 

propagation is initiated. Thus, when the far field tension T attains the critical value Tc 

  Tc = KIc 
2

a
   , (28.20) 

crack propagation begins.  It is important to emphasize that larger cracks (larger values of 

a) require less tension to propagate than smaller cracks. 

 Physically, it is also of interest to determine the crack opening displacement d defined 

by (27.8).  Specifically, using (28.4b) it follows that 

  d(x1) = u2(x1,0+) – u2(x1,0–)  , 

 d(x1) = – [
1

2
] 

a

–a
 B(x) [ limit

x20+
 tan–1{

x2

(x1–x)
} – limit

x20–
 tan–1{

x2

(x1–x)
}] dx 

   for  |x1| < a  .   (28.21) 

In order to determine the correct values of the inverse tangent function it is necessary to 

separate the integral into two parts 

 d(x1) = – (
1

2
)  

x
1

–a
 B(x) [ limit

x20+
 tan–1{ 

x2

(x1–x)
} – limit

x20–
 tan–1{

x2

(x1–x)
}] dx 
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  – (
1

2
)  

a

x
1

  B(x) [ limit

x20+
 tan–1{

x2

(x1–x)
} – limit

x20–
 tan–1{

x2

(x1–x)
}] dx  , 

  d(x1) = – (
1

2
)  

x
1

–a
 B(x) (0 – 2) dx – (

1

2
)  

a

x
1

  B(x) ( – ) dx  , 

  d(x1) =  
x

1

–a
 B(x) dx = – [

(1–
–
)T


]  

x
1

–a
 

x

a2–x2
  dx . (28.22) 

Thus, evaluation of this integral yields the crack opening displacement 

  d(x1) = 
2(1–

–
)T


 a2–x1

2  . (28.23) 
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Appendix A: Eigenvalues, Eigenvectors, and Principal Invariants of a Tensor 

 In this appendix we briefly review some basic properties of eigenvalues and 

eigenvectors.  The vector v is said to be an eigenvector of a real second order symmetric 

tensor T with the associated eigenvalue  if 

  T v =  v  ,  Tij vj =  vi  .  (A1a,b) 

It follows that the characteristic equation for determining the three values of the 

eigenvalue is given by 

  det (T – I) = – 3 + 2 I1 –  I2 + I3 = 0  ,  (A2) 

where I1,I2,I3 are the principal invariants of an arbitrary real tensor T  

  I1(T) = T • I = tr T = Tmm  ,  (A3a) 

  I2(T) = 
1

2
  [(T • I)2 – (T • TT)] = 

1

2
  [(Tmm)2 – TmnTnm]  , (A3b) 

  I3(T) = det T = 
1

6
  ijklmnTilTjmTkn .  (A3c) 

It can be shown that since T is a real symmetric tensor the three roots of the cubic 

equation (A2) are real.  Also, it can be shown that the three independent eigenvectors v 

obtained by solving (A1) can be chosen to form an orthonormal set of vectors. 

 Recalling that T can be separated into its spherical part T I and its deviatoric part T' 

such that 

  T = T I + T'  ,  Tij = T ij + Tij'  ,  (A4a,b)  

  T = 
1

3
 (T • I)  = 

1

3
 (Tmm)   ,  T' • I = Tmm' = 0  ,  (A4c,d) 

it follows that when v is an eigenvector of T it is also an eigenvector of T' 

  T' v = (T – T I) v = ( – T) v = ' v  ,  (A5) 

with the associated eigenvalue ' related to  by 

   = ' + T  .  (A6) 

However since the first principal invariant of T' vanishes we may write the characteristic 

equation for ' in the form 

  det (T' – 'I) = – (')3  + '(
e

2

3
 ) + J3 = 0  , (A7) 
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where we have defined the alternative invariants e and J3 by 

  e
2 = 

3

2
 T' • T' = – 3 I2(T')  ,  J3 = det T' = I3(T')  .             (A8a,b) 

Note that if e vanishes then T' vanishes so that from (A7) ' vanishes and from (A6) it 

follows that there is only one distinct eigenvalue 

   = T  .  (A9) 

On the other hand, if e does not vanish we may divide (A7) by (e/3)3 to obtain 

  






3'

e

3
  – 3 







3'

e
  – 2 

^
J3 = 0  ,  (A10) 

where the invariant 
^
J3 is defined by 

  
^
J3 = 

27 J3

2 e
3   .  (A11) 

Since (A10) is in the standard form for a cubic, the solution can be obtained easily using 

the trigonometric form 

  sin 3 = – 
^
J3  ,  – 



6
  ≤  ≤ 



6
  ,  (A12a) 

  1'  = 
2e

3
 cos (



6
  +)  , (A12b) 

  2'  = 
2e

3
 sin ()  ,  (A12c) 

  3'  = – 
2e

3
 cos (



6
  –)  ,  (A12d) 

where the eigenvalues 1' ,2' ,3'  are ordered so that 

  1'  ≥ 2'  ≥ 3'   .  (A13) 

Once these values have been determined the three values of  may be calculated using 

(A6). 

