REF: TECHWEB05

Date: July , 20, 2008 Version: 1.0.4

Optical Systems

(part I - course No. 035187,

part II- course No. 036019)

(Obligatory courses for Extended area "Optical Engineering")

I. Syllabus of the Courses and the score

1. Optical Systems –part I

A. The Framework

Lectures: 2 hours weekly, Exercises: 1 hour weekly

Total score: 2.5 points

Term examination: 3 hours Home work: 6 exercises sheets

Grading: 20%-home work exercises, 80% - term exam

B. The Syllabus

- 1.1. Introduction to Optical Systems Engineering
- 1.2. Optical systems in paraxial area
 - 1.2.1. Ray optics and sign convention. Real and virtual objects and images
 - 1.2.2. Thin lenses and optical layout of Microscope and Telescope
 - 1.2.3. Diaphragms in Optical systems. Vignetting.
 - 1.2.4. Role of Prisms and analysis of unfolded diagrams

1.3. Theory of Imaging

- 1.3.1. Optical aberrations
 - 1.3.1.1. General consideration. Rays fan and aberration plot. Concept of wave aberrations
 - 1.3.1.2. Chromatic aberrations; principles of achromatic lens design
 - 1.3.1.3. Spherical aberration and Coma
 - 1.3.1.4. Aberrations of tilted beams (Field aberrations)
 - 1.3.1.5. Sine condition and Aplanatic points
 - 1.3.1.6. Addition of aberrations
- 1.3.2. Diffraction effects and Resolution.

- 1.3.3. Image Evaluation.
- 1.3.4. Two special cases (Telecentric system and Telephoto system)
- 1.4. Sources of Light and illumination systems
 - 1.4.1. Thermal radiation sources for visible and IR
 - 1.4.2. Lens-based illumination systems
 - 1.4.3. Lasers
 - 1.4.3.1. Main characteristics of a laser beam,
 - 1.4.3.2. Beam expanding and spatial filtering
 - 1.4.3.3. Laser diodes
 - 1.4.4. Light Emitted Diodes (LEDs)
- 1.5. Detectors of Light
 - 1.5.1. Parameters of radiation detectors. Thermal noise, shot noise and dark current.
 - 1.5.2. Electro-optical detectors (photocell, photomultiplier and semiconductors detectors)
 - 1.5.3. CCD detectors (line arrays and area sensors)

2. Optical Systems –part II

A. The Framework

Lectures: 2 hours weekly, Exercises: 1 hour weekly

Total score: 2.5 points

Term examination: 3 hours Home work: 6 exercises sheets

Grading: 20%-home work exercises, 80% - term exam

B. The Syllabus

- 2.1. Optical Systems for spectral measurements
 - 2.1.1. Spectral properties of materials and spectral instruments
 - 2.1.2. Prism-based systems
 - 2.1.3. Diffractive gratings and grating-based systems
 - 2.1.3.1. Plane diffractive gratings and related configurations
 - 2.1.3.2. Systems with concave diffraction gratings
 - 2.1.4. Interferometry-based spectral instruments
 - 2.1.4.1. Interference filters and interferometer Fabry-Perot
 - 2.1.4.2. Fourier Spectrometer
 - 2.1.5. Spectrophotometry

- 2.2. Non-contact measurements of Temperature
 - 2.2.1. Thermal Radiation laws and Surface properties
 - 2.2.2. Color Temperature measurements
 - 2.2.3. Brightness Temperature measurements
 - 2.2.4. Measurements of Temperature gradients
- 2.3. Optical Scanners and Acousto-Optics
 - 2.3.1. Mirrors scanners
 - 2.3..2. Electro-mechanical scanners
 - 2.3.3. Acousto-optics and acousto-optical scanners
 - 2.3.3.1. Acousto-optical effect and Acousto-Optical cell (AOM)
 - 2.3.3.2. Two operation modes AOM as Modulator of light and AOM as Deflector of optical beams
 - 2.3.3.3. AOM architecture for spectral analysis
- 2.4. Optical systems for Distance measurements
 - 2.4.1. Laser Rangefinders
 - 2.4.2.. Interferometric configuration
 - 2.4.3. Stratified light beam and imaging measurements technique
- 2.5. Systems for Flow parameters measurement:
 - 2.5.1. Principles of Laser Doppler Velocimetry (LDV)
 - 2.5.2. Measurement of velocity in 1-D, 2-D and 3-D Flow geometry
 - 2.4.1.3. Two phase Flow and principles of particles sizing
- 2.6. Color imaging and color detection
 - 2.6.1. Physiology of color vision
 - 2.6.2. Color coordinates and color quantitative presentation
 - 2.6.3. Color video signals and color CCDs

II. Literature

Main Textbook:

1. N.Menn. Practical Optics

Additional sources:

- 1. M.Born, E.Wolf. Principles of Optics
- 2. L.Levi. Applied Optics.
- 3. W.Smith. Modern Optical Engineering
- 4. F.Jenkins, H.White. Fundamentals of Optics
- 5. L.Martin. Technical Optics. Volume II.
- 6. Applied Optics and Optical Engineering, Volumes I-V
- 7. J.Goodman. Introduction to Fourier Optics.
- 8. A. Yariv, P. Yeh. Optical waves in Crystals.
- 9. F.Durst, A.Melling, J.Whitelaw. Principle and Practice of Laser Doppler Anemometry.
- 10. E.M.Sparrow, R.D. Cess. Radiation Heat Transfer.
- 11. J. Verdeyen. Laser Electtronics.
- 12. M. Young. Optics and Lasers. (v.5 in Spriner Series in Optical Engineering, 1984)

- 13. Optical and Infrared Detectors. (v.19 in "Topics in Applied Physics", Edited by R.J.Keyes)
- 14. Andrew .F.Inglis. Video Engineering.15. B.S.Rinkevichius. Laser Diagnostics in Fluid Mechanics, 1998
- 16. R.M.Boynton. Human Color Vision.
- 17. S. Tolansky. An Introduction to Interferometry. 1954