 Furthermore, we note that the value of  or 
^
J3 may be used to identify three states of 

deviatoric stress denoted by: triaxial compression (TXC); torsion (TOR); and triaxial 

extension (TXE); and defined by 
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   = 


6
  ,  

^
J3 = – 1  ,  (TXC)  , (A14a) 

   = 0 ,  
^
J3 = 0  ,  (TOR)  , (A14b) 

   = – 


6
  ,  

^
J3 =  1  ,  (TXE)  . (A14c) 
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PROBLEM SET 1 

Problem 1.1  Expand the following equations for an index range of three: 

 (a)   I = Cij xi xj  ,    (b)   = Ajj Bkk  ,   (c)  C = Aij Bij  . (P1.1) 

 

Problem 1.2  Verify the identities 

 (a)  ii = 3  ,    (b)  ij ij = ii  ,     (c) ij ajk = aik  . (P1.2) 

 

Problem 1.3  Expand the relationship  

  ti = Tij nj  . (P1.3) 

where ti are the components of the stress vector, Tij are the components of the stress 

tensor and ni  are the components of the unit outward normal. 

  

Problem 1.4  Expand the equations of the balance of linear momentum 

  
••
u i = bi + Tij,j  ,  (P1.4) 

where ui  are the components of the displacement vector,  is the mass density, bi are the 

components of the body force, a superposed dot denotes partial differentiation with 

respect to time t, and a comma denotes partial differentiation with respect to the position 

xi. 

 

Problem 1.5 

 (a)  Verify that   

  xi,j = ij  . (P1.5) 

 (b)  Using the result of part (b), write a simplified indicial expression for (xi xi),j  . 

 (c)  Using the result of part (a), write a simplified indicial expression for (xi xi),jj  . 

 

Problem 1.6: Consider the equations 

  Rij = eij,mm + emm,ij – eim,mj – ejm,im = 0 . (P1.6a) 

For the special case when 
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  eij = eji   , ei3 = 0   ,  eij,3 = 0  , (P1.6b) 

expand and simplify the expressions for R11 and R22 and show that the equation for R12 

is automatically satisfied.  

 

Problem 1.7  Let ai = (1,2,3)  and bi = (3,2,1) be the components of the vectors a and b, 

respectively.  Also, let T be a second order tensor defined by  

  T = ab  . (P1.7) 

Determine the components Tij of T. 

 

Problem 1.8  Starting with the representations A = Aij eiej and B = Bij eiej, prove that 

  A • B = Aij Bij  . (P1.8) 

 

Problem 1.9  The magnitude of |T| of the second order tensor T is defined by 

  |T|2 = T • T = Tij Tij   . (P1.9) 

Using the results of (P1.1c) and (P1.8), show that this expression is positive definite (i.e. 

it is positive whenever T is nonzero).  

  

Problem 1.10  Let A be a second order tensor with components Aij which is represented 

by 

  A = Aij eiej  . (P1.10a) 

Show that the components Aij
T of AT are given by 

  Aij
T = AT • (eiej) = Aji  .            (P1.10b) 

 

Problem 1.11  Let T be the second order stress tensor with components Tij.  Use indicial 

notation and the result (2.18) to show that restriction associated with the balance of 

angular momentum  

  ej  T ej = 0  , (P1.11a) 

requires the stress tensor T to be symmetric. 
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  TT = T  ,   Tji = Tij  . (P1.11b) 

 

Problem 1.12  Let A and B be second order tensors with components Aij and Bij, 

respectively.  Using the representation 

  AB = AimBmj eiej  ,  (P1.12a) 

Prove that 

  (AB)T = BTAT  .  (P1.12b) 

 

Problem 1.13  Let A and B be second order tensors with components Aij and Bij, 

respectively, and let a and b be vectors with components ai and bi, respectively.  Prove 

that 

  A a • Bb = a • ATB b  . (P1.13) 

 

Problem 1.14  Let T be a second order tensor with components Tij 

  Tij = 








1 2 3

4 5 6

7 8 9
   . (P1.14) 

 (a) Calculate the symmetric part T(ij) of Tij. 

 (b) Calculate the skew-symmetric part T[ij] of Tij. 

 (c) Calculate the spherical part T ij of Tij. 

 (d) Calculate the deviatoric part Tij'  of Tij. 

 

Problem 1.15  Let A be a symmetric second order tensor and B be a skew-symmetric 

second order tensor 

  AT = A  ,   BT = – B  . (P1.15a,b) 

Prove that a symmetric tensor is orthogonal to a skew-symmetric tensor 

  A • B = 0  . (P.1.15c) 
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PROBLEM SET 2 

 

 

 

Fig. P.2.1  Sketch of a cantilever beam 

 

Problem 2.1  Consider a rectangular cantilever beam of length L, height H, and depth W 

which occupies the region of space such that  

  0 ≤ x1 ≤ L  ,  – 
H

2
 ≤ x2 ≤ 

H

2
  ,  – 

W

2
 ≤ x3 ≤ 

W

2
  . (P2.1a) 

Next, consider the displacement field ui associated with two-dimensional plane strain 

deformation of the beam which is given by 

  u1 = – [{
V

HW
} + 

–
{

V

4HW
}] x2 – (1–

–
){

3V

H3W
}{2Lx1 – x1

2} x2  

  + {
2V

H3W
}{

3H2

4
 x2 – x2

3} + 
–
{

V

H3W
}x2

3  , (P.2.1b) 

  u2 = – 
–
{

V

4HW
}L + [{

V

HW
} + 

–
{

V

4HW
}] x1  

  + 
–
{

3V

H3W
}(L–x1) x2

2  + (1–
–
){

V

H3W
}{3Lx1

2 –x1
3}   , (P2.1c) 

  u3 = 0  , (P2.1d) 

where V is the shear force applied to the end x1=L, and  and 
–
 are constants.  Show that 

the strains eij associated with this displacement field are given by 

  e11 = – (1–
–
){

6V

H3W
}{L – x1} x2 ,  e22 = 

–
{

6V

H3W
}(L–x1) x2  , (P2.1e,f) 

  e12 = {
3V

H3W
}{

H2

4
  – x2

2}  ,   e13 = e23 = e33 = 0  . (P2.1g,h) 

e1 

e2 

V 

L 

H 
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Problem 2.2   The displacement field given in problem 2.1 approximates built-in end 

conditions at x1=0 but it is not exact.  In particular, the displacements u1 and u2 do not 

vanish at x1=0.  However, specific averages of these displacements do vanish at x1=0.  

To see this, define the average displacement field w by the formula 

  w(x1) = 
1

H
 

–H/2

H/2
 u dx2  . (P2.2a) 

Calculate the value of w associated with the displacement field in Problem 2.1 and show 

that it vanishes at the end x1=0 

  w(0) = 0  . (P2.2b) 

 

Problem 2.3   Similarly, define the director displacement  as the average gradient 

through the thickness by 

  (x1) = 
1

H
 

–H/2

H/2
 
∂u

∂x2
 dx2 = 

1

H
 [u(x1,H/2) – u(x1,–H/2)]  . (P2.3a) 

Calculate the value of  associated with the displacement field in Problem 2.1 and show 

that it vanishes at the end x1=0 

  (0) = 0  . (P2.3b) 

 

Problem 2.4   Determine the terms in the displacement field in Problem 2.1 which are 

associated with homogeneous deformation and explain the physical meaning of these 

terms. 

 

Problem 2.5:   Recall from (3.16) that the strain E of a material fiber that was in the 

direction S in the reference configuration is given by the formula 

  E = e • (SS) = eij Si Sj  . (P2.5) 

Consider material fibers which are in the direction S = e1 along the axis of the beam, and 

take V to be positive and 
–
 to be less than 1/2. 

(a) Show that these fibers are contracted at the top surface of the beam (x2=H/2). 
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(b) Show that these fibers are extended at the bottom surface of the beam (x2=–H/2). 

(c) Show that these fibers are unstretched along the middle line of the beam (x2=0). 

 

Problem 2.6   Recall from (3.21) that the reduction  in the angle between the two line 

elements which were in the directions S(1) and S(2) in the reference configuration is given 

by the formula 

   = 2e • {S(1)S(2)}   for S(1) • S(2) = 0  . (P2.6) 

As a special case take 

  S(1) = e1  ,  S(2) = e2  . (P2.6b) 

(a) Show that the fibers located at the middle line of the beam (x2=0) are sheared relative 

to each other since  is nonzero. 

(b) Show that the value of  vanishes for fibers located at the top (x2=H/2) and bottom 

(x2=–H/2) of the beam. 

 

Problem 2.7  Consider material fibers located at the center line of the beam (x2=0). 

(a) Show that the fiber in the  

  S = 
1

2
 (e1 + e2)  , (P2.7a) 

 is extended. 

(b) Also, show that the fiber  

  S = 
1

2
 (– e1 + e2)  , (P2.7a) 

 is contracted. 

 

Problem 2.8:  Calculate the volume change at points along the top of the beam (x2=H/2). 
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PROBLEM SET 3 

 

Problem 3.1  Starting with the constitutive equation (5.9a) for the Helmholtz free energy 

rederive the expression (5.11) for its derivative. 

 

Problem 3.2  Use the constitutive equations (6.22) for the stress Tij and the strain-

displacement relations (6.1), and show that balance of linear momentum (6.21d) can be 

rewritten in terms of the displacements in the form 

  0 
••
u i = 0 bi + [K+ 



3
 ] um,mi +  ui,mm – 3K,i  . (P3.2) 

 

Problem 3.3 Consider a rectangular cantilever beam of length L, height H, and depth W 

which occupies the region of space such that  

  0 ≤ x1 ≤ L  ,  – 
H

2
 ≤ x2 ≤ 

H

2
  ,  – 

W

2
 ≤ x3 ≤ 

W

2
  . (P3.3a) 

Let the beam be subjected to a body force g per unit mass in the negative e2 direction and  

consider the stress field 

  T11 = –{
6Q

H3}x1
2 x2 + {

4Q

H3}x2
3 ,  T12 = – {

6Q

H3}{
H2

4
  – x2

2}x1  ,  (P3.3b,c) 

  T22 =  
Q

4
 [2 + {

6

H
}x2 – {

8

H3}x2
3 ] + 0g[x2 + 

H

2
] – 

–
Q , (P3.3d) 

  T13 = T23 = T33 = 0  ,   Q =  
–
Q + 

^
Q – 0gH , (P3.3e,f) 

where 0 is the mass density and {
^
Q, 

–
Q} are constants. 

(a) Show that this stress field satisfies the equilibrium equations. 

(b) Show that the traction vector applied to the top surface (x2=H/2) of the beam is given 

by 

  t = 
^
t = 

^
Q e2  . (P3.3g) 

(c) Show that the traction vector applied to the bottom surface (x2= –H/2) of the beam is 

given by 
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  t = 
–
t  = 

–
Q e2  . (P3.3h) 

(d) The resultant force FL applied to the end (x1=L) of the beam has a normal component 

NL and a shear component VL, such that 

  FL = NL e1 + VL e2  , (P3.3i) 

 Derive expressions for NL and VL. 

(e) The resultant moment ML applied to the end (x1=L) of the beam about the centroid of 

the cross-section takes the form 

  ML = ML e3  . (P3.3j) 

 Derive an expression for ML. 

 

Problem 3.4 

 

Fig. P3.4  Uniform loads on a rectangular parallelepiped. 

 The rectangular parallelepiped shown in Fig. P3.4 is subjected to uniform tractions in 

the e1–e2 plane on each of its faces AB, BC, CD, DA, which are characterized by the 

constants  

  { T1, T2, T3, T4,  V1, V2, V3, V4 }  . (P3.4) 

(a) Determine expressions for the traction vectors t applied to each of these faces. 

(b) Determine the values of the stress tensor T associated with these boundary 

conditions on each of the faces. 

V4 T4 

V3 

T3 

V2 

T2 

V1 

T1 

D 

C B 

A 

e2 

e1 
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(c) Determine restrictions on the constants (P3.4) which ensure that the stress field is 

uniform in the body. 

 

Problem 3.5 

 For isothermal conditions (=0), the constitutive equations for isotropic elastic 

materials can be written in terms of Lame's constants  and , such that 

  Tij =  emm ij + 2 eij  . (P3.5) 

(a) Invert the constitutive equations (10.4) [with =0] to derive an expression for stress 

as a function of strain. 

(b) Compare your result in (a) with the expression (P3.5) to determine an expression for 

Lame's constants  and  in terms of E and . 
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PROBLEM SET 4 

Problem 4.1  For two dimensional deformations the displacements are given by 

  u1 = u1(x1,x2)  ,  u2 = u2(x1,x2)  ,  u3 = 0  . (P4.1a) 

Specifically, consider the strain field 

  e11 = A x2
2  ,  e22 = A x1

2 ,  e12 = 2B x1 x2  ,  ei3 = 0  , (P4.1b) 

where A and B are constants. 

(a) Use the strain-displacement relations and integrate the strain e11 to derive an 

expression for u1.  

(b) Use the strain-displacement relations and integrate the strain e22 to derive an 

expression for u2. 

(c) Show that the expression for the strain e12 is incompatible with the strain-

displacement relations unless B=A. 

(d) Show that the compatibility relations (3.58) will not be satisfied unless B=A. 

(e) Set B=A and derive expressions for the functions of integration associated with parts 

(a) and (b). 

 

Problem 4.2 

(a) Use the results in Table 9.1 and show that the constitutive equations (9.9) can be 

written in the tensorial forms 

  eij = 
1

2
 [ Tij – {



1+
}Tmmij ] + (–0) ij  , (P4.2a) 

(b) Invert these constitutive equations and use the results in Table 9.1 to show that 

  Tij = 2 [ eij + {


1–2
} emm ij ] – 2 [

1+

1–2
](–0) ij  , (P4.2b) 

  Tij = [
E

1+
] [ eij + {



1–2
} emm ij ] – [

E

1–2
](–0) ij  . (P4.2c) 

Problem 4.3 

 Use superposition of the solutions (I) and (II) in sec. 14, and consider a cantilever 

beam which is fixed at x1=0 and is loaded by a shear force VL only at its end x1=L. Also, 

neglect body forces. Determine expressions for: 
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(a) the constants { NII, VII, MII, c1, c2, } 

(b) the stresses T and check that they satisfy the equilibrium equations 

(c) the average displacement w2 

 

Problem 4.4 

 For the Bernouilli-Euler beam theory, the equilibrium equations are given by (14.9), 

(14.10), (14.12) and (14.13).  In these equations v is a constraint-response (an arbitrary 

function of x1 which is determined by the equilibrium equations and the boundary 

conditions and is the response to the constraint that shear deformation vanishes) and the 

moment m is determined by the constitutive equation 

  m = EI 
d2w2

dx1
2   ,   I = 

H3W

12
  , (P4.4a,b) 

where I is the second moment of area for a rectangular cross-section, and w2 is the 

transverse displacement. 

(a) Use the Bernouilli-Euler theory to calculate the displacement w2(x1) for the 

cantilever beam described in Prob. 4.3. 

(b) The solution in Prob. 4.3 does not restrict shear deformation and therefore is more 

accurate than the solution obtained in part (a).  Denote the solution in Prob. 4.3 by  

w2
*(x1) and show that the relative error in the displacement associated with the 

solution in part (a) at x1=L and for plane stress is given by 

  Ew = 
w2(L)–w2

*(L)

 w2
*(L)

  = –  

(1+)H2

2L2

1 + 
(1+)H2

2L2

   . (P4.4c) 

 It follows that the actual beam is more flexible than the constrained Bernouilli-Euler 

beam.  However, the error diminishes very rapidly as the beam becomes thin 

(H/L<<1). 
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Problem 4.5 

 Consider the problem of a cantilever rectangular beam in plane stress which is 

subjected to a uniform normal load Q on its top surface, no load on its bottom surface, 

and a shear force VL and moment ML at its end x1=L. Neglect body forces. Using 

superposition of the solutions in sec. 14 determine expressions for: 

(a) values of the constants {NII, VII, MII, c1, c2, } 

(b) the stresses T and check that they satisfy the equilibrium equations 

(c) the average displacement w2 

 

Problem 4.6 

 Consider a microbeam made of silicon which has length L=200m, height H=5m, 

and depth W=20m.  Also, using Table 6.1 the material properties become 

  E = 70.1  103 N/m2  ,   = 0.251 ,   

  = 2.5  10–3 ng/m3  ,   T = 72.0  103 N/m2   . (P4.6a) 

where T is the tensile strength. 

 The default dimensions and material properties in the Matlab program beam are those 

associated with this microbeam and the default conditions are those of plane stress.  Also, 

the default loading is associated with traction free top and bottom surfaces and a shear 

force  

  V(L) = 20.0 N  , (P4.6b) 

applied to the end of the beam, and the units are taken to be [m,N, ng, s]. 

(a) Determine the values of the components of the traction vectors applied to the top and 

bottom surfaces of the beam which will cause the beam to be in a state of simple 

homogeneous shear.   

(b) Apply these loads to the beam and check your results by plotting various stress 

components at various locations.   

(c) Explain why the centerline of the beam is not horizontal. 
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Problem 4.7 

Consider the same microbeam as in Prob. 4.6 with the same shear force VL (P4.6b). 

(a) Determine the value of the uniform normal surface traction t2(X1,H/2) which must be 

applied to the top surface of the beam in order for the moment diagram to be that 

associated with pined-pined boundary conditions.  Hint: Use notions of global 

equilibrium.  

(b) Apply this surface traction and check your results by plotting the moment and shear 

diagrams of the beam. 

(c) Plot the value of the normalized maximum tensile stress Smax/SigT (=max/T) 

versus X1 and X2 to determine approximately where the most critical point (X1,X2) is 

for tensile failure for this loading and its value there.  Notice that this load is very far 

from the failure load. 

(d) Use the analytical solution of Prob. 4.4 with the value of VL given by (P4.6b) and the 

value of t2(X1,H/2) determined in part (a) to determine the value of the moment M(L)  

which must be applied to the beam in order for the end X1=L to be clamped.  Ignore 

displacement of this end in the e1 direction. 

(e) Apply this moment to the beam and test your result by plotting the moment diagram.  

Also, increase the scale factor Scale_u to 50 to exaggerate the displacements of the 

beam. 
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PROBLEM SET 5 

Problem 5.1 

 Using the solution of section 17 for Lame's problem, consider a semi-infinite region 

with a cylindrical tunnel of radius a. The surface of this tunnel is taken to be stress-free 

and the stress field at infinity is taken to be a hydrostatic pressure of magnitude P.  

(a) Derive an expression for the magnitude of P (in terms of the yield strength Y) which 

first causes yielding at the surface of the tunnel.  Assume plane strain conditions and 

reference temperature *=0. 

(b) Determine the amount of collapse of radius of this tunnel for this value of pressure P. 

 

Problem 5.2 

 For two dimensional problems in cylindrical polar coordinates the stress tensor T is 

expressed in the form 

  T = Trr (erer) + Tr (ere+eer) + T (ee) + T33 (e3e3)  . (P5.2a) 

Given the components of stress {Trr, Tr, T, T33} and using the fact that 

  Tij = T • (eiej) , (P5.2b) 

show that 

  T11 = 
Trr+T

2
  +  

Trr–T

2
  cos(2) – Tr sin(2)  , 

  T12 = 
Trr–T

2
  sin(2) + Tr cos(2)  , 

  T22 = 
Trr+T

2
  –  

Trr–T

2
  cos(2) + Tr sin(2)  . (P5.2c) 

 

Problem 5.3 

 The solution in section 18 is valid for stresses applied at infinity.  In order to estimate 

the stress concentration associated with a circular hole of radius a in a plate of finite 

thickness 2H (with H≥a 2), consider the case when the stresses T11
  and T22

  are applied 

(with T11
>0 and T12

=0).   
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  Fig. P.5.3  Uniaxial stress applied to a plate of finite thickness. 

(a) Determine the value of T22
  which will cause the traction vector to vanish on the 

surfaces x2=±H at the point x1=0. 

(b) Determine an expression for the maximum stress concentration factor (relative to the 

magnitude of T11
 )  at the surface of the hole associated with this loading. 

(c) Determine the numerical value of this maximum stress concentration factor for 

H=a 2. 

It is important to emphasize that this solution is only approximate because the traction 

vectors on the surfaces x2=±H do not vanish for all values of x1. 

 

Problem 5.4 

 Use the Matlab program "kirsch" for the following problems: 

(a) Determine the form for the stress tensor at infinity (T11
 , T22

 , T12
 ) which cause 

circular line elements to remain circular.  Note that you can use Scale_u to amplify 

the effect of the displacements. 

(b) Determine two sets of values of the far field stresses (T11
≠0, T22

≠0, T12
=0) which 

cause the same stress intensity factor as far field pure shear (T11
=0, T22

=0, T12
=S>0). 

(c) Check the results of your calculations in Problem 5.1. 

(d) Check the results of your calculations in Problem 5.3c. 

T11
  2H 2a T11

  
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PROBLEM SET 6 

 

Problem 6.1  

(a) Use the constitutive equations (6.22) for the heat flux vector and the internal energy, 

and show that the balance of energy (6.21f) can be rewritten in the form 

  0Cv 
•
 + 3K0 

•
e • I = 0 r +  2  . (P6.1a) 

 In order to estimate the magnitude of each of the terms in this equation it is 

convenient to consider the following special cases. 

(b) For Hopkinson bar experiments the strain rate 
•
e11 is about 1.0103 s–1.  Assuming 

uniaxial strain (all other eij=0), calculate the magnitude of the temperature rate 
•
  

associated with a pointwise adiabatic process (r=0, q=0) with constant internal energy 

for aluminum (see Table 6.1 for the material constants). 

(c) If the time t of application of the strain rate in (b) is limited to 1.010–6 s then the 

strain will remain less that 0.1% which would ensure that the material remains elastic.  

Show that the temperature change  associated with the solution in (b) is quite 

small. 

(d) Calculate the value of 2assuming that the term associated with heat conduction in 

(P6.1a) has the same magnitude as that associated with the strain rate. 

(e) An estimate of the characteristic length  for wave propagation is the wave speed C 

times the duration t.  Consequently, the temperature change  associated with the 

result in (d) is about  = 2 2.  Using the formula 

  C = 

K + 
4

3

0
    (P6.1b) 

 show that the value of  associated with heat conduction is unrealistically large. 

This means that during wave propagation there is not enough time for heat 

conduction to be important so that the term  2 is negligible in (P6.1a) 
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Problem 6.2 

 An experimentalist is using uniaxial stress waves to measure Young's modulus in 

steel. He measures the bar wave speed CB to within 0.1% error.  He asks you if it is 

accurate enough to use the standard formula 

  E = 0 CB
2 , (P6.2) 

for isothermal response to determine E.  You know that it is more accurate to assume that 

wave propagation is an adiabatic process instead of an isothermal process.  To answer his 

question, use the material properties given in Table 6.1 to calculate the percentage error 

in the isothermal value of E relative to the adiabatic value 
–
E given by (22.5). 

 

Problem 6.3 

 Consider a rectangular parallelepiped which occupies the region of space defined by 

   – 
L

2
  ≤ x2 ≤ 

L

2
  ,  – 

L

2
  ≤ x2 ≤ 

L

2
  ,  – 

W

2
  ≤ x3 ≤ 

W

2
  . (P6.3a) 

In the absence of body force (bi=0), free shearing vibration of the parallelepiped is 

characterized by the displacement field 

  u1 = A sin(t) sin(kx1) cos(kx2) , 

  u2 = – A sin(t) cos(kx1) sin(kx2) , 

  u3 = 0  , (P6.3b) 

where A,  and k are constants.  

(a) Calculate the strain field eij associated with this displacement field. 

(b) Calculate the stress field Tij associated with this displacement field. 

(c) Assuming an adiabatic process, determine the temperature field. 

(d) Show that the stress field will satisfy the stress-free boundary conditions provided 

that the wave number k is determined by the equation 

  k = kn = 
(2n–1)

L
   for  n=1,2,3,... (P6.3c) 

(e) Show that the balance of linear momentum 

  0 
••
u i = Tij,j  , (P6.3d) 
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 is satisfied provided that the frequency  of vibration is given by 

   = n = 2 C kn ,   C2 = CS
2 = 



0
  , (P6.3e) 

 where C is the secondary (shear) wave speed CS. 

 

Problem 6.4 

 A cylindrical disk of radius R = 1 cm and thickness H = 1 cm is loaded in a dynamic 

plate impact experiment.  The particle velocity at the center (r=0) of one face of the disk 

is measured using a velocity interferometer system.  The data is analyzed assuming 

uniaxial strain conditions exist along the symmetry axis of the cylindrical sample.  This 

assumption is valid only until stress relief waves propagate from the lateral surface of the 

disk to its center.  The time associated with this wave propagation process determines the 

time window t for analyzing the data.   Assuming that the disk is made of aluminum 

(see Table 6.1), determine the value of t.  
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PROBLEM SET 7 

Problem 7.1 

(a) Using the solution in section 23 for the bending moments M1 and M3 and taking 

=0,  determine the value of the bending moment M1 which must be applied to the 

edges x3=±W/2 in order for deformation of the plate due to the bending moment M3 

to be independent of the x3 coordinate.  This means that in order to bend the plate into 

a right cylindrical surface (like a beam) it is necessary to apply both the moments M3 

and M1.  This result is contrary to that associated with beam theory and it is due to the 

Poisson effect. 

(b) Show that for this case, the strain e11 is related to the stress T11 by the formula 

  e11 =  
(1–2)T11

E
  , (P7.1a) 

 which is different from the expression for uniaxial stress 

  e11 =  
T11

E
  , (P7.1b) 

 used in standard beam theory. 

 

Problem 7.2 

(a) Calculate the average displacements wi and rotations i 

  wi(x1,x3) = 
1

H
 

–H/2

H/2
 ui(x1,x2,x3) dx2  , 

  i(x1,x3) = 
1

H
 [ui(x1,H/2,x3) – ui(x1,–H/2,x3)]  (P7.2a) 

 associated with the pure bending solution (23.25). 

(b) Within the context of plate theory, an approximate three-dimensional displacement 

field 
–
ui can be defined using wi and i, such that 

  
–
ui(x1,x2,x3) = wi(x1,x3) + x2 i(x1,x3)  . (P7.2b) 

 Derive expressions for the associated approximate strain field 
–
eij 
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–
eij = 

1

2
 (

–
ui,j + 

–
uj,i)  . (P7.2c) 

 In particular, note that the shear strains 
–
e12, 

–
e13, 

–
e23 vanish. 

(c) Substitute these strains into the constitutive equation (P4.2c) (with =0) to derive 

explicit expressions for the approximate stresses 
–
Tij 

  
–
Tij = [

E

1+
] [ 

–
eij + {



1–2
} 

–
emm ij ] , (P7.2d) 

 in terms of the moment M3.  Specifically, show that 

  
–
T11 = – [

(1––2)

(1+)(1–2)
] [

12M3

WH3] x2    (P7.2e) 

 which is different from the exact result (23.5) 

  T11 = – [
12M3

WH3] x2  . (P7.2f) 

 This means that the kinematic approximation (P7.2b) is not consistent with the exact 

solution.  In particular, it is observed that e22 is nonzero in the exact solution but not 

in the approximate solution. 

 

Problem 7.3 

 

 

Consider a composite plate made of three layers with a symmetrical arrangement.  The 

top and bottom layers are made of the same material with the material constants 

e2 

e3 

e1 

H 

H 

H 

W 

L 

E, (1), (1) 

E, (2), (2) 

E, (1), (1) 



 

 

194 

  { E , (1) , (1) }  , (P7.3a) 

and the middle layer is made of a different material with material constants 

  { E , (2) , (2) }  , (P7.3b) 

Each layer has length L in the e1 direction, thickness H in the e2 direction, and depth W 

in the e3 direction.  Also, the origin of the axes is taken in the center of the middle plate.  

Assume that the plates are bonded perfectly, that all three plates are heated to the same 

uniform temperature  > 0, and that the top and bottom surfaces (x2=±3H/2) are stress 

free and the edges (x1=±L/2, and x3=±W/2) are free from resultant forces and moments. 

(a) Write expressions for the pointwise boundary conditions on the top and bottom 

surfaces of the composite plate. 

(b) Write expressions for the pointwise boundary conditions at the interfaces of the 

middle plate. 

For the following two questions assume that the deformation in each plate is 

homogeneous and that the top and bottom plates have the same state of stress. 

(c) Write expressions for the integral boundary conditions on the edges of the composite 

plate. 

(d) Consider a simple solution where all shear stresses and strains vanish, and determine 

the stress T(1) and strain e(1) fields in the top and bottom plates and the stress T(2) and 

strain e(2) fields in the middle plate. 
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PROBLEM SET 8 

 

Problem 8.1 

 

Fig. 8.1  Sketch of two plates separated by cylindrical roller bearings. 

 Figure 8.1 shows a sketch of two rigid plates that are separated by five elastic 

cylindrical roller bearings. Each of the cylinders has undeformed radius R.  Assume plane 

strain conditions and reference temperature *=0. 

(a) Assuming that a line force P (force per unit depth of the plate) is applied, determine 

the total contact region (area per unit depth) of all five cylinders associated with the 

top plate. 

(b) Also, determine the gap between the plates in their loaded state. 

 

Problem 8.2 

 One technique used to stimulate the production of oil from an oil well is called 

hydrofracture.  This technique pumps fluid into the borehole at high pressure to cause a 

fracture to propagate from the borehole into the oil saturated rock.  The simplest model 

for this process considers the in-situ stresses at a particular depth of the borehole to be 

equivalent to a hydrostatic pressure ph.  Assume plane strain conditions and reference 

temperature *=0. 

(a) Using superposition of a uniform stress field (T11≠0, T22≠0, T12=0) and the solution 

in section 27, determine the values of these uniform stresses which cause the 

combined solution to correspond to a hydrofracture with internal fluid pressure pf at 

the depth with far field in-situ hydrostatic stress ph. 

P 

P 
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(b) Determine the value of the stress intensity factor for a fracture of half length a in this 

situation. 

(c) Assuming that the rock has a fracture toughness KIc, determine the minimum value of 

the borehole pressure pf which will cause the fracture to begin to propagate. 

(d) Sometimes during the hydrofracture process, small particles (called proppants) are 

mixed with the fluid to attempt to keep the fracture propped open when the pressure 

is released.  In order to estimate the maximum allowable size of particles, determine 

the maximum value of the fracture opening during this hydrofracture process. 

 

 


